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Abstract: Vibrotactile sensory augmentation (SA) decreases postural sway during real-time use;
however, limited studies have investigated the long-term effects of training with SA. This study
assessed the retention effects of long-term balance training with and without vibrotactile SA among
community-dwelling healthy older adults, and explored brain-related changes due to training with
SA. Sixteen participants were randomly assigned to the experimental group (EG) or control group
(CG), and trained in their homes for eight weeks using smart-phone balance trainers. The EG
received vibrotactile SA. Balance performance was assessed before, and one week, one month,
and six months after training. Functional MRI (fMRI) was recorded before and one week after
training for four participants who received vestibular stimulation. Both groups demonstrated
significant improvement of SOT composite and MiniBESTest scores, and increased vestibular reliance.
Only the EG maintained a minimal detectable change of 8 points in SOT scores six months post-
training and greater improvements than the CG in MiniBESTest scores one month post-training.
The fMRI results revealed a shift from activation in the vestibular cortex pre-training to increased
activity in the brainstem and cerebellum post-training. These findings showed that additional
balance improvements were maintained for up to six months post-training with vibrotactile SA for
community-dwelling healthy older adults.

Keywords: balance rehabilitation; vibrotactile; sensory augmentation; retention; older adults; home-
based; telerehabilitation; telehealth; wearable device; sensory reweighting

1. Introduction

Medical costs associated with age-related falls exceed $50 billion per year [1]. Exercise
programs with targeted balance and strength training have been shown to improve balance
and reduce falls among community-dwelling older adults [2–4]. Supervised training
programs are typically individually tailored and lead to better outcomes as compared
to class-based balance programs but are costly and not universally accessible [5]. While
independent in-home programs may address these issues, the lack of clinician guidance
results in fewer clinical improvements than supervised programs [6]. Telerehabilitation
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technologies may address the need for intensive, accessible, in-home semi-supervised
balance training. Technologies, such as the Wii-fit [7], Kinect [8], and wearables that
provide feedback [9] or incentives [10], have been investigated in combination with balance
training. Sustained quality of life improvements and fewer fall incidents require retention
of balance improvements.

Vibrotactile sensory augmentation (SA) systems have been used in balance-related
research studies to estimate body motion and provide postural corrective cues in the
form of vibration to the user. Multiple studies (although many were uncontrolled) have
demonstrated short-term retentive (or possibly habituation or context-specific adaptation)
effects of training with vibrotactile SA [11–16]. For example, Basta et al. showed that
participants with balance deficits reduced their trunk sway after two weeks of training
with vibrotactile SA and retained the effects of training for three months [12]. Kingma
et al. reported improved mobility and balance scores in a small group of participants with
bilateral vestibular loss who wore a vibrotactile belt daily for one month while standing
and moving during activities of daily living [15].

A limited number of controlled studies have examined retention and/or carryover
effects following longer-term training with SA. In a randomized controlled study, people
with Parkinson’s disease participated in 12 sessions of clinical balance training [17]. The
authors compared the effects of virtual reality (VR) augmented balance training using a
dynamic balance board (VR group) to conventional balance training [17]. The VR group
improved significantly on the Computerized Dynamic Posturography (CDP) Sensory
Organization Test (SOT) condition 6 (unreliable vision and somatosensory inputs) as
assessed within seven days after training; however, this finding was not significant at
the four-week follow-up, suggesting limited retention effects. In another study involving
people with Parkinson’s disease, improvements in SOT scores were retained and falls
were reduced three months after 10 training sessions with vibrotactile SA over a two-week
period [18]. Although this study did not have a control group, the SOT scores of the
participants in this study showed greater improvement compared with 10 participants with
Parkinson’s disease previously trained using CDP in a different study.

In a study involving older adults, balance training with vibrotactile SA three times
per week for two weeks had minimal additional effects on both immediate and longer-
term balance outcomes compared to a control group that performed balance training
without vibrotactile SA [9]. However, in this study, balance tasks were not customized
on an individual participant basis and the limited training period did not follow the
recommended FITT principles of frequency, intensity, type, and time [19].

In a six-week study (totaling 18 balance training sessions) involving vestibular rehabil-
itation exercises, participants with vestibular deficits, regardless of group, demonstrated
improvements in a subset of clinical and balance metrics immediately following completion
of the balance training protocol [20]. However, the experimental group that trained with
vibrotactile SA showed significantly greater improvements than the control group who
trained without vibrotactile SA on the Activities-specific Balance Confidence Scale and
postural stability during two standing balance exercises with head movements.

Our prior work investigated the effects of long-term (eight-week home-based balance
training program) balance training with and without vibrotactile SA on clinical outcome
measures for community-dwelling older adults [21]. Participants who completed training
with vibrotactile SA had greater improvements in SOT scores, Mini Balance Evaluation
Systems Test scores, and Five Times Sit to Stand Test duration compared with the control
group who trained without vibrotactile SA. Both groups also demonstrated increased
vestibular reliance as measured by a ratio of SOT scores [21].

Beyond the lack of studies on retention effects, a limited number of studies have
been performed to investigate the changes in the sensorimotor brain regions during and
following balance training with SA. Multiple hypotheses have been posited to explain the
potential mechanisms underlying balance improvements during and following training
with SA devices, including sensory reweighting and context-specific adaptation [14,22].
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Among the most relevant, a previous study reported that SA coupled with navigation
training was associated with changes in brain activity in the sensorimotor and navigation
(hippocampus, caudate) brain regions [23]. However, it is unknown whether brain-related
changes occur after balance training with SA.

Given the lack of long-term training studies that explore the retention effects of training
with SA and the lack of studies that have evaluated potential brain-related changes, there
is a need for additional research that investigates the retention of training effects following
longer-term training with vibrotactile SA. The two main purposes of this study were to
(1) understand the retention effects of balance improvements by examining the balance
performance following completion of an eight-week in-home balance training program with
wearable vibrotactile sensory augmentation (SA) [21]; and (2) further the understanding
of mechanisms underlying the balance improvements by examining brain changes in
processing vestibular stimulation from pre- to post-training with SA. This study is one of
the first of its kind to assess balance improvements and retention effects on a battery of
clinical outcome measures after a long-term customized balance training program with
and without SA.

2. Materials and Methods
2.1. Participants

In total, 16 healthy older adults (5 M, 75.4 ± 4.7 years) were recruited from the
community. Participants were eligible if they were 65–85 years old, in good general health,
and had self-reported balance concerns [21]. Participants were randomly allocated to
either a control group (CG, n = 8) or experimental group (EG, n = 8). One participant was
withdrawn due to an unrelated orthopedic condition, and four were lost to the six-month
follow-up (Figure 1). All participants gave written informed consent, and the study protocol
was approved by the University of Michigan Institutional Review Board (HUM00086479)
and adhered to the Declaration of Helsinki.
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2.2. Protocol

Participants performed eight weeks of in-home balance training (24 sessions, n = 15)
and five clinical balance testing (CBT) sessions throughout the study: pre—(n = 15), mid—
(n = 15), one week post—(n = 15), one month post—(n = 15), and six months post-training
(n = 11) (Figure 1). CBT was performed by a licensed physical therapist blinded to the
group and included: Computerized Dynamic Posturography (CDP) (Sensory Organization
Tests (SOT)), Activity-specific Balance Confidence (ABC) Scale, Mini Balance Evaluations
Systems Test (Mini-BESTest28 and Mini-BESTest32), Five Times Sit to Stand Test (5xSST),
Four-Square Step Test (FSST), Functional Reach Test (FRT), 10-m walk test (self-selected
and fast gait speeds), Timed Up and Go (TUG), and Timed up and Go–Cognitive (TUG-
COG). Somatosensory, visual, and vestibular reliance were calculated as ratios of individual
SOT scores [21,24]. The minimal detectable change (MDC) was determined for functional
measures. MDC is an estimate of the smallest change in an outcome score that is correlated
with a change in ability [25].

All participants wore a smartphone-based balance trainer comprising two Apple
iPods (6th generation iPod touch, 2015), an elastic belt, and a customized tactor accessory
during training, which has been described in detail in a prior publication (Figure 2) [21].
One of the two iPods that served as the sensing unit was attached to the elastic belt,
which was worn around the torso at approximately the L4/L5 level to measure trunk
sway; the second iPod served as the user interface unit attached to a lanyard and was
worn around the neck. Participants in the EG received vibrotactile cues on their navel,
spine, and left and right sides of their torso when their trunk motion (combination of
angular position and angular velocity) exceeded preset thresholds. The preset thresholds
for each exercise type (details below) were informed by the study team expertise and the
thresholds used in previously published studies [20,21,26]. Participants were instructed
to “move away from the vibration”. The gravitational outputs (Class CoreMotion, Apple
Inc., Cupertino, CA, USA) from the torso-mounted iPod’s (i.e., sensing unit) accelerometers
were used to estimate angular displacements (tilt angles) in the anterior-posterior and
medial-lateral directions based on an algorithm developed by Lee et al. [27]. Angular
velocities were measured from the sensing unit’s gyroscopes; both accelerometers and
gyroscopes were sampled at 50 Hz. The customized tactor accessory included four tactors
(Precision Microdrives™, 310–101 vibration motors encased in plastic housings [27]) that
interfaced with a PCB-designed controller board and were powered by a 3.7 V battery. The
controller board analyzed audio signals provided by the sensing unit and activated the
corresponding tactor to provide vibrotactile cues.

Each hour-long balance training session consisted of six repetitions of six types of
balance exercises from the following five exercise categories: static standing on firm and
compliant surfaces, weight shifting, modified center of gravity (arm raises), and gait [21,28].
Other important exercise variables included eyes open/closed conditions and the addition
of head movements. Vibrotactile cues were not provided for gait-based exercises. Par-
ticipants were progressed through each category remotely by a physical therapist using
the participants’ reported perceived stability scores [21], with the goal of providing a
continuum of moderately challenging exercises using a progression protocol [28].

Functional magnetic resonance imaging (fMRI) was acquired from four EG participants
using a 3.0 T MRI scanner (GE DISCOVERY MR750) one week post-training to investigate
changes in brain function due to balance training. First, a whole brain structural image was
acquired using a T1-weighted interleaved echo-planar imaging (EPI) sequence (TR = 12.2 s,
TE = 5.1 ms, FA = 15◦, matrix size = 256 × 256, FOV = 260 × 260 mm, slice thickness =
1 mm). Next, a gradient-echo spiral-pulse sequence (FOV = 220 mm, TR = 2 s, TE = 30 ms,
number of slices = 43, voxel size = 3.4375 × 3.4375 mm) was used to acquire functional
images. The participants’ head movements inside the scanner were minimized by a Velcro
strap placed over their foreheads and padding placed around the sides of their heads.
Participants’ physiological responses were collected using a pulse oximeter placed on their
index fingers, and a respirometer wrapped around their abdomens. Low-force skull taps
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were applied over participants’ lateral cheekbones to stimulate the vestibular system using
a pneumatic pulse system (Pneumatic Tactile Pulse System, Engineering Acoustics, Inc.,
Casselberry, FL, USA). Our prior work has shown that this system activates the vestibular
cortical region and that resulting brain activity is correlated with balance under a variety of
conditions [29,30]. A block design was implemented for the duration of each stimulation
run (4 min) to include five alternating periods of rest (20 s) and stimulation (24 s) [29,30].

Sensors 2022, 22, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 2. Smartphone-based balance trainer. 

Functional magnetic resonance imaging (fMRI) was acquired from four EG partici-
pants using a 3.0 T MRI scanner (GE DISCOVERY MR750) one week post-training to in-
vestigate changes in brain function due to balance training. First, a whole brain structural 
image was acquired using a T1-weighted interleaved echo-planar imaging (EPI) sequence 
(TR = 12.2 s, TE = 5.1 ms, FA = 15°, matrix size = 256 × 256, FOV = 260 × 260 mm, slice 
thickness = 1 mm). Next, a gradient-echo spiral-pulse sequence (FOV = 220 mm, TR = 2 s, 
TE = 30 ms, number of slices = 43, voxel size = 3.4375 × 3.4375 mm) was used to acquire 
functional images. The participants’ head movements inside the scanner were minimized 
by a Velcro strap placed over their foreheads and padding placed around the sides of their 
heads. Participants’ physiological responses were collected using a pulse oximeter placed 
on their index fingers, and a respirometer wrapped around their abdomens. Low-force 
skull taps were applied over participants’ lateral cheekbones to stimulate the vestibular 
system using a pneumatic pulse system (Pneumatic Tactile Pulse System, Engineering 
Acoustics, Inc., Casselberry, FL, USA). Our prior work has shown that this system acti-
vates the vestibular cortical region and that resulting brain activity is correlated with bal-
ance under a variety of conditions [29,30]. A block design was implemented for the dura-
tion of each stimulation run (4 min) to include five alternating periods of rest (20 s) and 
stimulation (24 s) [29,30].  

2.3. Analysis 
All CBT outcome measures are shown as group mean values with standard errors of 

the means. Differences from pre- to post-training (one week post-, one month post-, six 
months post-training) were analyzed using a linear mixed model with time and the inter-
action between groups (EG vs. CG) as the main effects. Significance was set to 0.05. 

Figure 2. Smartphone-based balance trainer.

2.3. Analysis

All CBT outcome measures are shown as group mean values with standard errors
of the means. Differences from pre- to post-training (one week post-, one month post-,
six months post-training) were analyzed using a linear mixed model with time and the
interaction between groups (EG vs. CG) as the main effects. Significance was set to 0.05.

The fMRI data preprocessing analyses were performed using spm8 software (The Well-
come Centre for Human Neuroimaging, London, UK) [31]. The raw data were examined for
excessive motion as the skull vibration induced by the pneumatic taps could be a potential
source of motion artifacts. Cut-off thresholds of >3 mm translation or >5◦ rotation of the
head were implemented for head motion correction. The physiological responses (i.e., car-
diac and respiration data) were regressed out of the functional data using the RETROICOR
algorithm [32]. The first 10 volumes in each run were discarded to ensure the steady state
of the MR signal at the beginning of the stimulation runs. Next, the functional images were
realigned to the first functional volume of the run and the anatomical image. Both func-
tional and anatomical images were then normalized to the Montreal Neurological Institute
(MNI) template [33]. The cerebellum, however, was normalized to the Spatially Unbiased
Atlas Template [32,34–36]. The normalized functional images were spatially smoothed with
a Gaussian kernel function (8,8,8 mm). The smoothed functional images were then used to
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design the first-level analysis to compare brain activity during stimulation to rest. Next, a
paired t-test was applied to compare brain activity pre- to post-training. A threshold of
p ≤ 0.001 (unc.) and a minimum cluster size of 10 voxels (voxel size = 2 × 2 × 2 mm) were
implemented for the results. The significant coordinates were localized using the MNI
atlas [33] for the whole brain analyses, and the SUIT atlas [34] for the cerebellar coordinates.
A gray matter inclusive mask was also applied using Automated Anatomical Labeling [37]
to filter out activity in the white matter. To examine activity in regions previously identified
as the vestibular nuclei (x = −16/16, y = −36, z = −32) [38], a small volume correction was
applied, and the deep cerebellar nuclei were identified using the SUIT probabilistic atlas
for deep cerebellar nuclei [35].

3. Results
3.1. Clinical Balance Testing Results

SOT composite scores were significantly improved one week, one month, and six
months post-training (p < 0.01, 0.01, and 0.01, respectively) regardless of group (Figure 3a).
The EG demonstrated a mean minimal detectable change (MDC) of at least 8 points (healthy
population [39]) for their SOT composite scores one week and six months post balance
training (∆ = 8.1 ± 4.5, 9.2 ± 3.7 points, respectively) while the CG demonstrated a MDC
one month post-training (∆ = 8.7 ± 4.2). There were no significant changes in the visual
reliance scores, but vestibular reliance increased significantly one week, one month, and
six months post-training (p < 0.001, 0.001, and 0.001, respectively), with no effect of group
(Figure 3b).
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All participants had improved Mini-BESTest28 and Mini-BESTest32 scores one week
and six months post-training (Mini-BESTest28: p < 0.001 and 0.01, respectively; Mini-
BESTest32: p < 0.01 and 0.03, respectively); the EG had significantly better scores than
the CG one week and one month post-training for the MiniBest28 (p = 0.04 and 0.03,
respectively) and MiniBest32 (p = 0.01 and 0.05, respectively) (Figure 3c).

There were no changes in the TUG score, ABC score, self-selected, or fast gait speeds
due to time or group. There was a significant improvement in TUG-COG one week and
one month post-training (p = 0.04 and 0.03, respectively), with no difference between
groups (Figure 3d). There was a significant improvement in the 5XSTS times one month
post-training (p = 0.02), with no difference between groups. An MDC of 2.5 s (geriatric
population) [40] was found in the EG one month post-training. There was a significant
difference in the FSST six months post-training (p = 0.01), but no difference between groups.
For the FRT, forward reach was reduced by 1.23 cm six months post-training (p = 0.01),
with no difference between groups. Detailed data can be found in Appendix A.

3.2. fMRI Results

Pilot data from the four participants who underwent pre- and post-training fMRI
of vestibular processing revealed a shift in activation from the vestibular cortex to the
vestibular nucleus [41] in the brain stem and cerebellum immediately following the balance
training with vibrotactile SA (Figure 4, Table 1).
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Table 1. Activated brain regions in response to vestibular stimulation at pre-training, post-training,
and pre- vs. post-training (i.e., increased activation from pre- to post-training). Following balance
training, the brain activity shifted from the vestibular cortex to the cerebellum and vestibular nucleus
in the brainstem. The results are shown at p < 0.001 (unc.). MNI: Montreal Neurological Institute.

Region Label Extent t-Value
MNI Coordinates

x y z

Pre-training Parietal Operculum Cortex 72 9.983 −46 −36 22

Post-training

Cerebellar lobules I–IV 34 8.141 20 −44 −26

Brainstem 102 7.528 0 −22 −16

Middle Frontal Gyrus 14 6.453 48 6 46

Middle Temporal Gyrus, temporooccipital part 22 6.331 −58 −48 −10

Middle Frontal Gyrus 18 6.147 −34 6 32

Inferior Frontal Gyrus, pars opercularis 10 5.918 −40 14 22
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Table 1. Cont.

Region Label Extent t-Value
MNI Coordinates

x y z

Post-training >
Pre-training

Cerebellar lobules V–VI 40 6.408 36 −48 −28

Cerebellar lobules I–IV 74 6.055 18 −44 −24

Vestibular Nucleus in Brainstem 56 5.920 −12 −32 −42

Superior Temporal Gyrus, posterior division 30 4.761 48 −22 −4

Cerebellar lobule VIIB 28 4.695 22 −70 −38

Cerebellar Crus I 22 4.289 −36 −54 −34

4. Discussion

This study presents retention effects of an 8-week in-home balance training program
with SA for healthy older adults. The results demonstrate improvements due to balance
training regardless of group, with retention effects observed up to six months after com-
pleting the balancing training. However, only the EG demonstrated a minimal detectable
change in SOT composite scores and 5XSTS scores. The EG also maintained a significantly
higher improvement than the CG for the MiniBEST scores one month post-training. There
were no significant changes in the TUG score, self-selected, or fast gait speeds, which may
be due to ceiling effects or because SA was not provided during gait training tasks.

Balance training works by challenging the somatosensory, visual, and vestibular sys-
tems individually and by integrating multiple system inputs [42–44]. A subset of four EG
participants underwent fMRI scans, and the results suggest functional reorganization of
sensory processing and integration. We found that the pattern of brain activity in response
to vestibular stimulation changed following training, exhibiting greater involvement of the
brainstem and cerebellar regions. These findings suggest that SA modulates neural process-
ing of vestibular stimulation, resulting in a shift from cortical to more sub-cortical regions,
supporting the sensory reweighting mechanism theory [14]. This finding is comparable
to that of Wildenberg et al., who reported an increase in activation of the brainstem and
cerebellum after tongue-based electrotactile SA [45]. Moreover, a series of prior experiments
by Wildenberg et al. investigated brain changes associated with long-term balance training
with tongue electrotactile SA and found that balance-impaired individuals exhibited over-
activation prior to training in comparison to controls in the occipital lobe and cerebellar
vermis; these activity patterns were normalized following nine training sessions [46,47].
Evidence suggests that cerebellar processing of vestibular information contributes to self-
motion perceptions [48–50]. It may be that SA coupled with balance training results in
improved self-motion detection, linked to the increasing cerebellar activity we observed
here. These results from a small subset of our participants should be followed up in future
larger controlled fMRI studies.

It is compelling that both the brain and behavioral changes (an increase in vestibular
reliance for both groups) suggest shifts in sensory reliance and integration with training [50];
participants increased their reliance upon vestibular inputs for balance following training.
Older adults are generally more reliant on visual and somatosensory inputs and this work
supports previous research indicating that progressive balance training may lead to sensory
reweighting, resulting in increased vestibular reliance scores [51].

Given the small sample size, additional research is required to elucidate the im-
proved functional balance outcomes with and without SA, and to correlate these with
brain changes.

Balance training programs should incorporate different sensory conditions to promote
the use of visual, vestibular, and proprioceptive inputs to target the individual’s deficits,
but further research is needed on the optimal dosage and intensity by varying the training
duration, training frequency, and SA activation thresholds. The data presented here indicate
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that while SA may provide some added benefit, the frequency and intensity via progressive
customized balance training are important components of an in-home balance program, i.e.,
the FITT principle [52,53]. Retention effects were apparent six months post-training, but
scores were lower than one week and one month post-training, indicating post intervention
improvement wash-out. Progressively challenging balance training should be incorporated
into an ongoing exercise program and lifestyle change to promote healthy aging and delay
age-related balance declines.

5. Conclusions

Retention of balance training effects is imperative for fall prevention in the older adult
population. Both groups (experimental group that received vibrotactile SA during balance
training and the control group that completed balance training without vibrotactile SA)
demonstrated significant improvements in their SOT composite and MiniBESTest scores,
and increased vestibular reliance as determined by their SOT performance. However, only
the group that trained with vibrotactile SA maintained a minimal detectable change of 8
points in their SOT scores six months following completion of the balance training protocol
and greater improvements in their MiniBESTest scores one month following completion
of the balance training protocol compared with the control group. Preliminary research
suggests that SA may stimulate areas of the brain that facilitate the use of vestibular inputs
for postural control. This sensory reweighting mechanism may be a critical component to
consider when designing fall prevention programs.
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Appendix A

Table A1. Clinical balance testing results.

Time
Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

Gender M F F F M M M F F F F M F F F

Age 83 83 70 72 70 80 73 70 82 78 74 74 74 73 75

Group CG EG EG CG CG EG CG EG EG CG CG EG EG EG CG

SOT

Pre 71 63 78 49 76 68 60 83 74 83 68 58 50 74 43

Post 1wk 81 83 76 46 73 86 65 85 79 85 76 60 79 65 67

Post 1mo 83 76 78 49 77 78 65 85 77 85 77 65 73 62 75

Post 6mo 80 77 - 56 75 76 69 85 76 - 71 61 76 - -
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Table A1. Cont.

Time
Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

MiniBESTest28

Pre 21 22 20 25 26 23 24 24 25 23 24 24 19 24 25

Post 1wk 25 25 27 24 22 23 25 27 26 25 24 27 26 25 26

Post 1mo 21 26 24 23 22 23 27 26 27 22 24 25 24 23 25

Post 6mo 26 24 - 23 25 24 27 27 25 - 22 26 26 - -

MiniBESTest32

Pre 24 26 23 28 30 25 26 27 28 26 27 28 21 28 29

Post 1wk 27 29 31 27 24 26 28 31 29 27 26 31 30 29 30

Post 1mo 25 29 27 26 25 25 31 30 30 26 26 29 27 28 29

Post 6mo 30 26 - 27 29 26 30 30 28 - 24 30 30 - -

ABC

Pre 95 92 94 95 95 94 98 86 93 89 92 94 87 98 96

Post 1wk 92 82 89 - 93 87 99 98 97 91 94 83 95 98 93

Post 1mo 89 88 88 - 92 81 99 99 96 91 96 93 96 98 96

Post 6mo 93 91 - 88 93 86 99 99 98 - 91 88 94 - -

TUG

Pre 9.9 8.4 9.3 9.3 9.3 13 8.6 9.8 13.6 10.5 12.4 10.6 10.7 10.1 10.5

Post 1wk 9.8 9.9 10.4 8.8 9.5 12.8 9.7 8.9 11.4 12 9.3 10.3 9.6 9.7 13.2

Post 1mo 9.3 10.3 9.1 8.2 9.9 12.2 8.4 7.2 13.5 10.5 10.1 13.4 8.5 8.4 13.7

Post 6mo 9.8 9.3 - 10.1 10.2 15.5 8.7 8.1 9.6 - 11.2 10 9.1 - -

TUG-COG

Pre 12.2 10 11.6 8.3 8.8 16.9 8.7 10.8 14.2 12.4 14.8 14.2 16.4 13.5 13

Post 1wk 7.8 10.3 11.2 8.4 11.4 15 8.9 9.1 12.6 11.6 10.3 11.8 12.7 11.6 13.8

Post 1mo 9.1 9.4 13.1 9.1 12 15.2 10.1 7.7 13.4 11 12.5 8.7 11.9 10.4 12.2

Post 6mo 8.9 10.5 - 10.5 12 19.9 9.2 8.1 11 - 11.8 10.8 18.0 - -

5TSTS

Pre 11 12 10.1 7.4 9.7 14.5 8.8 12.2 17.8 13.7 17.7 8.9 14.6 9.7 16.9

Post 1wk 14.6 11 8.7 11 11.4 12.3 8.3 6.6 15 9.9 9.5 14.7 10.6 9.4 12.9

Post 1mo 10.4 11.7 9.1 7.2 10 13.5 9.3 7.1 13.3 9.3 8.9 12.8 9.6 10.7 14.6

Post 6mo 14.4 10.3 - 8.4 10.3 14.4 7.1 6.5 16.8 - 11.1 12.7 10.6 - -

FSST

Pre 13 10.4 10.2 11 8.3 10.7 8.5 6.5 13 10.7 11.7 10.9 8.3 11.3 10.8

Post 1wk 14.4 10.2 10.2 9.9 8.9 11 8.1 6.2 11.8 9.8 9.7 12.5 7.8 11.8 12.3

Post 1mo 12.7 10.6 10.1 10.6 9.5 10.7 9 5.6 12.6 8.5 9.2 11.2 8.2 8.4 10.8

Post 6mo 11.2 10.3 - 12.1 10.1 11.7 9.1 5.8 11.5 - 10.2 10 7.8 - -

FRT

Pre 9.2 10.7 15.8 14.2 12.8 9.8 14.8 13.7 15.7 11.8 12.7 12 13.8 15.5 12

Post 1wk 12 11.3 13.5 14.3 14.8 10.7 13.5 10.3 14.8 13.3 14.7 7.8 13.5 13.7 12

Post 1mo 11.8 9.3 13.3 13.5 10.8 14.5 13.3 13 12.8 12.5 10 10.7 16 15.5 12.2

Post 6mo 10.2 13.2 - 11.8 12 10.7 11.7 12.3 12.2 - 11.2 7.7 12.8 - -

fMRI Scan Yes Yes Yes Yes Yes
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