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The aim of this study was to reveal the mechanism of enhancement of antibacterial properties of gray titania by 
plasma-sprayed hydroxyapatite (HAp)–amino acid fluorescent complexes under irradiation with visible light. 
Although visible-light–sensitive photocatalysts are applied safely to oral cavities, their efficacy is not high 
because of the low energy of irradiating light. This study proposed a composite coating containing HAp and gray 
titania. HAp itself functioned as bacteria catchers and gray titania released antibacterial radicals by visible-light 
irradiation. HAp-amino acid fluorescent complexes were formed on the surface of the composite coating in order 
to increase light intensity to gray titania by fluorescence, based on an idea bioinspired by deep-sea fluorescent 
coral reefs. A cytotoxicity assay on murine osteoblastlike cells revealed that biocompatibility of the HAp–amino 
acid fluorescent complexes was identical with the that of HAp. Antibacterial assays involving Escherichia coli

showed that the three types of HAp–amino acid fluorescent complexes and irradiation with three types of light-

emitting diodes (blue, green, and red) significantly decreased colony-forming units. Furthermore, kelvin probe 
force microscopy revealed that the HAp–amino acid fluorescent complexes preserved the surface potentials even 
after irradiation with visible light, whereas those of HAp were significantly decreased by the irradiation. Such a 
preservative effect of the HAp–amino acid fluorescent complexes maintained the bacterial-adhesion performance 
of HAp and consequently enhanced the antibacterial action of gray titania.
1. Introduction

A titanium alloy coated with plasma-sprayed hydroxyapatite (HAp) 
has been widely applied to biomedical components, such as dental im-

plants, artificial hip joints, and knee joints [1]. One of the major causes 
of revision of such implants is loosening [2]. The HAp coating promotes 
a stronger bond between surfaces of implants and human bone, thereby 
resulting in earlier fixation of the implants and their long service life [3, 
4, 5, 6]. Nonetheless, another cause of revision procedures—bacterial 
infection—recently came up as a serious problem [7, 8, 9, 10, 11, 
12]. Bacterial infection on the surface of implants forms a biofilm, 

* Corresponding author.

E-mail address: otsuka@vos.nagaokaut.ac.jp (Y. Otsuka).

which causes peri-implantitis and inflammation of the surrounding tis-
sues [12]. Damage by bacterial infection occurs in approximately 5% 
of cases of revision or reconstruction of orthopedic implants [7]. To 
prevent a fracture caused by bacterial infection, an antibacterial tech-

nology is necessary.

Two types of coating, i.e., passive coating and active coating, have 
been widely studied as an antibacterial agent on the surface of implants 
[13, 14, 15]. Passive coating is intended to prevent adhesion of bacteria 
to the surface of implants by controlling surface morphology, wetta-

bility, conductivity, surface charge, or crystal structure of a substrate 
[15, 16, 17]. Surface morphology, such as roughness or height, greatly 
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affects bacterial adhesion behavior [18, 19, 20]. Although a polished 
surface can reduce bacterial adhesion, such a reductive effect of the 
roughness decrease reaches a plateau below a certain level of rough-

ness. Hydrophilicity of the surface also has a major impact on bacterial 
adhesion [21]; however, the wettability of surfaces cannot last in long-

term use. An active coating, which contains mesoporous materials or 
nanofibers, releases antibacterial agents such as metal ions, an antibi-

otic, free radicals, or nitrogen monoxide [7, 10, 13, 14, 15, 22, 23, 24, 
25, 26, 27, 28, 29, 30]. Placing Ag ions on surfaces is the most widely 
studied technique as an antibacterial modality [24, 25, 29, 31, 32, 33, 
34, 35, 36, 37, 38, 39, 40, 41]. An antibiotic [42], peptide [43, 44, 45], 
or organic compound like polycaprolactone or chitosan [28, 41, 46]

have also been tested as antibacterial agents. Though these released 
antibacterial agents show adequate performance, controlling or main-

taining these concentrations in body fluids is difficult. Unfortunately, 
the released antibacterial agents suppress osteointegration at the inter-

faces between implants with surrounding tissues. Antibacterial agents 
that do not obstruct osteointegration are preferable.

A multifunctional coating that can inhibit bacterial infection as well 
as maintain osteointegration was recently considered because of the 
crucial capacity for preventing revision of orthopedic implants [7, 13]. 
Multifunctional coatings are classified into a) those inhibiting bacterial 
adhesion via nontoxic compounds [14, 47, 48, 49], b) composites with 
controlled release of an antibacterial agent with an agent promoting 
osteoblast adhesion [50, 51, 52, 53], and c) those stimulating the re-

lease of an antibacterial agent, e.g., by UV irradiation or a magnetic 
field [54, 55]. The RGD peptide [14, 47, 48] can reduce bacterial ad-

hesion whereas fibronectin can adhere to the surface covered by the 
RGD peptide. Nonetheless, the RGD peptide has no antibacterial ef-

fect (does not kill bacteria). A controlled release of an antibacterial 
agent such as Ag ions or gallium may reduce viability of bacteria while 
the activity of osteoblasts can be preserved [52, 53]. Balancing the re-

lease rate with a concentration of the agent is a challenge in long-term 
use. UV irradiation of a photocatalyst [54] or application of a magnetic 
field [55] may exert significant antibacterial effects, but they simulta-

neously affect human-cell viability. Light-activated antibacterial effects 
of nanofiber or nanofibrous membranes, which were made of organic 
molecules based on benzophenones or polyphenols, were reported [56, 
57, 58]. When considering bonding coating onto the surface of metal-

lic implants, multifunctional coatings based on plasma-spraying tech-

nology are beneficial because plasma-sprayed coatings have sufficient 
interfacial strength with metallic substrates. Matsuya et al. developed a 
composite coating containing a fluorescent complex of hydroxyapatite 
with a visible-light–responsive photocatalyst, and this composite coat-

ing has an antibacterial effect induced by visible-light irradiation [59, 
60]. On the other hand, the ligand of the HAp complex was also cy-

totoxic. A visible-light–responsive plasma-sprayed coating, which can 
possess both antibacterial property and cytocompatibility, has not been 
developed to date.

Here we proposed a new biocompatible composite coating contain-

ing a fluorescent complex of HAp with gray titania, as shown in Fig. 1. 
HAp itself functioned as bacteria catchers and gray titania released 
antibacterial radicals by visible-light irradiation. HAp-amino acid fluo-

rescent complexes were formed on the surface of the composite coating 
in order to increase light intensity to gray titania by fluorescence. Fabri-

cating a fluorescent complex of HAp from biocompatible ligands such as 
amino acids can overcome the limitations seen in other studies [59, 60]. 
Therefore, the aim of this study is to reveal the enhancement mecha-

nism of antibacterial properties of titania by HAp fluorescent complexes 
after light irradiation. A cytotoxicity assay involving osteoblasts and an 
antibacterial assay using Escherichia coli were conducted to clarify the 
performance of the proposed multifunctional coating. Bacteria on the 
surface of the coating, which are bound by the HAp complex, can be 
exposed to a higher concentration of radicals produced by a photocata-

lyst. Intensity of such interactions between bacteria and the surfaces of 
biomaterials has been investigated by atomic force microscopy (AFM) 
2

Fig. 1. The model of antibacterial properties of a composite photocatalyst with 
fluorescent HAp–amino acid complex as a coating under light irradiation.

[61, 62, 63, 64], which has uncovered the effects of wettability, surface 
roughness, or morphology on the bacterial adhesion behavior. Surface 
potential is also an important property affecting the adhesion behavior 
of bacteria on the surface of biomaterials [65, 66], and Kelvin force mi-

croscopy (KFM) can detect the changes in surface potential induced by 
light irradiation [67, 68]. The surface potential on the surface of HAp 
complexes under light irradiation was measured by KFM to elucidate its 
light-induced mechanism of enhancement of antibacterial properties.

2. Materials & methods

2.1. Fabrication of composite coating of HAp with gray titania

Ti-6Al-4V plates were machined to the dimensions of 50 × 10 × 3 
mm. HAp powders (HAP-100, Taihei Chemical Co., Ltd., Japan) were 
sieved at approximately 90 μm and were crushed by ball milling. The 
HAp powders were deposited on the Ti-6A-l4V plates by plasma spray-

ing (model 9 MB, Seltzer Meteco under the following conditions: current 
of 500 A, controlling voltage of 68 V, particle feed rate of 15 g/min, 
and spraying distance of 140 mm). The average thickness of the HAp 
coating was approximately 100 μm. Ti2O3 powder (TIE02PB, Kojundo 
Chemicals, Japan) was sieved through 90 μm mash as well. The average 
particle size of Ti2O3 was smaller than 90 μm. The powder composed 
of 80 wt%HAp/20 wt% Ti2O3 was mixed in a ball mill for 1 hour. Only 
photocatalyst coating exhibited insufficient antibacterial property due 
to the suppression of bacterial adhesion [69], and then we selected the 
ratio so that the surface of HAp particles can be partly covered by Ti2O3
particles. Matsuya et al. reported that plasma-sprayed Ti2O3 was trans-

formed into Rutile (TiO2) with Ti6O11, which could produce oxygen 
radicals under visible-light irradiation [60]. They called the plasma-

sprayed Ti2O3 coating as gray titania coating [60], which is used in the 
present study.

2.2. Fabrication of the HAp complex with an amino acid by cold isostatic 
pressing (CIP)

Three amino acid ligands—phenylalanine (Phe), tryptophan (Trp), 
and tyrosine (Tyr) (Kishida Chemical Co., Ltd., Osaka, Japan)—were 
used for complexation with HAp. The three types of aromatic amino 
acids were selected due to their strong fluorescent property. Namely, 
500 mg of an amino acid powder was placed on the surface of a plasma-

sprayed HAp coating, and all the samples were sealed with plastic bags 
on a vacuum drawing machine. The sealed HAp coating was next dried 
in an incubator at 40 ◦C for 24 h. Finally the sealed HAp coating bags 
were pressurized by CIP (Model P-500, Kobe Steel, Ltd., Japan) at max-

imum pressure 800 MPa and holding time 20 min [59].
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2.3. Examination of fluorescence emitted by the HAp complex with amino 
acids

Fluorescent properties of HAp complexes with one of three amino 
acids were examined under ultraviolet irradiation with excitation wave-

length of 315–400 nm (FPL27BLB, Sankyo Denki Co., Ltd.). The HAp 
amino acid complex coating was then immersed in distilled water for 7 
days and 30 days in order to remove unreacted amino acid on the sur-

face. HAp amino acid complex should be hardly soluble in water and 
then the remained fluorescence after the immersion can certify the ex-

istence of the complex. The wavelength of fluorescence was evaluated 
by luminescence microscopy (BZ-8100, Keyence Co., Ltd., Japan.), be-

fore and after 30-day immersion. Three types of excitation source, 360 
± 20, 470 ± 20, and 540 ± 12.5 nm with exposure time of 0.5 s were 
employed to observe blue (460 ± 20 nm), green (535 ± 25 nm), and 
red fluorescence (605 ± 27.5 nm).

2.4. Cytotoxicity assay

Mouse MC3T3-E1 osteoblasts (RIKEN Bioresorce Center, Japan) 
were used to evaluate cytotoxicity of HAp fluorescent complexes with 
an amino acid. HAp fluorescent complexes with an amino acid coating 
were sterilized using an UV light. Plasma-sprayed HAp coating is used 
for metallic implants to enhance their osteoconductivity [1]. Osteoblast 
cells are used for observing cytocompatibility of HAp coating containing 
antibacterial agents in order to observe whether the osteoconductiv-

ity of HAp coating would be deteriorated by antibacterial agents [33, 
70]. Osteoblasts were cultured in the high-glucose DMEM medium that 
was supplemented with 10% of fetal bovine serum (FBS), L-glutamine 
(WAKO, Osaka, Japan), and 1% of a Penicillin-Streptomycin solution 
(Sigma-Aldrich, Osaka, Japan), at 37 ◦C in an incubator (SANYO, MCO-

18AC, 5% 𝐶𝑂2 with 100% humidity). A Trypsin-EDTA solution (0.05% 
w/v; WAKO, Osaka, Japan) served for cell detachment during subcul-

turing. The MC3T3-E1 cells at 8 × 104/ml were also cultured on the 
surface of a fluorescent HAp–amino acid complex in 24-well plates for 
24 h. The composition of the medium and cell density were determined 
by referring a previous study [71] for stable incubation. The adherent 
and proliferating cells were counted with Cell Counting Kit 8 (CCK8, 
DOTITE, Dojindo Laboratories, Japan) and their optical density was 
measured using a microplate reader with the filter wavelength of 450 
nm. Values of optical density are proportional to the concentration of 
living cells containing in the medium and the significant decrease in the 
values of optical density indicates the toxicity of materials.

2.5. Evaluation of antibacterial properties of HAp fluorescent complexes 
with Gray titania

Antibacterial assays involving E. coli K12 were conducted to confirm 
the enhancing effects of HAp fluorescent complexes on antibacterial 
properties of gray titania under visible-light irradiation. We previously 
reported an effectiveness of HAp/8-Hydroxyquinoline complex as an 
enhancement agent of antibacterial property of gray titania [60]. How-

ever, 8-Hydroxyquinoline itself has cytotoxicity. E.Coli was used in the 
antibacterial test in order to directly compare the enhancement effect 
by HAp fluorescent complex of the toxic ligand with the ones by the 
complexes without toxic ligands (amino acids). Several researches [50, 
55] also used E.Coli to discuss basic antibacterial property of their de-

veloped multifunctional coating. Three laser types of visible light, 425 
nm (blue), 532 nm (green), and 630 nm (red), were used for irradiation 
at controlled irradiance of 50 mW/cm2. Both HAp/Gray titania coating 
and HAp complex/Gray titania coating were tested against bacterial Es-

cherichia Coli K12 (E.Coli). The Luria–Bertani (LB) medium consisting 
of bacto tryptone (10 g/L), bacto yeast extract (5 g/L), NaCl (5 g/L), 
and deionized water, was sterilized in an autoclave at 120 ◦C, 1.2 ks 
(TOMY, SX-500). A suspension containing E. coli was cultured directly 
on an HAp coating in the LB medium. Turbidity was measured on a 
3

spectrophotometer (Hitachi U-1100 at wavelength 600 nm). Because 
the initial values of OD fluctuated, OD values after specific hours were 
normalized to the one at 0 hour (immediately after light irradiation) 
to evaluate growth rate of E.Coli [49, 60]. The E. coli suspension, fol-

lowing the incubation, was diluted 107-fold. Next, 0.2 mL of the diluted 
suspension was grown on LB nutrient agar and incubated at 37 ◦C for 
18 h. Colonies on the LB nutrient agar medium were counted in the 
pictures of the plates to determined colony forming units (CFUs). Per-

centage of control (𝐶−/ (𝐿−) was calculated by the ratios of the CFUs for 
each case divided by the CFUs of control (𝐶−∕(𝐿−). Lower values of per-

centage of control suggest decreased CFUs of bacteria, which exhibits 
the antibacterial effect by factors of laser irradiation or the existence of 
complex.

2.6. KFM analysis of the surface of HAp fluorescent complexes

KFM analyses of the surfaces of HAp or HAp–amino acid complexes 
were carried out to clarify the effects of ligands on surface potential 
during light irradiation. HAp plates made by CIP were employed for 
KFM to reduce the effect of surface roughness on this analysis. A fixed 
stand of LEDs was set in front of a scanning probe microscope, SPM-

9700 (Shimadzu Science Co., Ltd.).

Two types of LED light, 425 nm (blue), and 532 nm (green) served 
for the irradiation at irradiance 50 mW/cm2. The measurement was 
conducted in a dark room at room temperature (25 ◦C. At first, KFM 
analyses before light irradiation were conducted in a region of 1000 ×
1000 nm. Immediately after completion of the scanning by KFM can-

tilever, a LED lamp was turned on, and the same scan was repeated 
in the same region. Surface potential was calculated using the aver-

age value of the analyzed region, and the surface potentials before and 
after LED irradiation were designated as 𝑉𝑜𝑓𝑓 and 𝑉𝑜𝑛, respectively. 
Changes in surface potential were calculated as 𝑉𝑜𝑛 − 𝑉𝑜𝑓𝑓 . Analytical 
conditions of KFM were as follows: laser potential at operating point of 
0.2 V, frequency adjustment of 67 kHz, driving gain of 0.5, and I-gain of 
700.0. The cantilever used in the KFM analysis was EFM-20 (Nanoworld 
Innovate Technology Product Corporation). The KFM analysis was per-

formed in triplicate by moving to different positions for each type of 
HAp fluorescent complexes.

2.7. Statistical analysis

ANOVA and multiple comparison by Holm’s method were applied 
to the results of the cytotoxicity assay, the antibacterial assay, and the 
KFM analysis. The significance level was set to 𝑝 < 0.05. All statistical 
analyses were performed in the R3.4.2 software.

3. Results

3.1. Fluorescence wavelength for different ligands (amino acids)

The CIP process successfully fabricated HAp–amino acid complexes 
(Fig. 2), as in the case of a HAp-8-hydroxyquinoline complex [59]. 
Tris(8-hydroxyquinoline)aluminum (Alq3) is a typical fluorescent com-

plex [23] and HAp with 8-hydroxyquinoline could form a fluorescent 
complex fabricated by mechanochemical method [72]. The result ex-

hibited that Ca ion in HAp crystal with molecules of amino acid can 
also form a complex. Static compression of 800 MPa produced a coor-

dination bond between Ca ions in the HAp crystal and an amino group 
in hydrophobic amino acids (Phe, Trp) or a hydrophilic amino acid 
(Tyr). The HAp–Phe and HAp–Tyr complexes manifested variation in 
wavelength from blue (Fig. 2A and C) whereas the HAp–Trp complex 
showed approximately yellow fluorescence (Fig. 2B). Changes in fluo-

rescence from HAp–amino acid complexes were observed after water 
immersion. (Fig. 2). Fluorescence emitted by HAp–Trp and HAp–Phe 
complexes was certainly retained, thus confirming the stability of coor-

dination bonds in the HAp–amino acid complexes in a liquid medium. 
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Fig. 2. Effects of types of ligand in HAp–amino acid complexes on fluorescence wavelength. (A–C) HAp-phenylalanine (Phe) complex. (D–F) HAp-tryptophan (Trp). 
(G–I) HAp-tyrosine (Tyr) complex. (A, D, G) Before immersion. (B, E, H) After 7-days immersion. (C, F, I) After 30-days immersion. All pictures are merged images 
of red, green, and blue fluorescent images. Exposure time in all images was 0.5 s.
Fig. 3. Effects of ligands in HAp–amino acid complexes on toxicity toward 
MC3T3-E1 osteoblasts. Osteoblasts were directly cultured on the surface of ev-

ery sample. Data are presented as the mean ± standard deviation of triplicate 
samples (*𝑝 < 0.05).

Fluorescence wavelength was red-shifted in the cases of HAp–Trp and 
HAp–Phe complexes due to the dissolution of unreacted amino-acids 
ligands (Fig. 2B, C, E, F), which was also reported by previous study 
[59]. We did not test a simulated body fluid in the assay to prevent pre-

cipitation of amorphous calcium phosphate, which blocked excitation 
light for the surface of HAp–amino acid complexes. A HAp fluores-

cent complex shows precipitation behavior equivalent to that of HAp 
itself [59].

3.2. Toxicity of HAp–amino acid complexes toward osteoblasts

Cytotoxicity of HAp–amino acid complexes was evaluated on 
MC3T3-E1 osteoblasts without light irradiation (Fig. 3). Although 
ANOVA detected a difference (F-value 2.39 [𝑑𝑓 = 14], 𝑝 = 0.02), no 
significantly different pairs were detected by the multiple-comparison 
test (Holm’s method). This result is due to the small deviation in plate 
wells and indicated that cytotoxicity of HAp–amino acid complexes is 
equivalent to that of HAp, which is considered enough to promote os-

teointegration.
4

3.3. Enhancing effects of HAp–amino acid complexes on antibacterial 
properties of gray titania

To confirm the enhancing effect of HAp–amino acid complexes on 
antibacterial properties, 𝑂𝐷600 values were measured. Note that 𝑂𝐷

values were normalized to initial values [60]. Without complexes, radi-

cal generation by gray titania was not enough to reduce the growth rate 
(Fig. 4B). HAp-amino acid complexes significantly reduced the growth 
rates according to 𝑂𝐷 values even in the case without irradiation (𝐿−), 
and red LED irradiation (𝐿𝐵+) was the most effective in reducing the 
growth rates (OD values) regardless of the type of ligand (Fig. 4C-E).

CFUs of E. coli were also assessed after 18 h cultivation to confirm 
the effects of both factors: the presence of complexes and types of irradi-

ation. The best pair was a complex with red LED irradiation (𝐶+∕𝐿𝑅+): 
the percentages of control (𝐶−∕𝐿𝑅−) were 26.9% ± 0.9% (HAp–Phe 
complex), 37.3% ± 5.6% (HAp–Trp complex), 19.0% ± 3.3% (HAp–Tyr 
complex) (Fig. 5A–C). Such percentages of reduction were consistent 
with the ones reported for other types of multifunctional coating [50, 
51, 52, 53, 54, 55], though the antibacterial property was not stronger 
than the one of conventional Ag ions and other materials [31, 32]. 
Two-factor ANOVA revealed that the factor of the presence of com-

plexes had a significant effect, regardless of the type of LED irradiation 
(Fig. 5D-F). HAp complex cannot produce any antibacterial agent such 
as radicals by itself [60]. Therefore, the enhancing effect of HAp–amino 
acid complexes on antibacterial properties of gray titania was indis-

pensable to achieve sufficiently strong antibacterial properties using a 
visible-light–sensitive photocatalyst.

3.4. The effect of light irradiation on the surface potential of HAp–amino 
acid complexes

Although only LED irradiation of gray titania produced free radicals 
as antibacterial agents, in some cases effects of LED (𝐿+) on antibac-

terial property were not significant probably due to the reduced effect 
of HAp as cell catcher (Fig. 4). We then hypothesized that LED irra-

diation reduces cell adhesion performance of a HAp coating. To test 
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Fig. 4. Changes in OD values of an E. coli suspension under the influence of irradiation with LEDs. (A) HAp coating. (B) HAp–gray titania coating. (C) HAp–Phe 
complex/gray titania coating. (D) HAp–Try complex/gray titania coating. (E) HAp–Tyr complex/gray titania coating. The types of LED irradiation 𝐿−, 𝐿𝐵+, 𝐿𝐺+, 𝐿𝑅+
are no irradiation, blue LED irradiation, green LED irradiation, and red LED irradiation, respectively. Data are presented as the mean ± standard deviation of 
triplicate samples (*𝑝 < 0.05).

Fig. 5. Enhancing effects of HAp–amino acid complexes on antibacterial action of gray titania under irradiation with blue, green, or red LEDs. (A–C) Changes in 
CFUs. (D–F) Percentage of control (𝐶−∕𝐿−) for both factors: the presence of a complex and laser irradiation. Data are presented as the mean ± standard deviation of 
triplicate samples (*𝑝 < 0.05).
the hypothesis, surface potentials of HAp and HAp–amino acid com-

plexes were examined by KFM. LED irradiation reduced the surface 
potential of HAp though that of HAp–amino acid complexes was not 
changed (Fig. 6A and B). The surface potentials of HAp–amino acid 
complexes were dependent on the type of ligand (Fig. 6C) and its or-

der of magnitude seemed to negatively correlate with the percentage 
reduction in CFUs (Fig. 4A–C). LED irradiation significantly reduced 
the surface potential of HAp, and HAp–amino acid complexes inhibited 
such a reduction (Fig. 6D). Red LED was not suitable for the KFM anal-

ysis because it disturbed manipulation of the cantilever using the same 
wavelength. We also measured surface temperature by infrared (IR) 
thermography during LED irradiation both in the case of CFU evalua-

tion and KFM, and no significant changes in temperature were observed. 
Consequently, HAp–amino acid complexes maintained the cell adhesion 
5

performance of HAp during irradiation, which enhanced the antibacte-

rial properties of gray titania induced by LED irradiation.

4. Discussion

In this study, a CIP method for fabricating fluorescent complexes 
between HAp and an amino acid was successfully developed. The flu-

orescent complexes of HAp with one of amino acids were insoluble in 
vitro even after a long incubation (Fig. 2). The HAp/Phe complex after 
immersion showed red-shifted fluorescence, which exhibited the effect 
of CIP pressure on promoting molecular orientation of amino acid lig-

and and accompanying change in the fluorescent property. The red-shift 
fluorescence is attributed to an arrangement of Phe molecules onto the 
surface of HAp coating [73], and CIP process can exclusively promote 
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Fig. 6. The preserving effect of HAp-amino acid complex on the surface potential during irradiation with a LED. (A) Surface potential distributions of CIPed HAp. (B) 
Surface potential distributions of the CIPed HAp–Phe complex. (C) Surface potentials in the presence of different types of ligands. (D) Changes in surface potential 
during irradiation with LEDs. Types of LED irradiation 𝐿−, 𝐿𝐵+, 𝐿𝐺+ are no irradiation, blue LED irradiation, and green LED irradiation, respectively. Data are 
presented as the mean ± standard deviation of triplicate samples (*𝑝 < 0.05).
such an arrangement. Furthermore, the HAp–amino acid complexes 
were nontoxic to mouse osteoblastlike cells (Fig. 3): a favorable fea-

ture for multifunctional coating layers. The HAp–amino acid complexes 
successfully enhanced light-induced antibacterial properties of gray ti-
tania under visible light (Fig. 4). Although the strong fluorescence of 
the HAp–Trp complex (Fig. 2E–H) significantly amplified the antibacte-

rial effect of gray titania (Fig. 5B and E), such an enhancing effect was 
usually significant regardless of the type of ligand (Fig. 5). We also ob-

served changes in the surface potential of HAp coatings, which is one of 
critical factors in the regulation of cell adhesion behavior. HAp–amino 
acid complexes increased absolute values of surface potential and pre-

served the potential even under light irradiation (Fig. 6).

The enhancement mechanism is illustrated in Fig. 7. Band gap en-

ergy of HAp (5.0 eV [74]) is too high to be excited by visible light, and 
HAp can absorb only thermal energy of light, which can promote recom-

bination of polarized pairs on its surface (Fig. 7A). A relation between 
light intensity and amplitude of an electric field of light is determined 
by the following equations (1), (2) of Beer’s law [75]:

𝐸(𝑡) =𝐸0 cos(𝜔𝑡) (1)

|𝐸0| =
√

𝐼𝐿𝐸𝐷

𝜀0𝑛𝑐
(2)

where 𝜔 is angular frequency of light, 𝐼𝐿𝐸𝐷 is irradiance of light 
[mW/cm2], with permittivity of vacuum 𝜀0 = 8.854 × 10−12 F/m, refrac-

tive index 𝑛, and speed of light 𝑐 = 2.998 × 108 m/s. Reflectance of light 
is then calculated via the equation (3),
6

𝑅⟂ = (1 − 𝑛)2 − 𝑘2

(1 − 𝑛)2 + 𝑘2
(3)

where 𝑘 is the extinction coefficient. Dielectric loss by the electric field 
is then calculated using the equation (4) [76]

Δ𝐸𝑒𝑙𝑒 =
1
2
𝜀0𝜀1𝜔|𝐸0|2 tan𝛿 (4)

where 𝜀1 = 𝑛2 − 𝑘2, 𝜀2 = 2𝑛𝑘, and tan𝛿 = 𝜀2
𝜀1

. If we consider recombi-

nation of polarized pairs by dielectric loss, then a reduction in electric 
potential can be calculated by means of the following equations (5), (6):

(1 −𝑅⟂)Δ𝐸𝑒𝑙𝑒𝑡𝑖𝑟𝑑 =
1
2
𝐶(Δ𝑉 )2 (5)

𝐶 =
𝜀1𝑆

𝑑
(6)

where 𝑡𝑖𝑟𝑑 is irradiation time (s), 𝑆 is examined sample area 1 (cm2), 
and distance of recombination 𝑑 is assumed to be 75 and 50 nm, respec-

tively. 𝑛 = 1.65 and 𝑘 = 0.000847 were determined from experimental 
values by Bento et al. [77]. The calculated result of equations (2), 
(5) is in good agreement with the observed change in surface poten-

tial (Figs. 6C and 7B). Though the values of surface potential were so 
sensitive on surface morphology and insulation conditions of the sam-

ples [78], the magnitude of the changes were not matched in different 
samples (Figs. 6C and 7B). Weakened surface potential could detach 
bacteria from the surface, thereby leading to deterioration of antibacte-

rial effectiveness. On the other hand, the amino acid complex has lower 
band gap energy [79, 80] and can emit fluorescence (Fig. 7A). Conse-

quently, fluorescence can preserve the surface potential of the amino 
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Fig. 7. Schematic illustration of the enhancing mechanism of the HAp–amino acid complex on antibacterial properties of titania via suppression of changes in surface 
potential. (A) A difference in optical band gap. (B) A calculated relation between light intensity and changes in voltage according to equations in the main text. (C) 
Different reactions during light irradiation; HAp manifested recombination of polarized pairs, and HAp complexes emitted fluorescence.
acid complex and then bacteria can strongly adhere to its surface. Such 
bound bacteria are subjected to higher concentrations of radicals and 
are effectively killed (Fig. 7C). Our finding first and foremost points out 
the importance of electric properties of HAp as a dielectric for antibac-

terial action.

A conventional multifunctional coating involving antibacterial 
agents has difficulty in regulating its antibacterial performance owing 
to uncontrollable solubility. The use of UV light can regulate the an-

tibacterial action by adjusting irradiance, but UV itself also affects the 
surrounding tissues. The newly developed coating composed of HAp–

amino acid complexes with titania can be activated by visible light, 
which leads to be a new type of multifunctional coating controllable in 
vivo. The newly developed coating made of HAp complexes with titania 
can be applied to enhance cell adhesion or detachment via appropriate 
selection of laser types and irradiance. Recently light-activated antibac-

terial effects of nanofiber or nanofibrous membranes, which were made 
of organic molecules based on benzophenones or polyphenols, were 
reported [56, 57, 58]. This study used inorganic material as photocat-

alyst. Combination of such organic photosensitizers with the proposed 
HAp complexes can provide different types of multifunctional coat-

ing.

The limitation is that the newly developed coating made of HAp 
complexes with titania was not optimized regarding its composition, 
and irradiation duration is still long when considering practical appli-

cations. Effects of irradiance and optimization of the mixing ratio of 
HAp with titania should be discussed further. The detailed observation 
of a mechanical interaction between the surface of HAp complexes and 
bacteria or mammalian cells can provide more quantitative data on in-

terface mechanics, which should also be considered in further studies. 
Though radicals formed by light-irradiation to photocatalyst can com-

monly provide antibacterial effects on specific types of bacteria relating 
to dental or surgical implants [7, 12, 13, 16], further studies are also 
necessary to observe the variation in antibacterial property of proposed 
7

HAp-amino acid complex with gray titania coating. HAp-amino acid 
complex can be retained in liquid environments, however, durability of 
antibacterial effects should be discussed further.

5. Conclusion

A CIP process successfully fabricated complexes of HAp with each 
of several amino acids as a fluorescent coating that is biocompatible 
and stable for use in human fluids in vivo. The HAp-amino acid com-

plexes were retained in a liquid environment, and had no cytotoxicity 
to MC3T3-E1 osteoblast. Antibacterial testing against E. coli indicated 
a reduction in CFUs by an existing the HAp–amino acid complexes af-

ter visible-light irradiation. KFM measurement revealed that the surface 
potential of HAp–amino acid complex was maintained during light irra-

diation due to emission of fluorescence, which could suppress detach-

ment of bacteria. The newly developed coating made of HAp complexes 
with titania can be applied to one of multifunctional coating.
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