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Arsenic (As) pollution, which is on the increase around the world, poses a growing threat

to the environment. Phytoremediation, an important green technology, uses different

strategies, including As uptake, transport, translocation, and detoxification, to remediate

this metalloid. Arsenic hyperaccumulator plants have developed various strategies to

accumulate and tolerate high concentrations of As. In these plants, the formation of

AsIII complexes with GSH and phytochelatins and their transport into root and shoot

vacuoles constitute important mechanisms for coping with As stress. The oxidative

stress induced by reactive oxygen species (ROS) production is one of the principal

toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator

plants could constitute an important As detoxification strategy. On the other hand, nitric

oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances

As stress tolerance in plants. Although several studies have focused on transcription,

metabolomics, and proteomic changes in plants induced by As, the mechanisms

involved in As transport, translocation, and detoxification in hyperaccumulator plants

need to be studied in greater depth. This review updates recent progress made in the

study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator

plants.

Keywords: arsenic, glutathione, hyperaccumulators, nitric oxide, phytochelatins, phytoremediation, reactive
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INTRODUCTION

The metalloid arsenic (As), a ubiquitous contaminant widely found in organisms and the
environment, has had severe, chronic and epidemic effects on human, plant, and animal health in
South-East Asia (Clemens and Ma, 2016). Arsenic exists in different states (−III, 0,+III, and+V),
mainly as arsenate (AsV) and arsenite (AsIII), and exhibits a wide range of solubility depending
on the ionic environment and pH. AsV, a phosphate chemical analog, enters the plant system
through phosphate transporters, causing imbalances in phosphate supply (Finnegan and Chen,
2012). AsIII presents in reducing environments such as flooded paddy soils at pH < 8 in general,
is more toxic and mobile than AsV (Kumar et al., 2015). Once in the cell, AsV interferes with the
phosphate-dependent metabolism by replacing phosphate in phosphorolytic reactions, including
ATP synthesis, thus causing toxicity in plant cells. However, AsIII toxicity is mainly due to its
tendency to react with thiol (−SH) groups of enzymes and proteins containing cysteine residues
which disturb their structure and function (Finnegan and Chen, 2012; Hasanuzzaman et al., 2015).
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In nature, few plant species are capable of accumulating or
detoxifying extraordinarily high levels of As. Hyperaccumulator
plants have adopted an array of approaches to facilitate the
elimination, accumulation, and hyperaccumulation of toxic
metals (Islam et al., 2015; Ghori et al., 2016). The ability
of plants to accumulate and tolerate As can be exploited to
develop phytoremediation technologies to improve food safety. A
number of species have been identified as As hyperaccumulators,
most of which belong to the Pteridaceae family (Xie et al.,
2009). A new specie recently considered as As hyperacumulator
is Isatis cappadocica a plant found in Iran whose As tolerance
strategy involves increasing thiol synthesis and As chelation with
glutathione and PCs (Karimi et al., 2009). By contrast, the fern
Pteris vittata is equipped with efficient systems for AsV/AsIII
uptake, translocation to shoots, and As sequestration in vacuoles
(Xie et al., 2009; Danh et al., 2014). The stem and leaves of the
P. vittata fern showed no significant changes in tissue or cell
structure caused by As, which was accumulated along the walls
of vascular stem bundles and, to a lesser extent, in roots (Sridhar
et al., 2011). Energy-dispersive x-ray microanalysis showed that
As was mainly located in the epidermal cell vacuoles of P. vittata
fronds (Lombi et al., 2002).

This review updates the progress made in the study of
the mechanisms involved in As transport, translocation and
detoxification, as well as the role played by reactive oxygen
species (ROS) and nitric oxide (NO) in As detoxification in As
hyperaccumulator plants.

Phytoremediation
Phytoremediation, a green approach using plants to remediate
toxic compounds, is a cost-effective, socially acceptable, and
environmentally friendly technology for soil, and groundwater
clean-up (Jiang et al., 2015). This technology uses metal-tolerant
and hyperaccumulator plants which require high growth rates,
tolerance to large heavy metal concentrations, and the capacity
to accumulate high levels of heavy metals in their above-ground
parts (over 100–1,000 mg/kg depending on the metal involved;
Ghori et al., 2016). Plant hyperaccumulators require a root-
to-shoot heavy metal concentration ratio (translocation factor,
TF) of over 1 and a root-to-soil heavy metal concentration
ratio (bioconcentration factor, BC) also exceeding 1 (Ghori
et al., 2016). Based on these criteria it can be concluded that
I. cappadocica is an As hyperaccumulator due to its capacity
to tolerate and accumulate As, exceeding the 1,000 mg/kg
threshold for As, which is at least one order of magnitude
higher than in other species at the same As contaminated area,
without showing any As toxicity symptoms (Karimi et al.,
2009). Phytoremediation has been broadly categorized into
different process such as phytoextraction/phytoaccumulation,
phytostabilization, phytodegradation/phytotransformation,
rhizofiltration, rhizodegradation, phytovolatilization, and
phytorestauration (Fayiga and Saha, 2016). Phytoextraction
has been extensively studied as a clean-up solution for soils
contaminated by metal pollutants through their absorption by
roots and subsequent translocation to plant shoots. Certain
higher plant species, with specific genetic and physiological
potential, which can accumulate, translocate, and tolerate very

high metal concentrations in their tissues without showing
toxicity, are useful for phytoextraction purposes (Danh
et al., 2014). Such naturally occurring plants, called metal
hyperaccumulators, could be suitable for phytoremediation.
While several plant species are capable of hyperaccumulating
and detoxifying extraordinarily high levels of heavy metal, only
a few plant species (P. vittata, Pteris criteca, Pteris longifolia,
Pteris umbrosa, Pitrogram macalomelanos, and I. cappadocica)
are known to be As hyperaccumulators (Kumar et al., 2015). Two
of these species, P. vittata (Xie et al., 2009) and I. cappadocica
(Karimi et al., 2009) are regarded as efficient models to decipher
the mechanisms involved in As hyperaccumulation and
tolerance.

MECHANISMS INVOLVED IN AS
HYPERACCUMULATION

Arsenic Uptake, Transport, and
Translocation
The rate of As uptake and accumulation by plants depends on
factors such as soil type, As speciation, plant species and uptake
mechanisms (Zhao et al., 2009). The characteristics of the soil,
such as pH, water content, organic substances, and As content,
regulate As bioavailability to roots (Finnegan and Chen, 2012;
Huang et al., 2012). As speciation in soil through different As
forms (AsV, AsIII and methylated As) is another factor, which
can significantly affect As uptake by plants. Plant roots selectively
take up specific As forms via distinct pathways and transporters
(Gupta et al., 2011; Farooq et al., 2016). AsV is taken up via high-
affinity Pi transporters (Figure 1) following Michaelis-Menten
kinetics in higher plants including P. vittata and I. cappadocica
(Su et al., 2008; Karimi and Souri, 2015). Evidence for this has
been provided by physiological and radiotracer 73 AsV uptake
studies which show competitive inhibition of AsV uptake by
Pi (Abedin et al., 2002; Karimi et al., 2009) and the isolation
of AsV-resistant Arabidopsis thaliana mutants defective in or
over-expressing Pi transporters (Shin et al., 2004; Catarecha
et al., 2007). Pi uptake is highly regulated in plants, and similar
mechanisms may also regulate AsV uptake and translocation
(Sun et al., 2012).

Different types of transporters have been reported to be
involved in AsIII uptake. One belonging to the plant aquaporin
family, nodulin 26-like intrinsic proteins (NIPs) (Zhao et al.,
2009; Chen et al., 2016). NIP1;1, NIP1;2, NIP3;1; NIP5;1; NIP6;1;
and NIP7;1, are involved in arsenous acid (the neutral chemical
form of AsIII) uptake and transport in Arabidopsis roots
(Bienert et al., 2008; Xu et al., 2015). In rice plants, OsNIP3;3
and HvNIP1;2 have also been characterized as arsenous acid-
permeable NIPs (Katsuhara et al., 2014). Furthermore, two silicic
acid transporters, Lsi1 (also called NIP2;1) and Lsi2, facilitate
arsenous acid transport in rice roots (Ma et al., 2008; Singh et al.,
2015). However, a competitive inhibition study suggests that
neither glycerol nor silicic acid affect AsIII uptake in P. vittata,
indicating that the AsIII uptake system in this and probably
other As hyperaccumulators, differs from that reported in rice
(He et al., 2016). In P. vittata, a new aquaporin tonoplast
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FIGURE 1 | Overview of Arsenic (As) uptake, transport, translocation, and detoxification in plants. Arsenate (AsV) uptake can occur via phosphate transporters. AsV

reduction occurs in root cells before xylem loading and transportation to shoots. Arsenate reductase (AR) reduces AsV to arsenite (AsIII) by using glutathione (GSH) as

a reductant. AsIII uptake occurs via nodulin 26-like intrinsic (NIP) aquaglyceroporin channels. Arsenic methylated species (DMA/MMA) uptake is carried out by

unknown transporters or by NIP. Phytochelatins (PCs) and GSH coordinate with AsIII to form a variety of complexes which are sequestered in vacuoles by ABC-type

transporters. In Pteris vitatta, As(III) can also be transported to the vacuole by Arsenical Compound Resistance3 (ACR3) effluxer. As loading to the xylem can be

mediated by the Si/Arsenite efflux transporters or inositol transporters (INT). The considerable capacity for As root-to-shoot translocation and vacuolar sequestration in

shoots ensures high As deposition levels in the above-ground part.

intrinsic protein (TIP), called PvTIP4, has been reported to be
involved in AsIII uptake (He et al., 2016). AsIII transporters
in P. vittata roots show a much higher affinity than those in
rice roots, which explains P. vittata’s extraordinary As uptake
capacity (Chen et al., 2016). Transporters responsible for inositol
uptake (INT) in the phloem in Arabidopsis also transport arsenic,
and the disruption of AtINT2 or AtINT4 in these plants led
to a reduction of arsenic concentration in phloem, silique, and
seed (Duan et al., 2015). However, whether there are similar

transporters responsible for As transport in hyperaccumulators
plants is still unknown. After entering plants, volatilization
or efflux of As in roots can reduce As translocation to
shoot in As-tolerant/nonhyperaccumulator plants. By contrast,
translocation of As to shoots in hyperaccumulators are highly
efficient, and efflux levels are insignificant (Su et al., 2008;
Chen et al., 2016). In root cells, As is either converted to less
toxic organic forms or is transported to vacuoles as AsIII or
as AsIII-glutathione/phytochelatin complexes (Figure 1; Kumar
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et al., 2015). This mechanism occurs efficiently in the roots of
hypertolerant/non-hyperaccumulator plants, thus preventing As
translocation to shoots (Figure 1). AsV reduction to AsIII has
been reported to occur efficiently in hyperaccumulator plants.
Previous studies have identified AsIII as the predominant form of
As transported in the xylem sap from root to shoot, regardless of
whether AsV or AsIII is supplied to the plants (Raab et al., 2005;
Su et al., 2008). The extremely efficient As translocation in As
hyperaccumulators could probably due to the effective reduction
of AsV to AsIII in roots; to the high AsIII efflux from cortical
cells to the xylem; limited thiol compound complexation of
AsIII and sequestration in root vacuoles; in addition to minimal
AsIII efflux from roots to the external medium (Su et al., 2008;
Karimi et al., 2009; Zhao et al., 2009; Indriolo et al., 2010).
As hyperaccumulators, such as I. cappadocica and P. vittata,
therefore accumulate approximately 60–80% of As in shoots, with
an As shoot to root ratio of over 1 (Karimi et al., 2013; Chen
et al., 2016), while only 5–10% of total As is found in the shoots
of non-accumulating species such as the P. tremula fern (Caille
et al., 2005), Arabidopsis (Isayenkov and Maathuis, 2008), and
rice (Ma et al., 2008).

The capacity to load large amounts of As in the xylem
is an important feature of As hyperaccumulators (Figure 1),
although the mechanisms involved are poorly understood. In
P. vittata, both high- and low-affinity systems are involved in
this process (Wang et al., 2011). In rice, AsIII and Si share
the same pathways for both root uptake and xylem-mediated
loading processes through OsLsi2 (Ma et al., 2008). Additionally,
the Pi transport pathway may be involved in the long-distance
translocation of As with OsPht1;8 overexpression markedly
increasing AsV translocation from roots to shoots and the
AsV/AsIII ratio in the xylem sap of rice (Wu et al., 2011). In
sunflower plants, no As-sulfhydryl complexes, such as As-GSH
and As-PC, were found in the sap exudate, suggesting that AsIII
and AsV are sap-mobile forms of As in these plants (Raab et al.,
2005). Plants, including the hyperaccumulator P. vittata, can
also uptake methylated As species, which are more cytotoxic;
interestingly, methylated species, such as monomethylarsonic
acid (MMA) and dimethylarsinate (DMA), are more mobile
than inorganic As species in the xylem and phloem; however,
the key methylated As transport regulators in these tissues
have not yet been clearly identified (Huang et al., 2008; Li
et al., 2009). In rice roots, Lsi1 is involved in the influx of
methylated As species (Ma et al., 2006; Li et al., 2009). Although
thiol complexation in rice roots is an important step in MMA
metabolism, this is not the case for DMA (Mishra et al.,
2017).

Arsenic Detoxification
Reduction of AsV to AsIII is accepted as the first step in the
detoxification of As in plant tissues by promoting AsIII efflux
to the external medium. The reduction of AsV to AsIII occurs
enzymatically via the arsenate reductase (AR) pathway using
GSH (Figure 1) (Finnegan and Chen, 2012). AR genes, such
as AtHAC1/ATQ1 (Arabidopsis) (Chao et al., 2014; Sánchez-
Bermejo et al., 2014), OsHAC1;1 and OsHAC1;2 (rice) (Shi
et al., 2016), HlAsr (Holcus lanatus) (Bleeker et al., 2006) have

been cloned and characterized. Recent evidence showed that
canonical ACR2 does not play a significant role in arsenate
reduction (Liu et al., 2012; Chao et al., 2014). AR activity
observed in P. vittata was at least 7-fold higher than that in
As-sensitive plant species such as Oryza sativa and A. thaliana
(Duan et al., 2005; Danh et al., 2014). The high expression levels
of AR and vacuolar AsIII transporters in shoots may explain
the special ability of P. vittata to hyper-tolerate and hyper-
accumulate As compared to other As-sensitive plants (Song et al.,
2010).

Another important As detoxification strategy in hyper-
accumulating plants is the synthesis of glutathione (GSH) and
phytochelatines (PCs) which produces complexes with As that
facilitate its transport into the vacuoles in shoots (Figure 1;
Karimi et al., 2009; Zhao et al., 2009). The tripeptide GSH
(Glu-Cys-Gly) is synthesized by γ-glutamyl cysteine synthetase
(γ-ECS) and GSH synthetase (GS). GSH can bind to AsIII
and is also a key metabolite in the cellular redox balance
(Figure 1) (Jozefczak et al., 2012; Islam et al., 2015). GSH is
the precursor of PCs, whose rate of accumulation is usually
increased by γ-ECS or GS overexpression under As exposure
(Zhao et al., 2009). PCs are a family of small enzymatically
synthesized peptides composed of oligomers of GSH with the
structure (γ-Glu-Cys)n-Gly, with n ranging from 2 to 11 (Batista
et al., 2014). Other evidence shows that PC complexation of
AsIII is an important mechanism in both constitutive and
adaptive tolerance to As in As non-hyperaccumulating plants
(Gupta et al., 2011). Transgenic plants overexpressing genes
regulating cysteine, GSH and PC biosynthesis show greater
As detoxification capacity (Tripathi et al., 2007; Wojas et al.,
2008). However, further studies have shown that PCs appear
to play a minor role in direct As detoxification in P. vittata
due to the extremely low molar ratio of PCs to As observed
in this species (Zhao et al., 2009; Jedynak et al., 2012).
On the other hand, the hypertoleration and accumulation of
larger amounts of above-ground As in I. cappadocica were
achieved by PC complexation (>50%) which is regarded as a
constitutive tolerance mechanism (Karimi et al., 2009). These
findings suggest that PCs play a crucial role in As detoxification;
although do not contribute significantly to As tolerance in
certain hypertolerants (H. lanatus and Silene paradoxa) and
hyperaccumulators (P. vittata and P. cretica) plant species (Raab
et al., 2007; Arnetoli et al., 2008). Sequestration of the AsIII-PCs
complexes in vacuoles is an important step in As detoxification
metabolism. In A. thaliana, two ABC transporters AtABCC1
and AtABCC2, which have been located in the vacuole, play an
important role in As resistance (Figure 1) (Song et al., 2010).
In rice, OsABCC1 transports AsIII-PCs across the tonoplast; its
overexpression in yeast and Arabidopsis increases As tolerance,
while knockout mutants are hypersensitive to the metalloid
(Song et al., 2014). A PDR-like protein, a member of the
ABC transporter G family, was upregulated by As stress in
P. vitatta (Shen et al., 2014). Indriolo et al. (2010) showed
that As hyperaccumulation in P. vittata is associated with the
AsIII effluxer Arsenical Compound Resistance3 (ACR3), which
is localized to the vacuolar membrane in gametophytes but it has
not been identified in angiosperms.
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ROLE OF ROS AND NO IN AS TOXICITY
AND TOLERANCE

Reactive Oxygen Species
Exposure of plants to As stress increases ROS accumulation
through the disruption of electron transport chains (ETC)
in mitochondria and chloroplasts, glycolate oxidase activation,
antioxidant inactivation, and GSH depletion (Gupta et al.,
2013; Fayiga and Saha, 2016). Several studies have shown
a positive correlation between greater antioxidant capacity,
mainly in above-ground parts, and metal and As tolerance in
hyperaccumulator plants (Visioli and Marmiroli, 2013; Kumar
et al., 2015; Fayiga and Saha, 2016; Karimi and Souri, 2016).
In P. vittata, the large GSH pool helps to minimize As-induced
oxidative stress and enhances As tolerance (Singh et al., 2006).
Moreover, ROS, particularly H2O2, play an important role as
signaling molecules which participate in the complex network
regulating cell responses to As (Sharma, 2012; Thao et al., 2015).
It has recently been reported that ROS produced by NADPH
oxidase C (NOXC) in Arabidopsis plants can regulate the uptake
and translocation of As and various nutrients, although the
mechanism involved is not fully understood (Gupta et al., 2017).
H2O2 is also implicated inthe activation of several Mitogen-
activated protein kinase (MAPKs) under As stress (Huang et al.,
2012). MAPK transduce and amplify the signals through a
cascade of reversible phosphorylation processes. Huang et al.
(2012) have found 11 MAPK kinases (MAPKKKs), one MAPK
and 10 phosphatases (PP2C) genes significantly upregulated in
rice treated with AsV. Some of these MAPKs have been involved
in the regulation of the sulfate assimilation pathway (Ahsan
et al., 2008; Norton et al., 2008) and the regulation of ethylene
and jasmonic acid signaling pathways in response to metals
(Opdenakker et al., 2012).

Nitric Oxide
NO, a hydrophobic diffusible gaseous molecule, plays an
important signaling role in physiological processes and responses
to heavy metal stresses (Lamattina et al., 2003; Farnese et al.,
2013; Singh et al., 2015; Fancy et al., 2017). It regulates
different biological processes in plants by directly modifying
proteins via post-translational modifications (PTMs), leading
to S-nitrosylation, nitration, and nitrosylation, and indirectly
by regulating gene transcription (Astier and Lindermayr, 2012;
Romero-Puertas et al., 2013; Romero-Puertas and Sandalio,
2016a; Fancy et al., 2017). Several studies have demonstrated
that exogenous NO attenuate oxidative stresses imposed by
As (Farnese et al., 2013; Singh et al., 2015). NO can act as
a ROS scavenger and antioxidant system inducer, although
the molecular mechanism involved is not fully understood
(Farnese et al., 2013; Singh et al., 2016). NO-dependent
S-nitrosylation can regulate the H2O2 level by controlling
both the antioxidant defense system (CAT, SOD, APX, and

peroxiredoxins) and ROS producing enzymes (glycolate oxidase
and NADPH oxidases) (Romero-Puertas and Sandalio, 2016a,b).
Peroxynitrite (ONOO−) can also nitrate and regulate antioxidant
defenses (APX, SODs; Romero-Puertas and Sandalio, 2016a). It
has been reported that metal nitrosylation can also affect the
capacity of PCs to chelate Cd (De Michele et al., 2009; Locato
et al., 2016). In addition, NO could regulate As accumulation by
down-regulating OsLis1 and OsLis2 in rice (Singh et al., 2016)
and by up-regulating ABC transporters (Hussain et al., 2016).
In addition, NO stimulates sulfate uptake and PC biosynthesis
(Farnese et al., 2013; Singh et al., 2016) and also plays an
important role in metal and As signaling through activation of
MAPKs (Hahn and Harter, 2009; Ye et al., 2013).

CONCLUSIONS

In nature, a small number of plant species capable of
accumulating and detoxifying extraordinarily high levels of
As have been identified. These hyperaccumulator plants have
developed coordinated strategies to As uptake, transport
and translocation to shoots, As chelation with GSH and
phytochelatins and its efficient transport to vacuoles, in addition
to an efficient antioxidant system regulated by ROS and
NO. Major advances have been made in relation to non-
accumulating As-tolerant plant species in terms of As uptake
and transport. Nevertheless, As transport, translocation and
detoxification in hyperaccumulator plants such as I. cappadocica
require more in-depth study in order to understand how
As accumulation functions in these plants, which can be
used for phytoremediation purposes. Finally, much study has
deservedly been devoted to the role played by ROS and
NO in the regulation of As uptake and translocation, which
have been emerging as key players in metal uptake and
homeostasis.
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