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A B S T R A C T

The depletion of fossil fuels calls for the development of renewable alternatives such as biodiesel and has inspired
much research on catalysts for the production of biodiesel through the esterification of biomass-derived materials.
Herein, a green heterogeneous catalyst for highly efficient biodiesel synthesis was fabricated from rice
straw–derived cellulose, hematite, and zirconia and was shown to contain porous irregularly shaped
α-Fe2O3–ZrO2 composites (average particle size ¼ 42.5 nm) evenly distributed on the nanocellulose surface. The
optimal catalyst (nanocellulose:α-Fe2O3–ZrO2 ¼ 2:1, w/w) afforded biodiesel in a yield of 92.50% and with
specifications close to those prescribed by international standards. This catalyst could be reused for up to five
cycles without a marked activity loss, with the biodiesel yield in the fifth cycle equaling 80.0%. The developed
nanocomposite holds great promise for cutting the costs of biodiesel production, as it is derived from biode-
gradable raw materials and is renewable, non-corrosive, easy to handle, and green. In addition, the large-scale
discharge of this catalyst after use does not pose a hazard to the environment.
1. Introduction

Inexpensive modified lignocellulosic materials hold great promise for
the development of biopolymer-based catalysts [1]. Biomass-derived
biopolymers play an important role in the mitigation of fossil fuel deple-
tion and global warming caused by the use of synthetic polymers [2, 3]. As
a representative sustainable biopolymer, cellulose features high natural
abundance, belonging to the green support group [3, 4], and can be iso-
lated from rice straw (among other sources), which is an abundant, cheap,
and green material that is generated in large quantities as a byproduct of
rice production [5, 6] and has a high cellulose content [7, 8].

Rice straw is often disposed of by burning, however, causes serious
environmental pollution when performed in the open air [9]. Therefore,
the usage of rice straw as a source of cellulose allows one to reduce the
environmental impact of rice straw, improve the overall economy [10],
conserve natural resources, and mitigate the health problems associated
with air pollution due to rice straw burning [11].

The β-1,4-glycosidic bonds of cellulose make it a durable support for
the formation of catalytically active nanocomposites with inorganic
substances [12]. Nanocomposites produced from nanopolymers and
inorganic nanoparticles offer the advantages of natural abundance and
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biodegradability, often benefitting from the synergy between their
components [13], as exemplified by the numerous synthetic applications
of cellulose-based catalysts (e.g., Pd/cellulose nanocomposites [14],
γ-Fe2O3/Cu@cellulose [15], magnetic nanocellulose [13], cellulo-
se/ZrO2 [16] and cellulose@Fe2O3 [17]

The depletion of crude oil resources has encouraged research on the
production of renewable fuels such as biodiesel [18, 19] which can be
obtained from renewable sources such as edible vegetable oils, inedible
oils, and animal fats [20] through catalytic triglyceride trans-
esterification and free fatty acid esterification and offers the advantages
of renewability, reduction of greenhouse gas emissions, biodegradability,
and non-toxicity [21, 22, 23, 24].

Indonesia has a great opportunity to convert agricultural biomass
such as coconuts, corn, peanuts, cassava, and palm oil into renewable
energy sources. In particular, coconut oil is well suited for biodiesel
production, as it is rich in fatty acids, cheap, and readily available in
Indonesia [25].

Several catalysts with nanocellulose as a support and inorganic com-
pounds as active ingredients have been synthesized for biodiesel pro-
duction [26, 27]Nonetheless, very few studies have evaluated the effect of
nanocellulose supports on the catalytic activities of nanohematite and
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nanozirconia. To bridge this gap, the present study probes the effect of
nanocellulose loading on the performance of cellulose@ α-Fe2O3–ZrO2
nanocomposites for biodiesel production from lauric acid.

2. Materials and methods

2.1. Materials

Rice straw was sourced from Central Java, Indonesia. FeCl2⋅4H2O and
FeCl3⋅6H2O as nano-α-Fe2O3 precursors, ZrOCl2⋅8H2O as a nano-ZrO2
precursor, and H2SO4 used for nanocellulose synthesis were procured
from Merck, and lauric acid was isolated from locally produced coconut
oil.

2.2. Synthesis of nanocellulose from rice straw

Cellulose was isolated from rice straw as described in our previous
study [28]and converted into nanocellulose by 2 h
ultrasonication-assisted hydrolysis in 65 wt.% H2SO4 at 45 �C [29]. The
obtained nanocellulose precipitate was washed with water to neutral pH,
centrifuged for 15 min, dried, and characterized by Fourier transform
infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Brunauer‒
Emmett‒Teller (BET), and scanning electron microscopy (SEM).

2.3. Synthesis of nano-α-Fe2O3

Nano-α-Fe2O3 was prepared using a slight modification of a previ-
ously reported method [30]. FeCl2⋅4H2O and FeCl3⋅6H2O were sepa-
rately dissolved in distilled water to concentrations of 2 M and 1 M,
respectively, and the respective solutions were mixed in a 2:3 (v/v) ratio.
The mixture was slowly supplemented with 2 M NH4OH to reach a pH of
10 and vigorously stirred for 2 h. The brown precipitate was separated,
rinsed with distilled water and ethanol, dried at 60 �C overnight, and
calcined at 600 �C for 1 h.

2.4. Synthesis of nano-ZrO2

Nano-ZrO2 was prepared using a slight modification of a previously
reported method [31]. A 1 M solution of ZrOCl2⋅8H2O was slowly treated
with 2 M NaOH to reach a pH of 10, and the mixture was stirred for 15
min. The white precipitate was separated, sequentially rinsed with water
and acetone, dried at 60 �C, and calcined at 700 �C for 1 h.

2.5. Synthesis of cellulose@α-Fe2O3–ZrO2 nanocomposites

The first stage, α-Fe2O3–ZrO2 composites were prepared as described
elsewhere [32]. Briefly, α-Fe2O3 was added to a solution containing H2O,
ethanol, and ammonia, and the mixture was ultrasonicated to form a
homogeneous suspension. The resulting dispersion was slowly supple-
mented with ZrOCl2⋅8H2O and stirred for 6 h. The precipitate was
separated, sequentially rinsed with ethanol and water, and oven-dried at
60 �C for 12 h to afford α-Fe2O3–ZrO2. In the second stage, cellulo-
se@α-Fe2O3–ZrO2 nanocomposites were prepared using a slight modifi-
cation of a previously reported method [33]. Briefly, nanocellulose was
homogenously dispersed in an aqueous solution of NaOH and urea at �4
�C, the solution was supplemented with a dispersion of α-Fe2O3–ZrO2 in
aqueous NaOH, and the resulting mixture was stirred for 6 h. The product
was separated, sequentially rinsed with ethanol and water, and dried.
The resulting cellulose@α-Fe2O3–ZrO2 nanocomposites were character-
ized by FTIR, XRD, BET, SEM, and transmission electron microscopy
(TEM).

2.6. Catalytic activity assessment

Catalytic activity was evaluated in terms of the ability to promote the
esterification of lauric acid, the major fatty acid (52.68%) of coconut oil
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[34], with methanol, as described in previous studies [35, 36, 37].
Herein, we varied the nanocellulose: α-Fe2O3–ZrO2 mass ratio (0.5:1, 1:1,
2:1, 3:1) and catalyst type (nano-α-Fe2O3, nano-ZrO2, α-Fe2O3–ZrO2, and
cellulose@α-Fe2O3–ZrO2). Biodiesel yield was calculated as Eq. (1) [36]:

Biodiesel yield ð%Þ¼ Weight of biodiesel
Weight of lauric acid

� 100 % (1)

2.7. Determination of biodiesel properties

Biodiesel parameters, such as acid number (AN), cetane number (CN),
American petroleum institute (API), higher heating value (HHV) were
calculated as Eqs. (2), (3), (4), and (5) [38, 39]:

AN¼VKOH � NKOH � 56:1
W

(2)

CN¼ 46:3þ 5458
SN

� 0:225� IN (3)

API¼ 141:5
Specific gravity

� 131:5 (4)

HHV
�
MJ
kg

�
¼ 49:43� ½0:041ðSNÞþ 0:015ðINÞ� (5)

The saponification number (SN) and the iodine number (IN) were
calculated as Eqs. (6) and (7) [40]:

SN¼VHCL � NHCL � 56:1
W

(6)

IN¼ðVNa2S2O3blank � VNa2S2O3 sampleÞ NNa2S2O3 � 12:69
W

(7)

2.8. Reusability of catalysts

The reusability of cellulose@α-Fe2O3–ZrO2 nanocomposites were
observed using a slight modification of a previously reported method
[41]. The catalyst was separated and washed several times with hot
ethanol and then hexane to remove the residual of lauric acid and
product which adsorbed on the catalyst surface, and then dried in an
oven at 100 �C for 12 h. To observe the leaching of the catalyst species
into the reaction medium causes contamination of the final product and
so lead to a decrease in catalyst activity [42]We tested the nano-
composite weight of reused catalysts after each cycle were measured by
gravimetry to confirm the quantity of catalyst leached and to confirm the
catalytic system behave a heterogeneous.

3. Results and discussion

3.1. Formation of cellulose@α-Fe2O3–ZrO2 nanocomposites

Rice straw cellulose was activated by hydrolysis under strongly acidic
conditions to increase the active group content, surface area, and cata-
lytic efficiency. This hydrolysis resulted in the cleavage of glycoside
bonds to form nanocellulose sulfonates, which, in turn, were hybridized
with α-Fe2O3–ZrO2 to form cellulose@α-Fe2O3–ZrO2 nanocomposites
(Figure 1).

3.2. Characterization

3.2.1. FTIR analysis
Figure 2 shows the results of FTIR analysis. The spectrum of nano-

cellulose (Figure 2a) featured an O–H stretch at 3250–3500 cm�1, a C–H
stretch at 2940 cm�1, and absorption bands of β-glycoside bonds at 1678,
1055, and 930 cm�1 characteristic of cellulose [13]. The bands at 1140



Figure 1. Proposed scheme of cellulose@α-Fe2O3–ZrO2 nanocomposites formation.

Figure 2. FTIR spectra of (a) nanocellulose, (b) α-Fe2O3, (c) ZrO2 and (d) cellulose@α-Fe2O3–ZrO2.
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and 1310 cm�1 were assigned to the symmetric vibration of SO3
�, the

symmetric vibration of the O¼S¼O unit in the SO3H group, and the
asymmetric vibration of SO2

�, respectively, and indicated the successful
formation of nanocellulose sulfonates. The spectra of α-Fe2O3 (Figure 2b)
and ZrO2 (Figure 2c) featured peaks at 543 cm�1 (Fe–O) [43, 44]and 540
cm�1 (Zr–O) [45], respectively. The spectrum of cellulo-
se@α-Fe2O3–ZrO2 (Figure 2d) featured a band at 530 cm�1 that corre-
sponded to the overlap of Fe–O and Zr–O peaks. The observation of this
band, together with the sloping nature and position shift of the typical
peaks of β-glycosidic bonds, SO3

� bonds, and O–H bonds indicated the
successful hybridization of nanocellulose with α-Fe2O3–ZrO2.

3.2.2. XRD analysis
The XRD pattern of nanocellulose (Figure 3a) featured peaks at 2θ ¼

16�, 22� (most intense), and 35�, corresponding to reflections from the
(101), (002), and (040) planes [46], respectively. These data were in line
with the results of our previous studies [13, 27, 43]. The diffraction
pattern of α-Fe2O3 (Figure 3b) featured peaks at 2θ ¼ 25.3�, 33.5�, 36.3�,
3

40.3�, 50.2�, 55.2�, 57.8�, 63.5�, 65.2�, and corresponding to the (012),
(104), (110), (113), (024), (116), (122), (214), and (300) planes of
Fe2O3, respectively. The strongest peaks were assigned to the (104) and
(110) planes, in line with the results of our previous study [44, 47]. The
diffraction pattern of nano-ZrO2 (Figure 3c) featured peaks of the
monoclinic (2θ ¼ 24.5�, 28.0�, 31.0�, and 34.0�) and tetragonal (2θ ¼
35.0�, 50.0�, and 60.0�) forms [45]. The pattern of cellulo-
se@α-Fe2O3–ZrO2 (Figure 3d) showed the peaks of the above three
constituents, and the shift of α-Fe2O3 and ZrO2 peaks indicated that these
oxides were bonded to nanocellulose, in line with the results of FTIR
analysis. The average crystallite size was calculated using Debye-Scherrer
equation [24] was obtained as 40.5 nm.

3.2.3. BET
The N2 sorption isotherms of nanocellulose and after loading hema-

tite and zirconia as cellulose@α-Fe2O3–ZrO2 (Figure 4) displayed a
typical type IV isotherm denoting the existence of mesopores for pores
with diameters in the range 2–50 nm [48]. Figure 4 featured the resulted



Figure 3. XRD patterns of (a) nanocellulose, (b) α-Fe2O3, (c) ZrO2 and (d)
cellulose@α-Fe2O3–ZrO2 (c).
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from the BET surface area and pore volume for nanocellulose and
nanocomposite reveal cellulose@α-Fe2O3–ZrO2 a higher BET surface
area (852 m2g-1) and pore volume (0.85 cm3g-1) than nanocellulose (720
m2g-1, 0.52 cm3g-1). The pore size of nanocellulose and cellulo-
se@α-Fe2O3–ZrO2 were 24 and 13 nm, respectively, and indicated that
composite of α-Fe2O3–ZrO2 had embedded on the pore surface of
nanocellulose.

3.2.4. SEM
Surface morphology was probed by SEM. Nanocellulose comprised

fibers with a smooth, uniform, and homogeneous surface (Figure 5a),
Figure 4. N2 sorption isotherms curves of na

4

which agreed with the results of previous studie [35]. α-Fe2O3
comprised hexagonal particles (Figure 5b), whereas ZrO2 (Figure 5c)
featured particles of diverse shapes (e.g., spherical, elliptical, and
angular), which suggested the monoclinic structure of the latter oxide,
in line with XRD data. Cellulose@α-Fe2O3–ZrO2 particles had an un-
even surface (Figure 5d), and the distribution of α-Fe2O3–ZrO2 on
the nanocellulose surface was observed by elemental mapping
(Figure 6).

Figure 6a–d show that the constituent elements were evenly distrib-
uted on the cellulose@α-Fe2O3–ZrO2 surface, and α-Fe2O3–ZrO2 was also
evenly distributed on the nanocellulose surface, which confirmed the
successful synthesis of the nanocellulose-supported catalyst.

3.2.5. TEM
Nanocomposite structure was probed by TEM. Low-resolution TEM

imaging (Figure 7a) revealed that the catalyst particles had an irregular
shape, with dark hexagonal and spherical particles corresponding to the
α-Fe2O3–ZrO2 composite (red circle). The average size of α-Fe2O3–ZrO2
particles was determined as 42.5 nm and cylindrical particles corre-
sponding to nanocellulose fiber (blue circle). Figure 7b–d present high-
resolution TEM images of the porous cellulose@α-Fe2O3–ZrO2
nanocomposite.
3.3. Catalytic activity of cellulose@α-Fe2O3–ZrO2

Catalytic activity for the conversion of lauric acid into biodiesel
was probed for 3 h at 60 �C using a lauric acid amount of 10 g, a
methanol:lauric acid molar ratio of 12:1, and a catalyst loading of 2
wt.%.

3.3.1. Effect of nanocellulose: α-Fe2O3–ZrO2 mass ratio on biodiesel yield
The fibrous and porous structure of nanocellulose allowed

α-Fe2O3–ZrO2 to be embedded and evenly spread on the pore surface,
nocellulose and cellulose@α-Fe2O3–ZrO2.



Figure 5. SEM images of (a) nanocellulose, (b) α-Fe2O3, (c) ZrO2, (d) and cellulose@α-Fe2O3–ZrO2.

Figure 6. Elemental distribution mappings [(a) C, (b) O, (c) Fe, (d) Zr and (e) overall element] of cellulose@α-Fe2O3–ZrO2.
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which resulted in enhanced catalytic activity. Herein, we investigated the
effect of the nanocellulose: α-Fe2O3–ZrO2 mass ratio (r) on (i) biodiesel
yield after 3 h, (ii) the highest attainable biodiesel yield, and (iii) the time
needed to obtain this maximal yield (Figure 8). At a fixed reaction time of
3 h with the bar chart in grey color, the yield increased with increasing r,
equaling 35.00, 70.50, 92.50, and 92.50% at r ¼ 0.5:1, 1:1, 2:1, and 3:1,
respectively. This shows that at r ¼ 2:1, all nanocellulose pores were
filled with α-Fe2O3 and ZrO2 nanoparticles as active sites, which resulted
in efficient biodiesel production. To observe the mass ratio effect to the
reaction rate by extending the time indicated by a black bar chart and red
line is the reaction time so that the perfect reaction is achieved. When the
reaction time was extended, the maximal yields for r ¼ 0.5:1, 1:1, 2:1,
and 3:1, equaling 90,00, 90.50, 92.50 and 92.50%, respectively. There-
fore, the catalyst with r ¼ 2:1 was concluded to be optimal condition for
this esterification reaction.
5

3.3.2. Effect of catalyst type on biodiesel yield
Next, we probed the effect of catalyst type on (i) biodiesel yield after 3

h, (ii) the highest attainable biodiesel yield, and (iii) the time needed to
obtain this maximal yield (Figure 9). At a fixed time of 3 h with the bar
chart in dark blue color, α-Fe2O3, ZrO2, α-Fe2O3–ZrO2, and cellulose@α-
Fe2O3–ZrO2 (r ¼ 2:1) achieved yields of 30.00, 51.50, 86.80, and
92.50%, respectively. The fact that pure ZrO2 achieved a greater yield
than α-Fe2O3 means that the former oxide provided more important
active sites than α-Fe2O3. The fact that the highest yield was observed for
cellulose@α-Fe2O3–ZrO2 was ascribed to the synergetic effects arising
upon the hybridization of the biopolymer with inorganic nanoparticles
[13]. Furthermore, we also observed the effect of catalyst type to the
reaction rate by extending the time indicated by light green the bar chart
and red line is the reaction time so that the perfect reaction is achieved.
When the reaction time was extended, α-Fe2O3, ZrO2, α-Fe2O3–ZrO2, and



Figure 7. TEM image [(a) 50 nm, (b) 10 nm, (c) 10 nm and (d) 5 nm scale] of cellulose@α-Fe2O3–ZrO2.

Figure 8. Effect of nanocellulose to α-Fe2O3–ZrO2 mass ratio on percent yield and reaction time.
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Figure 9. Effect of type catalyst on percent yield and reaction time.

Figure 10. Proposed reaction mechanism for the esterification of lauric acid over the cellulose@α-Fe2O3–ZrO2 catalyst.

Table 1. Physicochemical properties of biodiesel obtained in this work.

Parameters Biodiesel product ASTM 6751

Water content (mg kg�1) 0.031 <0.05

Flash point (�C) 135 >93

Density (g cm�3) at 25 �C 0.853 0.85–0.90

Kinematic viscosity (mm2 s�1) at 40 �C 4.20 1.00–6.00

Acid number (mgKOH g�1) 0.15 <0.50

Cetane number 65.00 >47

American petroleum institute 34.48 36.95

Higher heating value (MJ kg�1) 40.10 Not specified
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cellulose@α-Fe2O3–ZrO2 achieved maximal yields of 92.50% after 7, 5,
4, and 3 h, respectively. Therefore, the cellulose@α-Fe2O3–ZrO2 nano-
composite is the best suited for the studied esterification reaction, owing
to the existence of both acidic and basic sites, besides the presence of
pores and large BET surface area (Figure 4) to accommodate the reactants
and activate the reaction. Briefly, our explanation for the catalytic ac-
tivity of the cellulose@α-Fe2O3–ZrO2 catalyst in the reaction by elimi-
nating protons from methanols which attacked the carboxylic group of
acids to form an activated complex which is adsorbed on the surface of
the catalyst and a reaction occurs then the desorption process forms
methyl esters product (Figure 10).

3.4. Physicochemical properties of biodiesel

To be a suitable substitute of fossil diesel, biodiesel should comply
with the international standards set by the American Society for Testing
Materials (ASTM). Table 1 lists the selected properties of biodiesel ob-
tained using cellulose@α-Fe2O3–ZrO2 as a catalyst. The biodiesel was a
slightly yellowish liquid with properties either compliant (water content,
flash point, density, kinematic viscosity, acid number, cetane number,
and American petroleum institute) very close to the required values
ASTM standards. The higher heating value of the produced biodiesel was
comparable to that reported in previous studies [49].

3.5. Reusability of the cellulose @α-Fe2O3–ZrO2 nanocomposite

When cellulose @α-Fe2O3–ZrO2 was sequentially used five times for
biodiesel production, the yield did not significantly change, decreasing
7

from 92.50 of first cycle to 80.0% of fifth cycle (Figure 11). Decreasing of
the product may be caused by deactivation of catalysts by product species
adsorption and the unreacted lauric acid onto the surface of catalysts that
could block the active sites [50].

The leaching of species into the reaction medium causes contamina-
tion of the product and also leads to a decrease in catalyst activity. Thus,
we tested the catalytic heterogeneity of the reaction by gravimetry. The
results of these studies showed that the weight of catalyst reused after
five cycles is obtained constant (initial weight of 0.2 g for the first cycle
until after the fifth cycle remains 0.2 g). These results demonstrated that
the catalytic system behave a heterogeneous.

The results of this study suggest that the strategy of using nano-
cellulose in combination with α-Fe2O3ZrO2 composites for highly effi-
cient biodiesel production can be recoverable and reusable in biodiesel
synthesis from free fatty acids sourced from coconut oil which is easily
available and renewable.



Figure 11. Nanocomposite reusability.
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4. Conclusions

Herein, we report a nanocomposite derived from rice straw cellulose
embedded hematite, and zirconia as a heterogeneous green catalyst for
the highly efficient synthesis of biodiesel through the esterification of
lauric acid with methanol. This catalyst was shown to comprise porous
and irregularly shaped α-Fe2O3–ZrO2 particles evenly distributed in the
nanocellulose support. The presence of nanocellulose was important role
for improving high catalytic activity for biodiesel production. The
optimal cellulose@α-Fe2O3–ZrO2 nanocomposite (nanocellulose:α-
Fe2O3–ZrO2 mass ratio ¼ 2:1) achieved a biodiesel yield of 92.50%, and
the properties of the obtained biodiesel were close to those stipulated by
international standards. Moreover, the developed catalyst could be
reused for five times without any significant activity loss.
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