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Normalized spatial complexity 
analysis of neural signals
Huibin Jia1, Yanwei Li2 & Dongchuan Yu1

The spatial complexity of neural signals, which was traditionally quantified by omega complexity, varies 
inversely with the global functional connectivity level across distinct region-of-interests, thus provides 
a novel approach in functional connectivity analysis. However, the measures in omega complexity are 
sensitive to the number of neural time-series. Here, normalized spatial complexity was suggested to 
overcome the above limitation, and was verified by the functional near-infrared spectroscopy (fNIRS) 
data from a previous published autism spectrum disorder (ASD) research. By this new method, several 
conclusions consistent with traditional approaches on the pathological mechanisms of ASD were found, 
i.e., the prefrontal cortex made a major contribution to the hypo-connectivity of young children with 
ASD. Moreover, some novel findings were also detected (e.g., significantly higher normalized regional 
spatial complexities of bilateral prefrontal cortices and the variability of normalized local complexity 
differential of right temporal lobe, and the regional differences of measures in normalized regional 
spatial complexity), which could not be successfully detected via traditional approaches. These results 
confirmed the value of this novel approach, and extended the methodology system of functional 
connectivity. This novel technique could be applied to the neural signal of other neuroimaging 
techniques and other neurological and cognitive conditions.

The human brain is a complex and dynamic system of functional connected regions. The functional connectivity, 
which is defined as the statistical interdependence or synchronization between neural signals of spatially remote 
brain areas and could be quantified by various power-based metrics or phase-based metrics, is thus crucial to 
elucidating how neurons and neural networks process information1–4. Analysis of the time-averaged or dynamic 
functional connectivity metrics, which were derived from brain signals recorded by functional magnetic reso-
nance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG) or mag-
netoencephalography (MEG), revealed that large-scale and coherent brain networks were modulated by various 
psychiatric disorders and cognitive processes, and exhibited temporal dynamics on sub-second timescales2,5–10.

The spatial complexity of neural signals in region-of-interests (ROIs) is defined as the heterogeneity of neural 
signals in different ROIs and varies inversely with the global functional connectivity level across these ROIs, 
thus provides an alternative technique beyond commonly used approaches in functional connectivity analysis, 
e.g., independent component analysis (ICA), seed-based/ROI-based approach and graph theory based network 
analysis11–13. The omega complexity, proposed by Wackermann (1996), could be considered as an indicator of 
spatial complexity, and is calculated as “Shannon entropy of the eigenspectrum of the covariance matrix of neural 
signals”14,15. If neural activities of these ROIs are perfectly synchronized, the omega complexity is lowest (i.e., 
the omega complexity is equal to 1 in this case). However, if these neural activities are completely independent 
between each other, the omega complexity is highest (i.e., the omega complexity is equal to the number of ROIs 
in this case). In this approach, several measures, including global spatial complexity (GSC), regional spatial com-
plexity (RSC) and local complexity differential (LCD), have been developed16. The GSC and RSC could be used 
to quantify the global functional connectivity level or spatial complexity across all ROIs and across all elements 
within a given ROI, respectively14,17,18. The term element may refer to “voxel” in fMRI studies, and “channel” in 
EEG and MEG studies. The LCD provided an index to estimate the contribution of activities of specific ROI to the 
global functional connectivity of all ROIs19.

Although the measures in omega complexity analysis were found sensitive to different types of cognitive pro-
cesses, chronological ages, neuroactive substances and neuropathological variables12,13,17,18,20,21, an important lim-
itation should be mentioned, i.e., the measures in this approach are sensitive to the number of neural processes 
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defined. This makes us could not statistically test whether the regional spatial complexity of a ROI is significantly 
different from that of the other ROI, when the number of elements is different between these two ROIs. Moreover, 
since LCD of a specific ROI is estimated by the variation of spatial complexity obtained by excluding this ROI 
from the computation of spatial complexity, it would also be significantly influenced by the above limitation. 
Thus, an alternative approach is highly needed.

The techniques used in spatial complexity analysis or functional connectivity analysis could be used to probe 
into the neurophysiological mechanism of Autism Spectrum Disorder (ASD), which describes a range of polyge-
netic developmental disorders that are characterized by impairments in social communicative development, along 
with repetitive stereotyped behaviors and/or restricted interests22,23. Increasing evidence supported the theory that 
altered neural connectivity is a key neural underpinning of the brain of ASD individuals24–28. Most of related studies 
estimated functional connectivity metrics through brain signals recorded using fMRI, EEG or MEG4,29–31. However, 
these neuroimaging techniques are not well suitable for ASD children research, since they are sensitive to head 
movement of these children. FNIRS, which capitalizes on the physical principle that infrared light scattering over 
brain tissues reflects ongoing changes in oxygenation/deoxygenation levels, is a promising non-invasive brain imag-
ing technique to investigate the neurodevelopment of young children with ASD, since it’s safe, portable, low cost, 
and relatively insensitive to head movement5. For example, an fNIRS study in our group found that the lobe-level 
inter-region connections between the right prefrontal cortex and other brain regions (e.g., the left prefrontal cortex 
and the bilateral temporal lobe) were significantly weaker in young children (younger than 8 years old) with ASD, 
compared with age- and gender-matched typically developing (TD) children32.

In the current study, normalized spatial complexity analysis was proposed, which could overcome the limita-
tions inherent in traditional omega complexity. In order to valid the value of this approach, the neuropatholog-
ical mechanisms of ASD were investigated using the novel metrics derived from normalized spatial complexity, 
which provided results that were consistent with and extended findings using traditional functional connectivity 
analysis and omega complexity analysis. Specially, we hypothesized that abnormalities in the right prefrontal cor-
tex could also be observed through normalized spatial complexity analysis, which was consistent with previous 
studies26,32. Moreover, some novel results could also be detected, suggesting additional information about the 
brain development of young children with ASD beyond the traditional omega complexity analysis and functional 
connectivity analysis.

Results
Time-averaged normalized spatial complexity.  Significant group difference between the two groups 
was detected for nGSC (t = 2.28, df = 22, p = 0.03 < 0.05). The nGSC of ASD group (0.56 ± 0.05) was significantly 
larger than that of TD group (0.52 ± 0.03).

For the nRSCs of six brain regions (i.e., LP-nRSC, LT-nRSC, LO-nRSC, RP-nRSC, RT-nRSC and RO-nRSC), 
the main effect of brain region and the interaction between brain region and group were significant (F (5, 
110) = 12.03, p < 0.001, and F (5, 110) = 5.35, p < 0.01 respectively). Further analysis showed that (1) the nRSCs 
of bilateral prefrontal cortices were significantly smaller than those of bilateral temporal lobes, and the nRSCs of 
bilateral temporal lobes were significantly smaller than those of bilateral occipital lobes; (2) as has been shown in 
Fig. 1, the LP-nRSC and RP-nRSC of ASD group were significantly larger than those of TD group. The main effect 
of group was not significant (F (1, 22) = 0.65, p > 0.05).

The two-way ANOVA conducted on the nLCDs of six brain regions (i.e., LP-nLCD, LT-nLCD, LO-nLCD, 
RP-nLCD, RT-nLCD and RO-nLCD) revealed that the main effect of brain region and the interaction between 
brain region and group were significant (F (5, 110) = 11.41, p < 0.001, and F (5, 110) = 2.99, p < 0.05 respectively). 
Further analysis showed that (1) the nLCDs of bilateral prefrontal cortices and bilateral temporal lobes were 
significantly smaller than those of bilateral occipital lobes; (2) as has been shown in Fig. 2, the LP-nLCD and 
RP-nLCD of ASD group were significantly larger than those of TD group.

Figure 1.  The statistical results of nRSCs. Means and standard deviations of nRSCs of six brain regions (i.e., 
LP, LT, LO, RP, RT and RO) for each group (ASD group: black bar; TD group: white bar), with error bars 
representing the standard deviations. Group differences marked by *** are corresponding to the significance 
level 0.001 (FDR-corrected).
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The one sample t-tests on nLCD of each brain region and each group found that the nLCDs of bilateral pre-
frontal cortices and bilateral temporal lobes (i.e., LP-nLCD, LT-nLCD, RP-nLCD and RT-nLCD) for both groups 
were significantly smaller than zero, meaning that the oxy-Hb signals in these regions could reduce the spatial 
complexity, thus increase the global functional connectivity level between the scalp channels for both groups.

Variability of normalized spatial complexity.  For the vnGSC, the independent samples t-tests did not 
detect any significant group effect (ps > 0.05), no matter which window length was selected.

For the vnRSCs of six brain regions (i.e., LP-vnRSC, LT-vnRSC, LO-vnRSC, RP-vnRSC, RT-vnRSC and 
RO-vnRSC), the main effect of brain region was significant (Fs > 10, ps < 0.001), no matter which window length 
was selected. The post hoc analysis revealed that the vnRSCs of bilateral prefrontal cortices and bilateral temporal 
lobes were significantly smaller than those of bilateral occipital lobes. The main effect of group was not significant 
for all the window lengths (Fs < 1, ps > 0.05). However, the interaction effect was significant, when the window 
length was 70 sec (F (5, 110) = 3.31, p < 0.01). Further analysis revealed that the LO-vnRSC was significantly 
larger in ASD group, when the window length was 70 sec.

For vnLCD of the six regions (i.e., LP-vnLCD, LT-vnLCD, LO-vnLCD, RP-vnLCD, RT-vnLCD and 
RO-vnLCD), we found that the main effect of brain region was not significant (Fs < 2, ps > 0.05), no matter which 
window length was selected. Moreover, the interaction between the two independent variables was significant, 
when the window length was 30 sec, 50 sec, 70 sec or 90 sec (Fs > 2, ps < 0.01). The simple effect analysis found 
that the RT-vnLCD of ASD group was significantly larger than that of TD group (p < 0.01), when the window 
length was 30 sec, 50 sec, 70 sec or 90 sec (Fig. 3). However, the main effects of group were not significant for all 
the window lengths (Fs < 1, ps > 0.05).

Figure 2.  The statistical results of nLCDs. Means and standard deviations of nLCDs of six brain regions (i.e., 
LP, LT, LO, RP, RT and RO) for each group (ASD group: black bar; TD group: white bar), with error bars 
representing the standard deviations. Group differences marked by *** are corresponding to the significance 
level 0.001 (FDR-corrected).

Figure 3.  The statistical results of vnLCD of each brain region (i.e., LP, LT, LO, RP, RT and RO) and each 
window length (10 sec, 30 sec, 50 sec, 70 sec and 90 sec). For each window length, the brain regions with 
significant group difference (ASD > TD) are masked in black.
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Discussion
In the present study, we proposed to apply PCA and normalized entropy to effectively estimate normalized spatial 
complexity of neural signals, which could reflect the global functional connectivity of brain signals and overcome 
the limitations inherent in omega complexity. The advantages of the presented approach were demonstrated 
through fNIRS-based ASD research. The results showed that: (1) the time-averaged nRSC of bilateral prefrontal 
cortices (LP-nRSC and RP-nRSC) and the time-averaged nLCD of bilateral prefrontal cortices (LP-nLCD and 
RP-nLCD) in ASD group were significantly higher than those in TD group; (2) the time-averaged nRSCs of bilat-
eral prefrontal cortices were significantly smaller than those of bilateral temporal lobes, and the time-averaged 
nRSCs of bilateral temporal lobes were significantly smaller than those of bilateral occipital lobes; (3) the 
time-averaged nLCDs of bilateral prefrontal cortices and bilateral temporal lobes were significantly smaller than 
zero and those of bilateral occipital lobes; (4) the vnRSCs of bilateral prefrontal cortices and bilateral tempo-
ral lobes were significantly smaller than those of bilateral occipital lobes; (5) the vnLCD of right temporal lobe 
(RT-vnLCD) of ASD group was significantly larger than that of TD group, when the window length was 30 sec, 
50 sec, 70 sec or 90 sec. These results suggest that the proposed normalized spatial complexity could overcome 
the limitations inherent in omega complexity, and highlight the crucial role of the prefrontal cortex and right 
temporal lobe in autism.

The methodological advantages of the present approach.  Cognition and consciousness are believed 
to emerge from activity of spatially remote brain areas coordinated by functional connectivity. Several approaches 
have been proposed in order to understand the organization of brain networks2,4,11,33. Among these approaches, 
the spatial complexity analysis of neural signals could indicate the global functional connectivity level across 
distinct ROIs11. Moreover, we could evaluate the contribution of each brain region to the global functional con-
nectivity level using this approach. In this aspect, the omega complexity, proposed by Wackermann (1996), could 
be considered as an indicator of spatial complexity. Although the omega complexity has been widely used in 
related studies, an important limitation exists, i.e., the measures in omega complexity analysis are sensitive to the 
number of ROIs defined. Here, an alternative approach based on PCA and the normalized entropy was proposed 
to evaluate normalized spatial complexity of neural signals. Moreover, it’s well known that the brain networks 
are transient and dynamic, established on the timescale of milliseconds2,34. Thus, the current study not only cal-
culated time-averaged normalized spatial complexity metrics, but also estimated the variability of normalized 
spatial complexity metrics using the sliding-window approach.

In our study, the number of channels in six brain regions (i.e., LP, LT, LO, RP, RT and RO) were 10, 8, 4, 10, 
8, and 4. Since the metrics in omega complexity could be significantly influenced by the number of channels, it’s 
natural that (1) the time-averaged and variability of regional spatial complexities of bilateral occipital lobes were 
significantly smaller than those of bilateral prefrontal cortices and bilateral temporal lobes; (2) the time-averaged 
LCDs derived from traditional omega complexity of most brain regions were significantly larger than zero (see 
Supplementary Materials). Moreover, these time-averaged LCDs did not show any significant region difference 
(see Supplementary Materials). All these results indicate that metrics in traditional omega complexity would 
distort the relative spatial complexity level between brain regions and the contribution of each brain region to the 
global spatial complexity, which can be correctly detected by the normalized spatial complexity proposed here. 
Moreover, using normalized spatial complexity, we found that the vnLCD of right temporal lobe (RT-vnLCD) of 
ASD group was significantly larger than that of TD group (p < 0.01), when the window length was 30 sec, 50 sec, 
70 sec or 90 sec. However, using traditional omega complexity, this group difference could only be found when the 
window length was 30 sec. This result suggest that the metrics derived from normalized spatial complexity may 
be more sensitive to those derived from traditional omega complexity, when we were testing the group difference 
between young children with ASD and age-, gender-matched TD children.

Using traditional functional connectivity, researchers could investigate the functional connectivity level 
between two ROIs using the ROI-based approach35, investigate the functional connectivity level within certain 
large-scale neural networks using the ICA- or seed-based approach5,36, or investigate the topographical organ-
ization using graph theory based network analysis37. However, all these approaches could not probe into the 
time-averaged or time-varying contribution of each brain region to the global functional connectivity, which 
could be estimated through nLCD and vnLCD proposed in this study. Using traditional functional connectivity, 
our group has found that the functional connectivity between the right prefrontal cortex and other brain regions 
(e.g., the left prefrontal cortex and the bilateral temporal lobe) were significantly weaker in young children with 
ASD, compared with age- and gender-matched TD children32. The results in the current study have extended 
previous findings by showing that (1) the nRSC and nLCD of bilateral prefrontal cortices in ASD group were 
significantly larger than those in TD group, and (2) the vnLCD of right temporal lobe of ASD group were signif-
icantly larger than that of TD group.

Accordant conclusion on the pathological mechanisms in ASD.  ASD is a developmental disabil-
ity that can cause significant social, communication and behavioral challenges. A series of theories have been 
proposed to explain the underpinning neurobiological mechanisms of ASD27,38,39. A wealth of studies support 
that the ASD is closely associated to the aberrant neural connectivity in autistic persons’ brains27. For instance, 
using resting-state fMRI and Knowledge based functional connectivity Enrichment Analysis, Cheng et al. (2017) 
found that functional connectivity decreased at the network circuit level in patients with ASD compared with 
healthy controls in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus 
cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of 
mind25. Using fNIRS, which is a neuroimaging technique more suitable for children research, significantly weaker 
lobe-level inter-region connections were uncovered in the right prefrontal cortex in young children with ASD 
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when compared with healthy age- and gender-matched children, including its linkages with the left prefrontal 
cortex and the bilateral temporal cortex32.

Compared to traditional functional connectivity analysis, the nLCD provided a direct index to estimate the 
contribution of activities of specific brain region to the global functional connectivity of all regions. Here, the 
normalized local complexity differentials of bilateral prefrontal cortices (LP-nLCD and RP-nLCD) in ASD group 
were significantly higher than those in TD group. In addition, the LP-nLCD and RP-nLCD of both groups were 
significantly smaller than zero. It suggested that although the oxy-Hb signals in the bilateral prefrontal cortices 
could increase the global functional connectivity level between all brain areas for both groups, the contribution of 
bilateral prefrontal cortices was significantly reduced in ASD group. These results were highly consistent with Li 
& Yu (2016), although they failed to uncover that the left prefrontal cortex also made a major contribution to the 
hypo-connectivity of young children with ASD using traditional approaches.

Novel findings on the pathological mechanisms in ASD.  In the current study, the normalized regional 
spatial complexity of bilateral prefrontal cortices in ASD group was significantly higher than that in TD group, 
which suggested the global functional connectivity level was significantly lower in bilateral prefrontal cortices 
of ASD children. Using traditional functional connectivity analysis, Li & Yu (2016) failed to detect this effect. 
Previous studies found that the prefrontal cortex played a hub role in information integration40. Moreover, the 
prefrontal cortex abnormality was found to be central in autism and its abnormality could contribute to the social 
and non-social dysfunction in individuals’ behavior development26,32. Thus, the results in the current study were 
consistent with these previous findings, and highlighted that the prefrontal cortex made a major contribution to 
the hypo-connectivity of young children with ASD.

Moreover, we found that the nLCDs of bilateral prefrontal cortices and bilateral temporal lobes (i.e., LP-nLCD, 
LT-nLCD, RP-nLCD and RT-nLCD) for both groups were significantly smaller than zero, whereas the nLCDs of 
occipital lobe for both hemispheres and both groups were not significantly different from zero, which means that 
the oxy-Hb signals in prefrontal cortex and temporal lobe, not those in occipital lobe, could reduce the spatial 
complexity of data (i.e., increase the global functional connectivity level between the scalp channels) for both 
groups. Traditional functional connectivity analysis and omega complexity analysis failed to detect this effect (see 
Supplementary Materials).

Analysis on the variability of normalized spatial complexity metrics revealed that the variability of the nor-
malized local complexity differential in right temporal lobe (RT-vnLCD) in ASD group was significantly higher 
than that in TD group, which suggested that the contribution of right temporal lobe to the global functional con-
nectivity in ASD group may vary more dramatic than that in TD group during fNIRS recording. The right poste-
rior superior temporal sulcus (pSTS), which is an important part of the right temporal lobe, is crucial for social 
cognition and is implicated in several steps of social interactions41,42. Many brain imaging studies have found 
anatomical and functional right pSTS abnormalities in ASD, which involves decreased gray matter concentration, 
rest hypoperfusion and abnormal activation patterns during social cognition tasks43,44. Another region of right 
temporal lobe that is of special relevance to autism is the “fusiform face area”, which is engaged in human face 
processing45,46. In the current study, the contribution of right temporal lobe to the global functional connectivity 
during fNIRS recording in ASD group was found vary more dramatic than that in TD group, which may signif-
icantly reduce the efficiency in social information processing. Thus, the increased RT-vnLCD may contribute to 
the social interaction impairment in children with ASD, which has not been found using traditional approaches.

Methodological Considerations.  Firstly, although the value of the proposed approach was validated using 
fNIRS signals from ASD studies, this novel technique could also be applied to the neural signals of other neuro-
imaging techniques, such as EEG, MEG and fMRI. However, it should be mentioned that due to the distinct prop-
erties of these neuroimaging signals, some additional steps may be needed. For example, for EEG/MEG signals, 
researchers need to extract the activities of each frequency band (e.g., delta, theta, alpha, beta and gamma band) 
before conducting normalized spatial complexity analysis. In the future studies, we need to study normalized 
spatial complexity of neural signals of children with ASD using other neuroimaging techniques, which may pro-
duce similar results. Moreover, since numerous studied have proved that age could modulate the brain structures 
and functions of patients with ASD47,48, it’s very interesting to investigate the effect of age of patients with ASD on 
normalized spatial complexity metrics. In the future studies, we should investigate this question.

Secondly, the approach proposed here was suggested to estimate the spatial complexity of multiple time series. 
There are many measures (e.g., entropies, fractal dimensions, and Lyapunov exponents), which could assess the 
complexity in the time dimension or the complexity of a dynamical time series49–51. Among all these measures, 
the permutation entropy (PE) is conceptually simple, computationally efficient and artifact resistant, which is 
more suitable for application of complexity analysis to fNIRS signals52. These measures are not completely inde-
pendent from the proposed normalized spatial complexity metrics. In the future study, the PE could be used to 
quantify the temporal complexity of dynamical time series of normalized spatial complexity metrics.

Lastly, more valuable results may be produced, if the approach proposed here is applied combining with other 
methods. For example, Yan et al. (2015) proposed that the global synchronization index (GSI), which assess syn-
chronization in multivariate neural signals, could be calculated using the phase correlation matrix derived from 
the minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method53. This 
approach is closely related with our normalized spatial complexity analysis. However, the metrics in our approach 
are based on covariance matrix or PCA decomposition instead of the phase correlation matrix. Moreover, the 
approach in Yan et al. (2015) did not explicitly give any information regarding how to compute the contribution 
of activities of specific ROI to the global synchronization of all ROIs and how to estimate the temporal variability 
of global synchronization. In the future, researchers could combine these two approaches, which may yield more 
valuable results.
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Conclusion
Here, normalized spatial complexity, combining PCA and the normalized entropy, was introduced, which was 
expected to overcome the limitations inherent in traditional omega complexity. This approach was verified by 
the fNIRS data from a previous published ASD research. By this new method, several conclusions consistent 
with traditional approaches on the pathological mechanisms of ASD were found, i.e., the prefrontal cortex made 
a major contribution to the hypo-connectivity of young children with ASD. Moreover, some novel findings on 
the pathological mechanisms of ASD were also detected, which could not be successfully detected via traditional 
approaches. These results confirmed the value of this novel approach, and extended the methodology system of 
functional connectivity. This novel technique could be applied to the neural signal of other neuroimaging tech-
niques and other neurological and cognitive conditions.

Methods
Participants and Experimental procedures.  Sixteen children with ASD were recruited for the current 
study. Four of these children were excluded from the analysis due to failure of fNIRS data collection. Therefore, 12 
children with ASD aged 6.1 ± 1.1 years (mean ± SD, range: 4~9 years) were used in data analysis. Besides, 12 age- 
and gender-matched TD children recruited in this study. All children with ASD came from a local special school 
(NANJING MINGXIN Intelligence-Promoting School, NJMXIPS) and were diagnosed with ASD in the past 
two years before data recording by clinicians of a local hospital (NANJING Brain Hospital) using standard pro-
cedures. All these children achieved the diagnostic criteria of autism depending on the 4th edition of Diagnostic 
and Statistical Manual of Mental Disorders (DSM-4). Parents of each participant were requested to report their 
child’s behavior using the Autism Behavior Checklist (ABC)22. Besides, all these ASD children were identified as 
high-functioning autism according to their teachers’ reports. None of the children in the TD group had a history 
of psychiatric or neurological disorder. Parents of all participants signed an informed consent for the present 
experiment, which was approved by the local Institutional Review Board of Southeast University and conducted 
in accordance with the principles of the Declaration of Helsinki.

During collecting concentration changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb), 
all these children were asked to wear customized fNIRS cap and watch a popular Chinese cartoon, since some of 
the ASD children were usually irritable in the fNIRS scanning. The parent or teacher of each child was asked to 
hold this child, so as to make sure he/she would feel safe during the experiment and to confirm that he/she was 
concentrating on the video program. Besides, a camera was used to record the behaviors of these children during 
fNIRS recording so that the corrupted data caused by large head/body movements or other unexpected behaviors 
could be identified and removed in data preprocessing. It takes about 14 min to complete the fNIRS scanning.

More information about the participants and experimental procedures could be seen in our previous study32.

fNIRS data acquisition.  A multichannel fNIRS system, LABNIRS (Shimadzu Corporation, Kyoto, Japan) 
with three wavelengths (i.e., 780, 805 and 830 nm), was applied to record the concentration changes in oxy-Hb 
and deoxy-Hb. A pair of emitter probe and neighboring detector probe, which were plugged into a customized 
cap (distance between adjacent probes was 30 mm), formed one channel. A total of 16 emitter probes and 16 
detector probes were placed on the scalp, resulting in 44 channels. The probe/channel configurations on the head 
are shown in Fig. 4. The scanning rate of this fNIRS system was 27 ms, resulting in a sampling rate of about 37 Hz. 
The recorded changes in optical density were converted into concentration changes of oxy-Hb and deoxy-Hb 
using the modified Beer-Lambert law54.

Data preprocessing.  The fNIRS signal preprocessing was consisted of following steps:
Firstly, data segments contaminated by large head movements, unexpected behaviors and sharp changes in 

oxy-Hb and deoxy-Hb signals were identified and removed.
Secondly, a band-pass filtering (0.009–0.08 Hz) was performed on the oxy-Hb and deoxy-Hb signals55,56. Such 

strict noise control procedures could validly reduce the influence of typical noise components in fNIRS signals.
Lastly, only the time series of the hemoglobin concentration signals between 1 to 8 min were included in the 

following analysis, in order to eliminate the influence of signal length on group difference.
Compared to concentration changes of deoxy-Hb, the oxy-Hb has been found to be a more sensitive metric 

of regional cerebral blood flow and provided a more robust positive correlation with the BOLD signal55, thus 
the oxy-Hb concentration was chosen to compute normalized spatial complexity metrics of participants in the 
current study.

Estimation of normalized spatial complexity metrics.  In the current study, two kinds of normalized 
spatial complexity metrics were estimated. Firstly, time-averaged, static normalized spatial complexity metrics 
were calculated, which were normalized global spatial complexity (nGSC) of all 44 channels, normalized regional 
spatial complexities (nRSCs) and normalized local complexity differentials (nLCDs) of left prefrontal cortex (LP, 
channels 1~10), right prefrontal cortex (RP, channels 23~32), left temporal lobe (LT, channels 11~18), right tem-
poral lobe (RT, channels 33~40), left occipital lobe (LO, channels 19~22) and right occipital lobe (RO, channels 
41~44). Secondly, the characteristics of temporal variation in normalized spatial complexity were quantified by 
the variability of normalized global spatial complexity (vnGSC) of all 44 channels, the variability of normalized 
regional spatial complexity (vnRSC) and the variability of normalized local complexity differential (vnLCD) of 
each brain region. The steps of computing these two kinds of metrics are as follows:

Time-averaged normalized spatial complexity metrics computation.  The nGSC of oxy-Hb signal 
for each participant was estimated as following (see panel A of Fig. 5).
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Firstly, temporal principal component analysis (PCA) was conducted on the oxy-Hb signal, which yielded 
m principal components (m is the number of channels across the scalp, i.e., 44 in this case) and spectrum of 
eigenvalues.

Secondly, to assess the relative contribution of each principal component to the total variance, the eigenvalues 
of principal components were normalized to unit sum. The normalized eigenvalue of the i th principal component 
was calculated as

∑λ λ λ=′

=

′/
(1)i i

i

m

i
1

where m was the number of principal components or scalp channels (44 in this case), λi and λ′i represented the 
eigenvalue and the normalized eigenvalue of the i th principal component respectively. Lastly, the nGSC, defined 
as the normalized entropy of normalized eigenvalues, was computed using the following equation:

λ λ
= − ∑ =

′ ′

m
nGSC

log
log (2)

i
m

i i1

The nGSC computed above attains values from the interval 0 to 1. The lowest value nGSC = 0 means the 
oxy-Hb signals of all scalp channels are consisted of exactly one principal component or spatial mode, and a 
maximum global functional connectivity between all the scalp channels is detected. The highest value nGSC = 1 
indicates the total data variance is uniformly distributed across all m principal components, and a maximum 
spatial complexity or a lowest global functional connectivity is found.

The procedure of the computation of nRSCs of six brain regions (i.e., LP, LT, LO, RP, RT and RO) were similar 
as that of nGSC, except that only the channels in that region were included in PCA decomposition (see panel A 
of Fig. 5).

In order to evaluate regional contributions to nGSC, the nLCD of each brain region, which was defined as the 
variation of nGSC obtained by excluding the channels in that region from the nGSC evaluation, was estimated for 
each participant (see panel A of Fig. 5). The nLCD of region r is defined as:

Figure 4.  Schematic of the probe/channel configurations on the head. Red and blue circles indicate the source 
emitters and the photon detectors, respectively. The 44 measurement channels are located between emitter/
detector pairs.
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= − −nLCD nGSC nGSC (3)r r

where nGSC is the normalized global spatial complexity computed using all the 44 scalp channels, nGSCr
− is 

the normalized global spatial complexity computed when excluding the channels in region r from the analysis. 
nLCDr < 0 means that the oxy-Hb signals in region r could reduce the spatial complexity of data, thus increase 
the global functional connectivity level between the scalp channels. However, nLCDr > 0 means that the oxy-Hb 
signals in region r could increase the spatial complexity of data, thus reduce the global functional connectivity 
level between the scalp channels.

The computation of variability of normalized spatial complexity metrics.  For each participant, 
the dynamic characteristics of normalized spatial complexity metrics of oxy-Hb signals were estimated using 
the sliding-window approach, in which the entire oxy-Hb time series was divided into a dozen of overlapping 
time windows (see panel B of Fig. 5). The overlapping between adjacent windows is 50%. Note that there are 
few researches studying the time-varying nature of functional connectivity in fNIRS signals57. In order to avoid 
arbitrary selection of window length, several window lengths (i.e., 10, 30, 50, 70 and 90 sec) were used. Then, the 

Figure 5.  The procedure of time-averaged normalized spatial complexity metrics computation (panel A) 
and variability of normalized spatial complexity metrics computation (panel B). Panel A: In order to compute 
time-averaged nGSC and nRSC of region r (i.e., nRSCr), temporal PCA was conducted on the fNIRS signals 
of all scalp channels and those of region r respectively, which resulted in spectrum of eigenvalues. Then these 
eigenvalues were normalized to unit sum (see Equation [1]). Lastly, the nGSC or nRSCr was computed using 
the Equation (2). During the computation of nLCD of region r (i.e., nLCDr), the normalized global spatial 
complexity when excluding the channels in region r from the analysis (i.e., nGSCr

−) was computed firstly. Then 
the nLCDr was computed as the difference between nGSC and nGSCr

− (see Equation [3]). Panel B: Firstly, 
the entire fNIRS signal was divided into a dozen of overlapping time windows. Then, the nGSC, the nRSC 
and nLCD of each brain region within each time window were computed using the procedure illustrated in 
the panel A. Lastly, the standard deviations of these normalized spatial complexity metrics across these time 
windows were computed, which were used as metrics that quantify the vnGSC, the vnRSC and the vnLCD of 
each brain region. In this panel, m and n denoted the number of brain regions (6 in this case) and the number of 
time windows respectively. Note that, although this procedure was initially designed for fNIRS signals, it could 
be easily applied to other kinds of brain signals (e.g., EEG, MEG, and fMRI).
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normalized spatial complexity metrics (i.e., the nGSC, the nRSCs and the nLCDs of the above six regions) within 
each time window were computed using the procedure illustrated in the above section. Lastly, the standard devia-
tions of these normalized spatial complexity metrics across these time windows were computed, which were used 
as metrics that quantify the vnGSC, the vnRSCs and the vnLCDs of the above six regions (see panel B of Fig. 5).

Statistical tests.  For the nGSC and the vnGSC of each window length, independent samples t-test was 
conducted to test group effect.

For the nRSCs, the nLCDs, and the vnRSCs and vnLCDs of each window length, a two-way ANOVA was 
performed, respectively. The two independent variables are brain region (LP, LT, LO, RP, RT and RO) and group 
(ASD and TD).

Moreover, for nLCDs of six brain regions in two groups, one sample t-tests were performed in order to statis-
tically test whether the nLCD of each brain region and each group was significant different from zero.

In order to control multiple comparisons, the significance level (p value) was corrected using false discovery 
rate (FDR) procedure58.

Availability of Data and Materials.  The datasets generated and/or analysed during the current study are 
not publicly available but are available from the corresponding author on reasonable request.
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