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Swirlonic state of active matter
Nikolai V. Brilliantov1,2, Hajar Abutuqayqah2, Ivan Yu Tyukin2,4 & Sergey A. Matveev1,3*

We report a novel state of active matter—a swirlonic state. It is comprised of swirlons, formed by 
groups of active particles orbiting their common center of mass. These quasi-particles demonstrate a 
surprising behavior: In response to an external load they move with a constant velocity proportional 
to the applied force, just as objects in viscous media. The swirlons attract each other and coalesce 
forming a larger, joint swirlon. The coalescence is extremely slow, decelerating process, resulting in a 
rarified state of immobile quasi-particles. In addition to the swirlonic state, we observe gaseous, liquid 
and solid states, depending on the inter-particle and self-driving forces. Interestingly, in contrast to 
molecular systems, liquid and gaseous states of active matter do not coexist. We explain this unusual 
phenomenon by the lack of fast particles in active matter. We perform extensive numerical simulations 
and theoretical analysis. The predictions of the theory agree qualitatively and quantitatively with the 
simulation results.

Active matter is a substance comprised of active particle that demonstrate the motility, that is “the ability to 
exhibit motion and to perform mechanical work at the expense of metabolic energy”1. The active particles 
consume energy from the environment and drive themselves far from equilibrium2,3. Living matter (biological 
systems) provides an uncountable amount of examples of active particles systems4. Other examples refer to 
robotics5, biomedicine6, and social science7,8; an interesting laboratory realization of artificial active particles are 
the so-called vibrots9–13. Similarly to common molecular systems active matter undergo different phase transi-
tions – separation into dense and dilute phase9,10 and crystallization14–16; these phenomena my be described 
within the framework of conventional thermodynamics14–18.

The most prominent feature of systems of active (self-propelled) particle is the formation of self-organized 
coherent structures, see e.g.2,3,19–29. Among these are intriguing milling patterns emerging in circular motion, 
when a group of individuals follow one another around an empty core. Such swirling patterns have been observed 
for animals at different evolution stages, ranging from plant-animal worms and insects to fish30–40. To describe 
the swirling motion several models have been proposed, including the celebrated Vicsek41–43 and Vicsek-like 
models44–47, as well as models based on the inter-particle interaction potential20,29,48–52. Although the inter-particle 
potential between active particles (agents) does not exists in reality, it mimics an intention of an agent to change 
its velocity according to some rules. It is convenient to put these rules in the form of Newtonian forces acting 
between the agents. Alternatively, the rules may be explicitly written in terms of velocity of an agent at the next 
time step, that is, determined by the velocities and coordinates of the (usually the nearest) neighbors. Below we 
will use the former approach, based on the inter-particle potential. Note that here we address the swirling motion 
of active particles; swirling also exists in a system of agitated passive particles, which have been studied in53.

The milling motion reported in Refs.20,29,48–53 referred to a single pattern where particles orbited around a 
common center. The number of particles was not large—it did not exceed a few hundreds. Formation of multiple 
milling patterns has not been reported. A possible reason for this could be a small system size due to the compu-
tational constrains. Indeed, the system of dynamic equations for active particles forms a set of very stiff ordinary 
differential equations (ODEs). An accurate convergent solution requires in this case an extremely small time 
step54. Hence it seems interesting to simulate much larger systems of active particles to explore the formation of 
multiple structures and their evolution.

In the present study we investigate large systems of active particles and report the formation of the conven-
tional phases—gaseous and liquid phase, as well as solid phase, but also a new state of active matter—“swirlonic” 
state. In a gaseous state the active matter tends to occupy all the available space, while in a liquid state its volume 
is limited. However, in contrast to common molecular systems, we did not observe the gas–liquid coexistence, 
but only the presence of a single phase. In the swirlonic state multiple milling patterns—swirlons are formed. The 
swirlons behave like individual super-particles with surprising properties. They attract each other and coalesce 
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upon collision, forming swirlons of a larger mass. When an external force is applied to a swirlon, it moves in the 
direction of the force, with a constant velocity, proportional to the applied force, as a particle in viscous medium. 
The steady velocity of the swirlon is inversely proportional to the mean-square velocity of the orbital motion of 
particles comprising the swirlon. The larger the swirlon, the larger the mean-square velocity and hence smaller 
the steady velocity. In other words, the mobility of swirlons decays with its mass. The swirlonic state is not a 
stable but transient state, since eventually all swirlons should collapse into a single milling structure. However 
the mobility of heavy swirlons drastically decreases, which entails, for a large system, a diverging transient time 
from the swirlonic state to the single milling state. This makes the swirlonic state of a special interest.

To study large systems of active particles we slightly modify the repulsion part of the commonly used Morse 
interaction potential. Namely, we apply the Gaussian dependence of the potential on the inter-particle distance, 
instead of previously used exponential dependence. This simple modification leads to a drastic reduction of the 
stiffness of the ODEs describing the system and keeps, at the same time, qualitatively the same behavior. The 
reduced ODE stiffness allowed to release very severe restrictions for the size of the computation time step and 
simulate relatively large systems, up to few tens of thousand particles. Simulation of such large system gives a 
new insight into the properties of active matter.

Model
We consider a two-dimensional system comprising N identical self-driven particles of mass m = 1 . Then the 
equation of motion of ith particle reads,

where ri and vi are the coordinate and velocity of the i-th particle, f i is a force acting from all other particles, g i 
is an external force and ξ i(t) is a random force, modeled by a Gaussian white noise,

where α and β denote the Cartesian components of the vector ξ i
The self-driving force (b− v2)v describes the motion of the active particle with a constant velocity v =

√
b 

in the absence of all other interactions. We use the following model for the interaction with other particles:

Ur(r) and Ua(r) refer respectively to the repulsive and attractive part of the interaction potential with the accord-
ing constant Cr and Ca characterizing the interaction strength. lr and la describe the characteristic lengths of Ur(r) 
and Ua(r) . As we have already mentioned, we use the Gaussian dependence on distance for the repulsive part 
of the potential, instead of exponential dependence of the Morse potential. Eq. (2) has the form of stochastic 
Langevin equation. The corresponding Fokker–Planck equation for the distribution function �(r, v) is given in 
the Appendix A; it can be derived using the standard techniques, see e.g.55, 56.

The dynamic of the system is described by N Eqs. (1)–(4) for i = 1, . . .N  along with Eqs. (4)–(5) for the 
interaction potential. We simulate two-dimensional systems. In simulations we use up to 38,000 ODE, different 
sets of parameters (Ca, la,Cr , lr) and different initial densities of particles and system size. We start with random 
configurations and random velocities, randomized both in magnitude and direction. Depending on the above 
parameters one obtains rather different behavior of the system, which is qualitatively the same as reported in 
Refs.29,52, that is, flocking, swarming and milling. However, additionally, a novel state with many milling struc-
tures has been detected, which we call “swirlonic state”. We have checked that this state emerges also for other 
potentials, with attractive and repulsive parts, including Morse potential. Still an accurate modeling of such states 
with multiple swirlons is computationally very challenging. Here we report our findings for the soft (Gaussian) 
form of the repulsive potential, see Eq. (5). The results have been obtained for a system in liquid, gaseous and 
swirlonic state confined in a circular region.

Phases of active matter
Starting from a uniformly distributed particles, confined in some area, Fig. 1a different phases may be formed 
depending on the density and parameters of interaction potential. If the density is low, so that the average distance 
between the particles exceeds the characteristic length of the interaction potential, the interactions are weak and 
compact patterns do not emerge. The particles run away from their initial position and occupy all the available 
space. They move chaotically, and thus form a “gaseous” phase, Fig. 1b. In contrast, for larger density, when many 
particles are located within the interaction distance, the attraction is stronger, and a state with a fixed density 
emerges, Fig. 1c. In this case the active matter does not occupy all the available volume, but only part of it. This is 
a “liquid” state. Interestingly, we did not observe coexistence of two phases—gaseous and liquid as in molecular 
systems. This may be explained by the fact that in contrast to molecular systems, where the distribution function 

(1)ṙi = vi

(2)mv̇i = f i + (b− v2i )vi + g i ,+2
√
Dξ i(t)
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for particles’ velocities is Maxwellian, the according distribution for active particles decays much faster for large 
velocities. Namely it reads (see the Appendix A):

Hence, while the fast particles are abundant in molecular systems, they are practically lacking in active matter. 
These fast particle can overcome the attraction forces of the molecular surrounding and give rise to the gaseous 
phase; the lack of fast particles in active matter results in the lack of the gas, coexisting with the liquid phase. 
If the particle density is still larger and the repulsive forces are strong, the active matter falls into a solid phase, 
Fig. 1d, where the particles mobility is suppressed.

In some range of parameters a novel swirlonic phase is formed, Fig. 1e. It is comprised of swirlons—“super-
particles” with many astonishing properties which we address below. Individual active particles in swirlons 
perform a swirling motion around their common center. As we demonstrate in what follows, the swirlons are 
formed when local fluctuating force exceeds the critical force, which characterizes the ability of an active particle 
to move against an applied load.

Finally, for large density and very strong attractive forces a collapsed state is observed, Fig. 1f. In the collapsed 
state active particle also move around the common center, however the character of the motion is rather irregular. 
In the present study we will focus on the gaseous, liquid and especially on the swirlonic phase.

Qualitative theory of phase behavior
Critical force.  To understand the conditions for the formation of different pases we consider first a single 
active particle under an action of a constant force. It obeys the equation (recall that m = 1):

(6)�(v) ∼ e−v4/2D for v → ∞

(7)v̇ = bv − v2v + f

Figure 1.   For varying density and parameters of interaction potential different states of active matter are 
obtained: (a) Initial state of a uniform density and random velocities, the system is confined in a circle of radius 
R0 ; (b) “gaseous” phase, where the particles occupy all the available space; (c) liquid state, where only a part of 
available space is occupied (note the lack of the liquid–gas coexistence); (d) solid phase, where the mobility of 
particles is suppressed; (e) swirlonic phase, comprised of swirlons—“super-particles” built up by orbiting around 
a common center active particles; (f) collapsed state, where a single very dense structure is formed.

Figure 2.   (a) The dependence of dv/dt on v for different force strengths (from top to bottom): f = 0 , f = fc 
and |f | > |fc| . The stable points towards the system evolves are shown. For |f | ≤ |fc| there are two stable 
points dv/dt = 0 – one with the velocity in the direction of the force and another in the opposite direction. 
For |f | ≥ |fc| the only solution corresponds to the velocity in the direction of the force. (b) Illustration of the 
derivation of the average force fav that keeps the particles within the initially occupied area (the circle of radius 
R). Due to symmetry the average force is directed towards the center of the circle.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16783  | https://doi.org/10.1038/s41598-020-73824-4

www.nature.com/scientificreports/

For simplicity we assume that the direction of the force and velocity coincide, then Eq. (7) is a scalar equa-
tion. In Fig. 2a the dependence dv/dt = 0 on v is demonstrated for different f. It shows that the system evolves 
to states with dv/dt = 0 , which are depicted as stable points in the figure. These are the roots of the equation, 
bv − v3 + f = 0 . For |f | ≤ |fc| there are roots, which correspond to the steady motion in the direction of the 
force and in the opposite direction. For |f | ≥ |fc| there is only one root, corresponding to the steady motion in 
the direction of the force. The critical force reads,

where vc =
√
b/3 is the critical velocity, which is the root of the equation, d(bv − v3 + f )/dv = 0 , see Fig. 2a. 

One can interpret this results as follows: If the applied force f does not exceed the critical force fc an active 
particle can move against the force, that is, such force would not prevent the escape of the particle from some 
area, where such force is acting. In contrast, if f is larger than the critical force, an active particle can not escape 
from the region where this force is acting. The above estimate of the critical force will be used to estimate the 
conditions for different phase formation.

Conditions for “gaseous” phase.  Now we estimate the average force acting on active particles at differ-
ent locations. Let N active particles are uniformly distributed within a circle of radius R, see Fig. 1c (note that R 
may differ from the initial value R0 ). If la, lr ≪ R the average force, acting on a particle from its neighbors, in the 
internal part of the circle is zero. At the same time particles near the border experience uncompensated average 
force fav directed towards the circle center, see Fig. 2b. Consider a particle located exactly at the border, then the 
average force may be estimated as

Here n = N/(πR2) is the number density of particles, nrdrdφ gives the amount of particles 
within a small surface element rdrdφ which act on the chosen particle at the border with the force 
f (r) = (Ca/la)e

−r/la − 2(rCr/l
2
r )e

−r2/l2r  . The factor sinφ accounts for the fact that only the component of the 
above force, directed towards the circle center, contributes to the average force; the component normal to this 
direction does not contribute due to the symmetry, see Fig. 2b. As it follows from Eq. (9) both the repulsive 
and attractive forces contribute to fav , but these act in opposite directions. Since we focus in our study on the 
swirlonic states, which require that la > lr (see also the classification of Ref.52) we can neglect the repulsive force 
to find an upper estimate for fav . Then the integration over r in Eq. (9) yields,

Writing the second line in the Eq. (10) we assume that R/la ≫ 1 , which implies that only φ ≃ sin φ ≪ 1 contrib-
ute from the part of the integrand with the exponential factor; this also allows to change the upper limit π/2 to ∞ . 
Although the above estimate is justified for R/la ≫ 1 , it works, in practice, rather well (with the accuracy better 
than 17%) already for R ≥ la . We assume that a particle remains in a condensed phase if the average force is larger 
than the critical force. Then from Eqs. (10) and (8) follows the estimate for the condition of the condensed phase:

where α ∼ O(1) is the constant of the order of one. If the condition (11) is not fulfilled, the “evaporation” takes 
place and the system evolves to the “gaseous” state, occupying all available space, see Fig. 1b. The evaporation 
is facilitated for small systems, at low density, with a weak, short-range potential. The evaporation through the 
flat boundary, R → ∞ , occurs at b2/3 ∼ αCanla . With Eq. (8) for the critical force, the condition for condensed 
state may be written as

where f ∗c = fcla/Ca is the reduced critical force and φa = πnl2a is the effective “packing fraction”, associated 
with the length of attractive interactions la and particle number density n = N/� , where � = πR2 is the area 
occupied by the active matter. The latter can differ from the initial area as well as from the total available area, 
see Fig. 1a and c.

Conditions for liquid and swirlonic state.  Now we need to discriminate between two condensed states–
liquid, with a uniform density, occupying a fixed volume, Fig. 1c, and swirlonic, with multiple milling structures, 

(8)fc = v3c − bvc = −
2b3/2

3
√
3
,
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Fig. 1e. That is, we need to find the condition, when a uniform state becomes unstable. We notice that swirlons 
emerge due to a “local capture” of active particles by their surrounding. Indeed, these structures emerge, when 
particles remain localized in the vicinity of their initial positions. In other words, it is expected that there exist 
local forces with the strength exceeding the critical force fc . Since the average force is zero for uniformly distrib-
uted particles, the arising forces have fluctuating nature. Let us estimate these fluctuating forces.

Consider a particle in the internal part of the system. The number of neighbors that act on the particle is about 
∼ nl2a and they act on the particle with the force of the order ∼ (Ca/la) (again we neglect the repulsive forces). The 
average force is zero, but due to the density fluctuations, which may be estimated as ∼

√

nl2a  a non-compensated 
fluctuating force of the order of ∼ (Ca/la)

√

nl2a ∼ Can
1/2 will arise.

A more rigorous analysis presented in Appendix B confirms the above estimates. Namely, it may be shown 
that the distribution of the local fluctuating force F in a space uniform system with the interaction potential 
U = Cae

−r/la reads as shown in Fig. 3 (see the “Appendix B”),

The average force may be obtained from the above distribution (13) as

This average force is to be compared with the critical force fc , (8), to escape from the local surroundings. Hence 
we can write the estimate for the condition that an active particle is locally caught by the fluctuating force and 
participate at the formation of a swirlon:

where α1 = O(1) is the constant of the order of one. The above condition (15) does not, however, discriminate 
between swirlonic and collapsed state, but rather demarcates liquid and swirlonic states. With the above nota-
tions the condition of liquid phase may be put into the form,

The three phases of active matter—gaseous, liquid and swirlonic, obtained in simulations are demonstrated in 
Fig. 4a. If we assume that α1 is considerably larger than α , we conclude that the observed phase diagram is in a 
qualitative agreement with the theoretical prediction (16).

Conditions for collapsed state.  Here we call a state with a single structure formed as a “collapsed” state. 
This may happen if a considerable amount of particles does not experience an action of a local fluctuating forces, 
that cause the emergence of local swirlons, but rather experience a “global” force, directed towards the center 
of the occupied area. In other words, it is expected that collapsed structures would be formed, provided that 
number of “boundary” particles, located in a layer with the distance of la from the boundary is comparable to the 
number of “internal” particles. This condition may be written as follows,

If we neglect l2a as compared to Rla we can write approximate condition for the formation of a single structure:

As one can see from the above equation, the collapsed state emerges in small systems, with a long range attrac-
tion. This tendency has been confirmed in our simulations.

(13)P(F) ≃
1

4πan
e−F2/(4an); a ≡

π

8
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a .
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Figure 3.   An example of the local force distribution P(F) at the initial stage of the system. The active particles 
interact with the inter-particle potential (5). Lines-gaussian fit P(Fi) = Ae−F2i /(4an) , as it follows from (13), for 
the x-component ( i = x , left panel) and y-component ( i = y , right panel). A = 0.116 is a fitting parameter. Data 
are the average over 50 runs. The system parameters are Ca = 1 , la = 1.3 , b = 0.8 , D = 0 , Cr = 0 , R0 = 8 and 
N = 3000
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Swirlonic phase
Swirlons under an external force.  The active particles forming swirlons are orbiting the common center 
of mass in different directions: approximately half of them move clockwise and half—counterclockwise, which 
is illustrated in Fig.  4b; still, they move coherently. Namely, in our simulations of active matter we observe 
that swirlons (in the swirlonic phase) move under an action of external force, as material particles in viscous 
medium. That is, their velocity linearly increases with the applied force. The mobility of a swirlon depends on 
its mass, that is, on the number of active particles comprising the swirlon. The larger the mass of a swirlon the 
smaller the mobility.

Below we explain this astonishing property of swirlons. Let a constant external force g  is directed along the 
x-axis. Let a swirlon be in a steady motion with a constant velocity v0 , also along the x- axis. Consider a motions 
of an active particle inside the swirlon. Let F be the resulting total force that acts on the particle from the other 
particles of the swirlon. It supports the circular motion; the force and velocity components may be written as:

where ω is the angular frequency and v1 is the linear velocity of the circular motion . The x-component of the 
equation of motion then reads,

Now we take into account that

and average over time T which is large, as compared with the rotational period Tswir = 2π/ω . Introducing the 
notation,

we obtain,

(19)Fx = F cosωt; Fy = F sinωt

(20)vx = v1 cosωt + v0; vy = v1 sinωt,

(21)v̇x = Fx + (b− v2)vx + g .

v2 = v2x + v2y = v21 + v20 + 2v1v0 cosω

v2vx = v31 cosωt + v21v0 + v1v
2
0 cosω + v30 + 2v21v0 cosωt + 2v1v

2
0 cosωt

a =
1

T

∫ T

0
a(t)dt,

Figure 4.   (a) Phase diagram of the active matter. Dots—simulation results, lines—fits, according to the 
theoretical prediction (16). Here f ∗c = fcla/Ca is the reduced critical force and φa = πnl2a is the effective 
“packing fraction”. The parameters are Ca = 1 , la = 1.3 , Cr = 2 , lr = 1.1 and D = 0 . In simulations we use 
system sizes from N = 50 to N = 2000 and varying b from b = 0.0001 to b = 100 . Note the qualitative 
agreement between the theory and simulations. (b) Internal structure of a swirlon. It is comprised of particles 
moving clockwise and counterclockwise.
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Averaging the equation of motion (21) we find,

or, with Eqs. (22) and (23),

which is a cubic equation for v0 . Almost in all cases the constant velocity v0 is much smaller than the orbiting 
velocity v1 (that is, v0 ≪ v1 ), which implies the approximation, v21 ≃ v2 ≃

〈

v2
〉

 , where 
〈

v2
〉

 is the mean square 
velocity of particles in the swirlon. Then the solution of Eq. (24) may be written as

Note that the orbiting velocity v1 may strongly differ from the “self-velocity” b1/2 . Indeed, when a swirlon is 
formed, the initial potential energy of particles may transform into the kinetic energy associated with the orbit-
ing motion around the center of mass of the swirlon. It is not easy, however, to obtain the value of 

〈

v2
〉

 , due to 
the lack of conservation laws for energy, momentum and angular momentum for active particles. In Fig. 5 the 
simulation results are compared to the theoretical prediction, Eq. (25). The theoretical results are in a very good 
agreement with the numerical data.

Coalescence of swirlons.  In Fig. 6 we demonstrate the main stages of the swirlon emergence and evolu-
tion. One can observe the coalescent dynamics in the swirlonic phase. Initially the aggregation is fast, since the 
swirlons attract each other and have large mobility. In a course of time the average mass of swirlons increases 
and the mobility drops down (see the discussion below). This results in the slowing down of the coalescence. 
Eventually a small amount of very massive swirlons remain that have vanishing mobility and the aggregation 
practically ceases.

Consider some particular stage of the swirlon evolution. Let Ns swirlons emerge in a system with the area 
S and the initial number density of active particles be n. Then the average “mass” of a swirlon (that is, the 
number of active particles forming a swirlon) reads, ms = nS/Ns and the number density of the swirlons is 
ns = Ns/S = n/ms . The average distance between the swirlons may be estimated as l̄ ∼ n

−1/2
s  . The coalescence 

of these objects occurs as a process that symbolically may be written as A+ A → A , where A denotes a single 
swirlon. We estimate the rate of this process. Let two swirlons were initially at the average distance r(0) = l̄ and 
after time T coalesce, r(T) ≈ 0 . Their relative motion obeys the equation,

where µ accounts for the mobility, which we approximate as size-independent and the factor m2
s  accounts that 

in each swirlon there are ms monomers, each attracting with the force (Ca/la)e
−r/la . Solving Eq. (26) with the 

above boundary conditions we find:

(22)

v2 = v21 + v20

v2vx = 2v21v0 + v30

v̇x = fx = 0

vx = v0.

(23)v̇x = fx + (b− v2)vx + g ,

(24)bv0 − (2v21v0 + v30)+ g = 0,

(25)v0 =
g

2
〈

v2
〉

− b
.

(26)
dr

dt
= −µ

Cam
2
s

la
e−r/la .

Figure 5.   Uniform motion of swirlons under an external load: (a) The linear dependence on time of the 
displacement of the center of mass of a swirlon under an action of the external force. The measured velocity is 
v ≃ 0.0216 and the theoretical value is v ≃ 0.0211 . (b,c) The linear dependence of the velocity of the swirlon 
v on the magnitude of the applied force g. Dots—simulation results, curves—theoretical prediction, Eq. (25); 
〈

v2
〉

 is taken from the simulations. The parameters are Ca = 5 , la = 15 , Cr = 1 , lr = 0.01 , b = 2 , D = 0.1 and 
N = 200 for (a,b) and Ca = 5 , la = 15 , Cr = 1 , lr = 2 , b = 1 , D = 0.1 and N = 200 for (c).
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Since el̄/la ≫ 1 we conclude that

The quantity T−1 may be treated as the reaction rate between two swirlons. Therefore the equation for the reac-
tion kinetics A+ A → A reads

where we use the expressions ms = n/ns and l̄ = 1/n
1/2
s  . Solving the above equation we obtain for large t and 

small nsl2a → 0,

where x = nsl
2
a or, asymptotically, for t → ∞,

Eq. (28) predicts an extremely slow decay of the swirlons concentration, which agrees qualitatively with the 
simulation results, as it is illustrated in Fig. 7.

It is interesting to compare the coalescence of swirlons with the aggregation of vertexes in two-dimensional 
turbulence, although the background physics of these two phenomena is rather different. The vertex aggregation 
results in a power-law decay of a number of vertexes, nv ∼ t−ξ with ξ ≈ 0.70− 0.7557, which is much faster than 
the inverse square logarithm of time in Eq. (28). This is explained by the long-range interaction of the vertexes, 
while the swirlon interactions decay exponentially with distance.

Conclusion
We reveal a new state of active matter, which we call a swirlonic state, where all active particles belong to swirlons, 
comprised of particles orbiting around common center of mass. Although such milling structures have been 
reported in many studies, the state of matter constituted by quasi-particles—swirlons was not investigated. The 
dimension of swirlons is almost independent on the number of particles inside it and determined by the intensity 
of the self-driven and inter-particle forces. These quasi-particles demonstrate an astonishing property—under 
an applied external force they move with a constant velocity, proportional to the force, just as the objects in vis-
cous medium. We observe that the mobility of a swirlon is inversely proportional to the square average velocity 
of particles orbiting the swirlon’s center of mass. Swirlons attract to each other and coalesce upon a collision, 
forming a joint swirlon. Therefore evolution of a swirlonic state of matter corresponds to continuous aggregation 
of particles when fewer and fewer swirlons of larger and larger mass are formed. This process being fast in the 
beginning, becomes extremely slow afterwards, leading to the formation of a rarified state of massive immobile 
swirlons; the evolution at this stage is practically frozen.

We also observe, that depending on the parameters of the inter-particle potential and characteristics of the 
self-driving force of active particles, a few other states may be formed. These correspond to the gaseous, liquid and 
solid states of matter, as it is known for molecular systems. While in the gaseous state the active matter occupies 
all the available space, in the liquid state only a part of the space is occupied. Moreover, in the liquid state the 
active matter possesses a surface tension. Surprisingly, we did not observe the coexistence between liquid and 
gaseous phase, as it is common for molecular systems. We explain this feature of the active matter by the lack of 
fast particles, which can escape from the liquid phase and form the gaseous phase. While the abundance of fast 
particles is secured in molecular systems by the Maxwellian velocity distribution, the velocity distribution for 
fast particles in active matter has much steeper decay with increasing velocity.

For high density of active particles with a small self-driving force and relatively strong repulsive interactions, 
a solid state is formed. It is characterized by a complete suppression of the long-range motion (diffusion) of the 
particles. In the solid state the active particles perform a very limited motion around a center of a potential well 
formed by their nearest neighbors. Finally, for the case of a low self-driving force and very long-range attractive 
interactions the active matter forms a collapsed state. This is a dense state where we have observed quite irregular 
motion of the particles.

We performed both numerical and theoretical analysis of the system. To make the set of ODEs, that describe 
the particles motion, less stiff, we use a modified Morse potential, which has the gaussian form of its repulsive 
part. This allows to simulate a few tens of thousands of equations, which suffices to investigate different macro-
scopic states of the system. The qualitative and quantitative predictions of our theory are in a good agreement 
with the simulation results.

(27)el̄/la = 1+
µCam

2
s

l2a
T .

T−1 =
µCam

2
s

l2a
e−l̄/la .

dns

dt
= −

1

2
T−1n2s = −

1

2
µ
Cam

2
s

l2a
n2s e
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2

µCan
2

l2a
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2
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Appendix
Fokker–Plank equation and the velocity distribution.  Application of the standard techniques55, 56 
yields the following Fokker-Plank equation for the distribution function �(r, v) for the coordinates and densities 
of active particles:

where as previously g  is the external force. We consider the stationary distribution for a space uniform system 
in the absence of external forces. In this case the l.h.s of Eq. (29) vanishes, yielding,

For uniform and isotropic system the distribution function � depends only on velocity module, that is, � = �(v) . 
Changing to the polar coordinates for the velocity, v = (v,φ) , we obtain, using the independence of � on the 
angular variable φ:

Integration this equation and using the boundary condition at v = 0 , we finally obtain:

which for v → ∞ tends to � ∼ e−v4/2D.

Derivation of the force distribution.  Following the derivation of the Holtsmark distribution given for 
the gravitational force f (r) ∼ 1/r2 (see e.g.59), we write for the distribution of the local force F:

where � is the system volume and N is the number of particles. Now we take a Fourier transform of P(F) to 
obtain:

In the limit � → ∞ , N → ∞ , n = N/� = const. the last result takes the form59,

which defines �(k) . Hence we obtain for the distribution function,

(29)∂�

∂t
+ v ·

∂�

∂r
+ g ·

∂�

∂v
= −

∂

∂v
· (b− v2)v�+

D

2

∂2�
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(30)divv
[
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]
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2
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1

v

∂
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[
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]

=
D

2
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v

∂
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v
∂�
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(32)� ∼ ebv
2/D−v4/2D ,

(33)P(F) =
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dr1
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. . .

∫
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i=1

f i − F
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,
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dFeik·FP(F) =
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(34)P(k) = exp
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)
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= e−n�(k),

Figure 7.   Time dependence of the swirlon number density. It decreases owing to the permanent coalescence 
of the swirlons. In a course of time this process becomes extremely, slow, as it follows from Eq. (28). Dots—
simulation data for the different system size, lines—fits, corresponding to the theoretical expression (28): fit 1: 
0.358/(log10(2.5t + 10))2 , fit 2: 0.358/(log10(3.5t + 10))2 , fit 3: 0.358/(log10(0.85t + 10))2 . The numerical data 
resides between the according analytical fits. The parameters are Ca = 10 , la = 0.2 , Cr = 1 , lr = 0.1 , b = 20 , 
D = 0 and R0 = 4.
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To compute �(k) we write the force as f (r) = (r/r)f1(r) with f1(r) = (Ca/la)re
−r/la . Then one obtains for the 

two-dimensional system:

Integration over φ yields,

where J0(x) is the zero-order Bessel function. Integration over r in (36) may not be performed analytically, hence 
we apply approximations. To analyze capturing of particles by the fluctuating force we are interested in the force 
distribution for large forces, that exceed the characteristic force of the order of ∼ Ca/la . In the Fourier space 
this would correspond to values of k ∼ 1/F smaller than ∼ (Ca/la)

−1 . In other words, we are interested in the 
values of k satisfying the relation, kCa/la < 1 . This motivate us to apply the approximation, J0(x) ≃ 1− 1

4x
2 

with x = (kCa/la)e
−r/la , which yields,

Using Eq. (37) we find the distribution of the fluctuating forces:

where a = πC2
a/8 . It may be easily checked that P(F) is normalized and that �F� =

∫

dFP(F)F = 0.
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