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Abstract

Objective

Pilot testing of real time functional magnetic resonance imaging (rt-fMRI) and real time func-

tional near infrared spectroscopy (rt-fNIRS) as brain computer interface (BCI) neural feed-

back systems combined with motor learning for motor recovery in chronic severely impaired

stroke survivors.

Approach

We enrolled a four-case series and administered three sequential rt-fMRI and ten rt-fNIRS

neural feedback sessions interleaved with motor learning sessions. Measures were: Arm

Motor Assessment Tool, functional domain (AMAT-F; 13 complex functional tasks), Fugl-

Meyer arm coordination scale (FM); active wrist extension range of motion (ROM); volume

of activation (fMRI); and fNIRS HbO concentration. Performance during neural feedback

was assessed, in part, using percent successful brain modulations during rt-fNIRS.

Main results

Pre-/post-treatment mean clinically significant improvement in AMAT-F (.49 ± 0.22) and FM

(10.0 ± 3.3); active wrist ROM improvement ranged from 20˚ to 50˚. Baseline to follow-up

change in brain signal was as follows: fMRI volume of activation was reduced in almost all

ROIs for three subjects, and for one subject there was an increase or no change; fNIRS

HbO was within normal range, except for one subject who increased beyond normal at post-

treatment. During rt-fNIRS neural feedback training, there was successful brain signal mod-

ulation (42%–78%).
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Significance

Severely impaired stroke survivors successfully engaged in spatially focused BCI systems,

rt-fMRI and rt-fNIRS, to clinically significantly improve motor function. At the least, equiva-

lency in motor recovery was demonstrated with prior long-duration motor learning studies

(without neural feedback), indicating that no loss of motor improvement resulted from substi-

tuting neural feedback sessions for motor learning sessions. Given that the current neural

feedback protocol did not prevent the motor improvements observed in other long duration

studies, even in the presence of fewer sessions of motor learning in the current work, the

results support further study of neural feedback and its potential for recovery of motor func-

tion in stroke survivors. In future work, expanding the sophistication of either or both rt-fMRI

and rt-fNIRS could hold the potential for further reducing the number of hours of training

needed and/or the degree of recovery.

ClinicalTrials.gov ID: NCT02856035.

Introduction

Dyscoordination of the upper limb is a common impairment after stroke, persisting even after

standard neurorehabilitation. Dyscoordination of the upper limb impairs performance of nor-

mal functional tasks which require coordinated wrist and forearm joint movements [1]. Wrist

extension is critical to normal function of the hand in activities of daily living, workplace and

leisure activities [2]. Therefore, we focused on wrist coordination training in the current work.

For moderately or severely impaired stroke survivors with chronic motor impairment, stan-

dard approaches as well as many emerging therapies have shown mixed or limited success [3,

4]. Recently, we and others have published studies that employed innovative peripherally-

directed treatment (no neural feedback), and have shown promising results in terms of clini-

cally and statistically significant improvement in functional task performance and arm/hand

coordination [5–7]. The shortcoming of these protocols is that they require either intensive

therapist time (Ward 2019b) or long-dose treatment [5, 6]. In contrast to this past work

employing peripherally-directed exercises, we employed a neural feedback training paradigm.

This is possible due to the emergence of rapid signal processing capabilities that can provide

‘real-time’ neural feedback to a stroke survivor, to characterize the participant’s brain signal

during coordination practice and training. Brain computer interfaces (BCIs) provide feedback

composed of brain signal features to a system user. There are multiple possible applications of

BCIs, such as movement assistance for one who is quadriplegic. The use of BCI systems to

enhance motor learning after stroke is an emerging field of study [8–10]. BCIs can be based on

a number of different imaging methods, all of which are used to provide the stroke survivor

with brain neural feedback to improve motor control through neuroplasticity [11, 12].

Several different modalities have been used to construct BCIs. BCIs can be based on

electrophysiological signal, such as electroencephalography (EEG). EEG-based BCIs show

some promise and mixed results in application to stroke survivors [13–19]. An advantage of

EEG is its high temporal resolution. However, EEG-based BCIs possess a lower spatial resolu-

tion in comparison to other imaging methods. Therefore, we turned our attention to the neu-

rovascular information captured by functional magnetic resonance imaging (fMRI); the

greater spatial precision of fMRI may lend itself to valuable neural feedback in a BCI system

for motor learning after stroke. Magnetic resonance imaging (MRI) signal has been the least
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studied imaging method upon which to base a BCI system for motor re-training after stroke

[20]. Though there is currently no evidence that MRI-based BCI produced recovery of upper

limb coordination, there is evidence that real time fMRI (rt-fMRI) neurofeedback enabled

study participants to volitionally regulate brain signal in regions relevant to motor control as

follows: primary motor cortex [21, 22]; pre-motor cortex [23, 24]; ventral premotor cortex

[25]; and motor cortico-thalamic communication [26]. Therefore, with evidence of brain sig-

nal modification capability, we incorporated the component of real-time fMRI (rt-fMRI) neu-

ral training into our intervention protocol.

Though MRI is the most spatially precise imaging technology available, disadvantages

include the following: expense of MRI (important for future clinical practice issues), the supine

position imposed (supine is not a body position for most functional tasks), and the patient bur-

dens of disturbingly loud noise, restricted head/body movements, and the small, confining

space. These disadvantages restrict the practical number of MRI-based BCI sessions that

would be realistic for clinical care of stroke survivors. At the same time, recent research sup-

ports the need for many sessions of motor training after stroke [5–7]. Therefore, in order to

extend the number of BCI sessions we included neural feedback training with functional near

infrared spectroscopy (real time fNIRS (rt-fNIRS)) as a component of the intervention proto-

col, even though NIRS is not as spatially precise as fMRI. Functional near infrared spectros-

copy (fNIRS) has been recently studied [27], with mixed results. Still, fNIRS is based on the

same signal as fMRI, oxy-and deoxy-hemoglobin, and fNIRS affords the advantages of a func-

tional body position, no distracting noise, easy interactions between therapist and patient, and

less overall cost for future consideration; thus, we incorporated the component of rt-fNIRS

into our intervention, to be offered sequentially subsequent to rt-fMRI. Thus, our primary

objective was to conduct a pilot study in which we would develop a sequential rt-fMRI and rt-

fNIRS neural feedback system and test it in a small case series of stroke survivors.

The dearth of information on fMRI-based BCIs and the mixed results of fNIRS-based BCIs

led us to an additional treatment consideration. Our recent studies and that of others support

two important treatment protocol considerations, as follows: 1) target the array of impair-

ments underlying dyscoordination after stroke (Daly 2019); and 2) offer intensive, long-dose

neurorehabilitation [5–7, 28]. Therefore, we framed the BCI intervention within a long-dose

protocol containing treatment components targeting an array of impairments, and proven to

have been efficacious upper limb motor function in past work [5–6]. Specifically, we inter-

leaved clinically-based motor training sessions with the rt-fMRI and the rt-fNIRS; these clini-

cally-based motor training sessions included exercise and standard-practice functional

electrical stimulation (FES), both supported by research findings [6, 29, 30]. Thus, the second-

ary objective was to incorporate the sequential rt-fMRI, rt-fNIRS neural feedback system into

a motor learning protocol.

Taken together, the overall purpose of the current work was to conduct a preliminary case

series pilot test of a BCI protocol based upon neural signals of sequentially applied rt-fMRI

and rt-fNIRS, and framed within clinically-based motor learning components.

Methods

Overall study design and subjects

Design summary. The design of this pilot study was a small case series of stroke survivors.

In addition, in order to characterize the range of normal fMRI and fNIRS brain signal for the

wrist extension task, we enrolled and acquired imaging data from ten healthy adults perform-

ing the wrist extension task during a single session. The study was conducted in a research lab-

oratory setting and a research imaging facility. For each of the four stroke survivor subjects,
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participation spanned 3 months (data acquisition and intervention), followed by 3 additional

months of no intervention and follow-up data acquisition. For the four stroke survivor cases,

the procedures and schedule were as follows:

• Acquisition of baseline measures: motor, fMRI, and fNIRS;

• Three motor learning orientation sessions (once per day; three days; three hr per day);

• Three rt-fMRI neural training sessions (every other day, one hr per day);

• 10 rt-fNIRS neural training sessions (1hr each), alternated with 11 motor learning sessions

(3hr per day, motor learning session). These sessions were every weekday for 21 week days;

• Acquisition of fMRI mid-treatment outcome measure;

• 33 additional motor learning sessions (two hr each, every weekday).

• Acquisition of post-treatment outcome measures: motor, fMRI, and fNIRS;

• Acquisition of 3-month follow-up outcome measures: motor, fMRI, and fNIRS.

Subjects. Stroke survivors and ten healthy adults were recruited by flier advertisement

and word of mouth. The study was conducted under the oversight and specific approval of the

University of Florida and Malcom Randall VA Hospital ‘Institutional Review Board (IRB) for

human subjects’ protection. Subjects provided written informed consent. Stroke survivors

were>6mo post stroke and other criteria included: impaired wrist extension, with presence of

at least a Trace grade muscle contraction, of the affected wrist extensors; medically stable, with

no other prior neurological condition; ambulatory with or without an assistive device, and

ability to follow two-step commands. Healthy adult subjects had no known neurological diag-

noses and no impairment of wrist extension. Of the six potential stroke survivors who were

screened (Fig 1), one did not meet inclusion criteria and one did not enroll due to practical

issues (time, etc). For purposes of preliminary study (constrained by funding and time) of the

new protocol, four chronic stroke survivors were enrolled and completed the study.

Fig 1. Subject screening, enrollment, and study flow diagram.

https://doi.org/10.1371/journal.pone.0250431.g001
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Outcome measures

Motor measures. Because it is a functional level measure, the Arm Motor Assessment

Tool (AMAT) was the primary measure, specifically the AMAT, functional domain

(AMAT-F), an ordinal measure assessing the coordination displayed during performance of

the functional tasks contained within the AMAT. A secondary measure was the AMAT, timed

domain (AMAT-T), which is the summed-time taken to complete the functional tasks in the

AMAT. The AMAT is composed of 13 functional tasks of everyday living, for example, ‘use a

spoon to scoop up bean’, and ‘unscrew jar lid’. For the AMAT-F, the known minimal clinically

important difference (MCID) is .44 points [31]. The MCID of .44 points for the AMAT is the

value of change in score (from baseline, in this study) in response to a treatment that is

required in order for the change score to be considered clinically important. The AMAT is reli-

able, valid, and a homogeneous measure of functional performance [32]. AMAT is valid across

a broad range of impairment levels [33] and notably for the current work, the AMAT is

strongly correlated with the impairment measure of joint coordination, the Fugl-Meyer (FM)

[34]. The FM is the most widely used measure of coordination in stroke research on an inter-

national basis [35]. Thus, this FM impairment measure was included as a secondary measure,

measuring single and multiple joint movement coordination [36]. For the FM, the minimally

important difference is 4.24 points [37]. The MCID of 4.24 points for the FM is the value of

change in score (from baseline, in this study) in response to a treatment that is required in

order to be considered clinically important.

Active wrist extension is performed as an integral component of the majority of normally

coordinated hand tasks. Therefore, goniometric measures were made for two active wrist

extension tasks, as follows:

1. Wrist extension beginning from the wrist-neutral position, with the palm and forearm rest-

ing on a flat surface (normal range of motion (ROM) is 70˚; [38].

2. Wrist extension beginning from the fully-flexed wrist position (normal ROM is 150˚; [38].

For this small pilot, we generated descriptive statistics. For the FM and AMAT, we gener-

ated the baseline group mean and standard deviation, the post-treatment group mean and

standard deviation, and the group change score and standard deviation from baseline to post

treatment. For the AMAT-F and the FM, the resulting change score was compared with the

known minimal clinically important difference. Additionally, data for each individual subject

are reported in the S1 File. The S1 File of individual motor measures data shows that all data

are intact, with the exception that S1 shows missing data at the 3-month follow-up. Motor

function data were acquired as follows: pre-treatment; post-treatment, and at 3-month follow

up (3moF/U; three months after the last treatment session).

fMRI acquisition and offline analysis. For stroke survivors, brain function data during

wrist extension were acquired at pre-treatment, mid-treatment (at the end of the neural feed-

back training); post-treatment (at the end of motor learning sessions); and at 3-month follow

up (3moF/U; three months after the last treatment session). For each healthy adult, data were

acquired during wrist extension at a single session.

Acquisition. For fMRI data acquisition, we used a 3T Phillips Achieva scanner acquiring

structural MRI data and functional MRI data during wrist extension. At each MRI acquisition

session, we acquired a T1-weighted, high resolution, structural scan using the following

parameters: magnetization-prepared, rapid acquisition gradient-echo (MPRAGE) sequence

[repetition time (TR) = 7.0 ms; echo time (TE) = 3.2 ms; flip angle (FA) = 8 degrees; acquisi-

tion matrix = 240 x 240, field of view (FOV) = 240 mm x 240 mm, slice thickness = 1 mm; and

voxel size = 1 mm x 1 mm x 1 mm, 176 sagittal slices]. For functional images, we used the
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following parameters: a T2�-weighted echo planar sequence (conventional fMRI, TR = 3000

ms, or real-time fMRI, TR = 1500ms); TE = 30ms; SENSE factor = 2; FA (degrees) = 90

degrees; matrix = 80x78; FOV = 240 mm x 240 mm; slice thickness = 3 mm; voxel size = 3.0

mm x 3.08 mm x 3.0 mm (conventional fMRI, 43 axial slices and 116 volumes per run; real-

time fMRI, 21 axial slices prescribed dorsally and 232 volumes per run).

Analysis. We conducted conventional analyses, summarized here (detail, [39]. We

employed the Statistical Parametric Mapping software (SPM12; Wellcome Trust Centre for

Neuroimaging, UCL, UK) and MATLAB R2017a (MathWorks Inc., Natick, MA) to analyze

functional and structural MRI data. We co-registered the functional images to the T1-weighted

structural image. We used a Gaussian kernel of 6 mm full width at half maximum (FWHM)

for smoothing functional images.

To detect outliers of intensity and artifacts of head movement, we used the Artifact Detec-

tion Tool (ART; motion artifacts, >2mm translation or >0.01 radian rotation; whole brain

intensity variation outliers, Z� 3). Runs were excluded from further analysis if the number of

valid scans after artifact detection did not exceed a total time of 5 minutes. In our case, a TR of

1.5 s for rt-fMRI would require at least 200/232 valid scans per run (TR of 3 s for fMRI

required at least 100/116 valid scans per run) to be considered for further analysis. Images

which contained outliers or artifacts were excluded from subsequent analysis.

To obtain volume of activation, we extracted regions of interest (ROIs) using FreeSurfer.

We used FreeSurfer longitudinal processing pipeline to mitigate selection bias across sessions.

Also, we visually inspected each extracted ROI to preclude any potential errors in the FreeSur-

fer longitudinal process. Participant-specific masks were created for a subset of the Brodmann

Area (BA) atlas from the Martinos Center for Biomedical Imaging and the Institute of Neuro-

sciences and Biophysics [40]. Regions of interest included primary motor (BA 4, subdivided

into Hand Knob and the primary motor region remaining after the hand knob region was

removed (Primary Motor–Hand Knob; [39, 41], sensory (BA 3), and pre-motor (BA 6). Vari-

ability of ROI size across data acquisition sessions was 1–7 voxels or < 10%, for a given ROI,

for each subject. We used small volume family-wise error correction (FWEc) at p = .05, for

thresholding activation of voxels in each ROI).

fNIRS acquisition and offline analysis. Acquisition. For S1 and healthy adults, we used

the ETG-400 NIRS system (Hitachi Medical Systems, Japan) to acquire fNIRS data at wave-

lengths of 695 nm and 830 nm during wrist extension. The NIRSport system (NIRx Medical

Technologies, New York, NY, USA) was used to acquire fNIRS data at wavelengths 760 nm

and 850 nm during wrist extension for S2, S3, S4. For both, the probe array included 8 sources

(transmitters) and 8 receivers (detectors), donned over the ipsilesional hemisphere contralat-

eral to the working arm. The Brainsight (Rogue Research, Montreal, QA, Canada) neuronavi-

gation device ensured proper positioning to acquire signals from the hand-knob area of the

primary motor cortext. The fNIRS sampling rate was 10 Hz (ETG-400 Hitachi) and 3.47 Hz

(NIRSport system). HbO concentration.

Analysis. We used HOMER2 [42] to analyze data and calculate peak intensity. We followed

conventional analysis steps including the following: raw voltage was converted to optical den-

sity; we detected and rejected motion artifact [43]; signal was band-pass filtered (cut-off fre-

quencies, 0.01 and 0.5 Hz). Finally, we converted optical density to concentration (μmol/l).

We used deconvolution to recover a canonical, evoked response associated with a given

movement within a movement series to calculate HbO concentration. We modeled the oxyhe-

modynamic response using a Gaussian temporal basis-set, within an epoch beginning 2 s

before the cue to ‘move’ and ending 10 s after the cue. The temporal basis-set was composed of

multiple Gaussian functions implemented with a standard deviation of 1 s, equivalent to full
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width half-max 2.355 s, each function offset from the next by a period of 1 s per Gaussian

function.

For quality assurance purposes, the time-to-peak (TTP) derived from the deconvolved

hemodynamic response was considered as a separate variable. The criterion to exclude a run

from further analysis was deviation of TTP greater than two standard deviations from the

mean TTP across all runs. Based on that criterion, the following number of movement series

were excluded from further analysis: S01 and S02, none excluded; S3, two excluded; and S4,

four excluded.

Interventions

Motor learning intervention. The motor learning protocol was provided at three times

throughout the overall intervention, as follows (and as listed in the previous design summary

section):

3 ML introductory sessions prior to the rt-fMRI neural feedback sessions;

11 ML sessions interleaved between rt-fNIRS sessions; and

33 ML sessions after completion of the rt-fNIRS sessions (five days/wk).

Motor learning sessions were each 3 hours, provided by an experienced neuro-physical

therapist in a clinical research laboratory. Functional electrical stimulation for wrist/hand

extensor muscles was provided as a coordination practice, movement-assist device (EMS+2™
Staodyn, Inc, Longmont, Colorado). Motor learning sessions included practice of single joint

movement, multiple joint movements, task component, and full task practice [5, 6]. Our

motor learning training goal was recovery of the movement components of complex func-

tional tasks in order to recover whole task performance. Wrist extension coordination is essen-

tial to use of the hand in functional activities; therefore, the brain neural feedback sessions

focused on the wrist dyscoordination present in the subjects. The motor learning sessions

extended the brain neural feedback training of wrist extension, continuing wrist extension

coordination training without the neural feedback. As the control improved from treatment at

this neurophysiological level [44–46], we progressed treatment according to a motor task diffi-

culty hierarchy. Detail regarding treatment content of the ML sessions was provided elsewhere

[6]. The hierarchy included single joint movements, multiple joint movements, functional task

components, and whole task practice. During training within each of the difficulty hierarchies,

we followed particular motor learning principles: movement practice as close to normal as

possible [47, 48]; high number of repetitions [49–52]; attention to the motor task [53]; and

training specificity [54]. Subjects practiced grasp preparation and grasp, alone and within task

components.

rt-fMRI intervention. Data acquisition, processing, and neural feedback training methods.
After the first three motor learning orientation sessions, real time fMRI commenced and was

provided by a team of engineers/therapist in three separate sessions of 1 hour’s duration

(Fig 2), in a research imaging laboratory.

During these three rt-fMRI sessions, acquisition of MRI data is described above. We used

Turbo-BrainVoyager software suite (v3.2; Brain Innovation B.V., Maastricht, Netherlands) for

real time fMRI processing.

Testing movement series. For each rt-fMRI neural feedback training day, we conducted one

movement series without providing feedback, termed the ‘functional localizer’ movement

series. This was a mixed block/event-related design (each move cue and each rest cue was
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considered an event), was composed of 42 wrist extension movement attempts with inter-

leaved rest periods.

We conducted the functional localizer to define a feedback region-of-interest (ROI), at the

beginning of each training session. Our pre-processing steps included the following: motion

correction, spatial smoothing (FWHM = 4mm x 4mm x 4mm), and linear drift correction. For

statistical analysis we employed a real-time implementation of the general linear model

(GLM), recursive least squares GLM. We defined significant voxels using a cluster-forming

threshold of a t-score greater than or equal to 4.2, and a cluster-size threshold of 4 voxels. Sta-

tistical maps were visualized and we created a region-of-interest mask by manually drawing a

rectangular volume around significant voxels. In this manner, we created a feedback ROI

mask in the motor region, specifically containing the “hand knob” sensorimotor cortex of the

involved hemisphere.

Identification of rt-fMRI signal threshold for neural training. We used the spatially averaged

time course of significantly activated voxels within the selected feedback ROI mask in calculat-

ing the feedback during the neural training session. Our threshold for rt-fMRI feedback was

Fig 2. Real-time functional magnetic resonance imaging (fMRI) acquisition and neurofeedback system: Visual stimulation displayed by custom

Python software running on a dedicated presentation computer (8-GB RAM, 2.70 GHz, Core i7 processor) running Windows 7; reconstructed

image was sent via DRIN protocol (Phillips Medical Systems) to Turbo Brain Voyager software (TBV, version 3.2) running on a dedicated

computer (8GB RAM, 3.6GHz, Xeon E5-1620) to identify active voxels within a defined region of interest (ROI) in real-time. The feedback

estimation was performed in TBV and saved as a bitmap (.PNG file) to disk in a shared network directory. These files were picked up by custom Python

software for final display to the subject. The feedback stimulus consisted of a brain picture with a purple icon superimposed. The icon changed in size

and brightness to reflect the level of activation in the ROI. This visual stimulus was the source of neurofeedback. (With permission, [39]).

https://doi.org/10.1371/journal.pone.0250431.g002
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consistent with the pre-processing data, customized for each participant and included (1) vox-

els that were significant as defined using a cluster-forming threshold with a t-score greater

than or equal to 4.2, and a cluster-size threshold of 4 voxels; and (2) feedback calculation was

based on the percent signal change from preceding rest to current feedback movement series.

Rest (baseline) was defined based on the “rest” condition prior to an active movement condi-

tion. We developed custom Python software to provide the user/participant neural feedback

during neural feedback training.

Neural training movement series. For the subsequent rt-fMRI training sessions (Fig 2), we

maintained consistency with the content of the functional localizer movement series, and now

with the addition of neural feedback training and additional practice wrist extensions. On a

given day of rt-fMRI, we provided three training movement series, each containing 54 wrist

extensions (total rt-fMRI wrist extensions per day = 162). With three days of training, there

was a total of 486 wrist extension practices across the three rt-fMRI neural feedback training

(greater detail, [39]).

rt-fMRI feedback presentation. We presented visual feedback to the participant using a com-

puter monitor, with custom-designed Python script. Prior to the real time neural training, we

provided verbal instructions and practice recognizing the move cues. During the practice

period, we stated, “when you see the ‘move’ cue, please extend the wrist one time, simulta-

neously increasing the brain signal, hold the extended position for a ‘beat’, and then begin to

rest”. The move command consisted of a cartoon of a hand and forearm with the wrist extend-

ing. Simultaneously and on the same screen, we provided an animation of brain activity within

the outline of a cartoon brain containing a circle located in the hand-knob motor region, and

which increased in size and brightness as the stroke survivor increased the brain signal. The

color and diameter of the circle changed in response to the brain activity, ranging from light

blue to purple. Our system updated the visual feedback every 1.5 s, matching our TR capture.

rt-fNIRS intervention. Data acquisition and neural feedback training methods. After com-

pletion of the rt-fMRI neural training sessions, we initiated a series of 10 rt-fNIRS training ses-

sions (Fig 3). fNIRS acquisition is detailed above, section 2.2.3. Processing of fNIRS data was

performed using NIRStar (NIRx Medical Technologies, New York, NY, USA) and custom

designed software to implement real-time filtering, feedback estimation, and visualization.

Details provided below.

Testing movement series. We conducted an assessment-only movement series at the begin-

ning of each rt-fNIRS training day; this ‘functional localizer’ movement series was a mixed

block/event-related design (an event was a move or rest cue), which contained 36 practice

wrist extension attempts.

The time series streams of oxyhemoglobin and deoxyhemoglobin concentrations (μmol/L)

were received sample-by-sample and consisted of multichannel data obtained in real time at a

regular sampling rate of 3.47 Hz. The Lab Streaming Layer protocol allowed for communica-

tion between custom Matlab scripts and NIRx NIRStar software. NIRStar interfaced directly

with the fNIRS hardware, acquired the data, converted raw light intensity to concentration

data, and provided the functionality to stream data in real-time. NIRStar transmitted in (near)

real-time fNIRS data using the Lab Streaming Layer (LSL) protocol. We generated Matlab

scripts that served to receive the fNIRS data one sample at a time, pre-process the data, calcu-

late feedback score, and update the visual display to the user. Matlab also handled the time-

synchronization of the experimental design.

In real time, we preprocessed using a sliding window. We employed a low-pass Gaussian

filter (FWHM = 1.5 s, 15th order) with a cutoff frequency of 0.22 Hz, followed by a DC block-

ing filter (R = 0.99) with a cutoff frequency of 0.012 Hz to mitigate low-frequency drifts. We

then calculated feedback values which were then provided to the user during neural feedback
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training. Using standard score (z-score) calculation, we calculated feedback values by subtract-

ing the preceding rest period average from the 1s moving average of the movement block and

then dividing the difference by the standard deviation of the preceding rest period. Thus, posi-

tive (increasing) feedback was provided if the 1s moving average was greater than the average

of the preceding rest period; this procedure assisted in compensating for potential spurious

changes in the baseline brain activity that could occur during a given training session. We

applied the 1s moving average to the feedback values in order to mitigate any potential rapid

signal changes (potentially artifactual) from causing sudden spikes.

Identification of signal threshold for neural training (fNIRS). Structural MRI was used as

input to the Brainsight Neuronavigation, to locate the hand knob region for NIRS. Functional

MRI from the training sessions was analyzed and overlaid on the structural image to confirm

activation in the hand-knob region during wrist movement. We conducted the fNIRS func-

tional localizer movement block, with behavioral protocol described above.

Using Brainsight neuronavigation (Rogue Research, Montréal, QA, Canada) to specify the

location of the desired optode location, we began by identifying the subset of optodes closest

Fig 3. Real-time functional near infrared spectroscopy (rt-fNIRS) neural feedback system. The command to move was a visual cue including a

cartoon of the brain, the words “Wrist extension—GO”, and a cartoon of the wrist moving from a neutral to an extended position in 1 s. Brain

activation during the attempt to extend the wrist was captured by NIRx NIRSport. Output from the NIRSport was synchronized with NIRx NIRStar

Version 15, which ran on a dedicated acquisition computer (24-GB RAM, 2.60 GHz, Core i7 processor) running Windows 8. The data were pre-

processed and thresholded by custom Matlab code. Matlab output informed Python code how to update the visual participant feedback, shown as a

purple color in the brain region. Matlab output also triggered functional electrical stimulation (FES) of wrist extensors. (With permission, [39]).

https://doi.org/10.1371/journal.pone.0250431.g003
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to the hand knob region. We calculated a goodness-of-fit measure using linear regression for

each of those channels in the subset. Our work was based on these following assumptions: (1)

The evoked fNIRS response conforms to the canonical hemodynamic response function

(HRF) and (2) the responses would add linearly. In addition, we added third order polynomial

regressors to account for drift. Matrix inversion used ordinary least squares. We ranked the

subset channels based on the beta coefficient corresponding to the scale of the HRF divided by

the standard deviation of residuals. We then inspected the top-ranked channels to select the

feedback channel for the session.

In summary, criteria for selection of the feedback channel included:

(a) Hand knob region, determined using Neuronavigation

(b) An increase in oxyhemoglobin from rest to movement periods, discounting channels with

considerable noise or high frequency changes indicating possible artefacts.

(c) Tie breaker: closest proximity to hand knob region.

We calculated feedback values from the selected fNIRS channel. We maintained this chan-

nel throughout the given session. During rt-fNIRS neural feedback training, the presentation

of feedback to the subject was identical to that described above for rt-fMRI neural feedback

training.

We generated a user-defined, signal-to-noise threshold, which we scaled, 0–10 facilitate

threshold achievement at which positive feedback was provided. We began each rt-fNIRS neu-

ral training session with a threshold of 6 on the scale, at which positive feedback was provided.

We varied this threshold between 6 or 7 during the session if performance indicated the need.

For example, if 100% of trials achieved threshold at a value of 6, then the threshold was

increased to a 7.

We assessed successful control of brain signal during rt-NIRS neural training with a mea-

sure of ‘sensitivity’ which was defined as the percentage of wrist movements during which the

brain signal was above threshold.

Sensitivity successð Þ ¼ TP= TPþ FNð Þ

where

TP = (true positive) brain signal above threshold during wrist movement

FN = (false negative) brain signal below threshold during wrist movement (threshold not

achieved)

and TP + FN is the total number of possible wrist extension movements.

Neural training movement series. We constructed the subsequent rt-fNIRS training move-

ment series with the same content as the functional localizer movement series, but with the

neural feedback added for each wrist movement attempt. We provided four training move-

ment series on each training day (total 144 wrist extensions 36 per movement series, 4 of the

movement series).

Rt-fNIRS-triggered functional electrical stimulation. We used surface functional electrical

stimulation (FES; EMS+2™ Staodyn, Inc, Longmont, Colorado) during rt-fNIRS. FES was trig-

gered for wrist extension movement-assist when the fNIRS brain signal reached the custom-

set threshold. The FES parameters were 300μs pulse width, 30Hz, amplitude set to comfort,

and 3s duration of stimulus. We placed the electrodes (1.5 cm x 1.5 cm) over the muscle belly

of the wrist extensor muscles, to provide movement-assist for the attempted wrist extension

movements.
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rt-fNIRS feedback presentation. Feedback for the stroke survivor during rt-fNIRS was

consistent with that provided during rt-fMRI, described above, with two exceptions. First,

updates to the visual feedback occurred once per second rt-fNIRS. Second, the stroke survivor

received FES-assisted movement that was triggered each time the brain signal was at or above

the custom-derived threshold.

Results

Subjects

Stroke survivors characteristics are provided in Table 1. Characteristics for the 10 healthy

adults were as follows: 6 males and 4 females, average age 43.8 ± 22.9 years, all right-handed

except one male. There were no study-related adverse events.

Outcome measures results

Motor outcome measures. Group descriptive statistics are provided in Table 2. The pri-

mary measure, mean improvement in AMAT-F, functional task performance, was just above

the MCID of .44 for the AMAT-F (Table 2, row 1, column D), indicating clinically significant

improvement. Three of four subjects had a clinically significant improvement in AMAT-F by

Table 1. Subject characteristics.

Subject Age Gender Time Since Stroke (months) Stroke Location, type

S1 58 F 38 L Lacunae, posterior periventricular white matter, ischemic stroke

S2 46 F 34 L Post/lateral internal capsule, ischemic

S3 52 F 180 L putamenal, hemorrhagic stroke

S4 67 M 23 R middle cerebral artery, ischemic stroke

S1. At baseline and starting from the wrist-neutral position, S1 was not able to extend the wrist at all. Starting from the fully-flexed wrist position, she was able to extend

the wrist only 19 degrees. Baseline FM score was 22, indicating severely impaired upper limb function [55] (FM severe, 0–28; moderate, 29–42; mildly impaired, 43–66).

S2. At baseline, S2 was unable to extend the wrist whatsoever from either of the two start-positions (0 degrees of active movement). Nor was she able to pronate the wrist

into a normal functional position. Wrist extensors exhibited only a ‘Trace’ grade muscle activation, that is, faintly perceptible to palpation. Baseline FM score was 19,

indicating severely impaired upper limb function.

S3. At baseline, S3 was able to extend the wrist only 4 degrees from the neutral wrist start position, and 60 degrees from the fully-flexed position (normal is 150 degrees;

[38]. Baseline FM score was 20, indicating severely impaired upper limb function.

S4. At baseline, S4 was unable to extend the wrist beginning from in any wrist start position. S4 baseline FM score was 18, indicating severely impaired upper limb

function.

https://doi.org/10.1371/journal.pone.0250431.t001

Table 2. Group data for motor measures.

A. Measure B. Pre-TreatmentMean (std) C. Post-Treatment Mean (std) D. Pre-/Post Change > MCID a,b (yes/no)

1. AMAT function (AMAT F) a (points) 1.50 (± 0.24) 2.01 (± 0.38) .49a (± 0.22) Yes

2. Fugl-Meyer (FM)b (points) 19.7 (± 1.7) 29.8 (± 6.4) 10.0b (± 3.3) Yes

3. AMAT time (AMAT-T) (sec) 1475 (± 136) 1057 (± 503) -418 (± 261) N/A

KEY:
a AMAT function minimal clinically important difference (MCID) = 0.44; a score� 4.25 indicates clinically significant improvement in functional task performance.

Subjects whose scores changed� 0.44 from pre- to post-treatment were: S1, S3, and S4. For S2, at follow-up, there was a gain of .43, trending toward clinical

significance.
b Fugl-Meyer MCID = 4.25; a score� 4.25 indicates clinically significant improvement in coordination of upper limb joint movements. Participants whose scores

changed� 4.25 pre/post were: S1, S3, S4. For S2 there as a 4-point gain achieved only by follow-up testing, trending toward clinical significance.

https://doi.org/10.1371/journal.pone.0250431.t002
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post-treatment, and the remaining subject had a clinically significant improvement by follow-

up (Individual data are in the S1 File (Section I. Outcome Measures, Section 1.1. Motor

Results, Table 1a-1d in S1 File).

Mean improvement in coordination (FM) was more than double the MCID of 4.25 points

for the FM (Table 2, row 2, column D). The mean change in AMAT time was 418s. Individual

Subject responses are in in the S1 File (Section I. Outcome Measures, Section 1.1. Motor

Results, Table 1a-1d in S1 File).

fMRI outcome measure: Pattern of change from baseline to post-treatment, % volume

of activation during wrist extension. Table 3 shows a compilation of patterns of change

comparing pre-treatment to follow-up for the four subjects. A glance at Table 3 illustrates that,

for the most part, Subjects 1, 2, and 4 showed a decrease in volume of activation from pre-

treatment to follow-up. In contrast, Subject 3 showed an increase in three ROIs in the lesioned

hemisphere and two in the non-lesioned hemisphere and she had no change in the remaining

ROIs in the non-lesioned hemisphere. Brain maps in Fig 4.1–4.4 reflect these patterns of

change for each subject. Individual values for each subject, each data acquisition, each ROI are

in the S1 File, Section I. Outcome Measures, Section 1.2. fMRI Outcome Measures, Individual

Subject Data; Table 2a-2d in S1 File.

fNIRS outcome measures. fNIRS outcome measure; HbO concentration values summa-
rized for healthy adults and stroke survivors at pre-/post-treatment/fu sessions. Fig 5, Panel A

shows the range of the fNIRS signal HbO for each of ten healthy control subjects. The signal

HbO was calculated by subtracting resting state signal from the signal value during the wrist

Table 3. Patterns of change from pre-treatment to 3 month follow-up�, according to percent volume of activation; wrist extension motor task.

PATTERN OF CHANGE

I. Brain Region II. Decrease Change in % Volume of

Activation (Subject number)

III Increase Change in % Volume of

Activation (Subject number)

IV. No Change in % Volume of

Activation (Subject number)

A. lesioned hemisphere, contralateral

to the moving wrist)

1. Primary Motor (BA 4ap)

1.1. ‘Hand Knob’ sub-section of

Primary Motor

03% (S1) 48% (S2) 20% (S3) (S4)��

1.2. Primary Motor sub-section,

minus ‘Hand knob’

19% (S1) 24% (S2) 3% (S3) (S4)

2. Premotor (BA 6) 13% (S1) 26% (S2) 02% (S4) 6% (S3)

3. Sensory (BA 3ab) 28% (S1) 20% (S2) 01% (S3) 26% (S4)

B. Ipsilateral (non-lesioned; right)

1. Primary Motor (BA 4ap)

1.1. ‘Hand Knob’ sub-section of

Primary Motor

30% (S1) 68% (S2) 20% (S3) 03% (S4)

1.2. Primary Motor sub-section

minus ‘Hand knob’

26% (S1) 40% (S2) 19% (S4) (S3)

2. Premotor (BA 6) 13% (S1) 25% (S2) 19% (S4) 03% (S3)

3. Sensory (BA 3ab) 11% (S1) 10% (S4) (S2) (S3)

Key: S: Subject.

� Change values for S4 were calculated using pre-treatment and post-treatment because the follow-up values for S4 were zero’s, which could spuriously increase the

change values; this situation of zero’s at follow-up could have arisen due to his expressed discouragement at having had no treatment between post-treatment and

follow-up and an obvious worsening of motor control.

��No Hand Knob region could be identified in the surviving tissue of S4’s lesioned hemisphere.

https://doi.org/10.1371/journal.pone.0250431.t003
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extension movement task. In this case for HbO (active-rest), a positive value means that oxyhe-

moglobin levels were higher during the active (movement or exercise) condition than during

the resting condition. This was the predicted result, since increased blood flow floods the acti-

vated region with oxygenated blood seconds after the initial conversion of oxyhemoglobin to

deoxyhemoglobin during brain activation. The negative values for some, may reflect the rela-

tively minor movement tested (simple wrist extension), so that the typical increase in oxyhe-

moglobin in the initial seconds after a region is activated was not always recruited. Two of the

control subjects (Panel A) had maximum HbO values of 0.4–0.5 μM, two of 0.3–0.4 μM, and

six of about 0.1–0.27 μM.

Panel B results are discussed below under “Performance during feedback training”.

Panel C shows the range of values observed during pre-, post-treatment, and follow-up data

acquisitions (no feedback given during acquisition of Outcome Measures). During these test-

ing sessions without feedback (Panel C), stroke survivors had maximum HbO values of 0.8 μM

(S2), and near normal of 0.5 μM (S1), 0.5 μM (S3), and 0.2 μM (S4). The elevated value for S2

is consistent with abnormal autoregulation. The expectation is that for some stroke survivors,

there may be reduced brain activity due to stroke damage, and thus less oxyhemoglobin is

Fig 4. Brain map outcome measures acquired at pre-treatment and follow-up. Brain maps are shown for right and left hemisphere

regions: HK, BA4—HK, BA3, and BA6) reflecting the summary results in Table 3 above for pre-treatment and follow-up. (FWEc, p

value = 0.05 with small volume correction, used for thresholding each ROI). Key: R = right hemisphere; LH = left hemisphere;

RH = right hemisphere. Individual activation values are in the S1 File, Section I. Outcome Measures, Section 1.2. fMRI Outcome

Measures, Individual Subject Data; Table 2a-2d in S1 File. 4.1. Subject 1. S1 in S1 File showed lessening of activation from pre-treatment

to follow-up in all ROIs. 4.2. Subject 2. S2 in S1 File showed lessening of activation in all ROIs from pre-treatment to follow-up, except

for right sensory region which remained consistent. 4.3. Subject 3. S3 in S1 File showed increases in all left lesioned hemisphere ROIs,

except sensory which decreased minimally; there was an increase in right Primary Motor-Hand Knob and all other ROIs remained

consistent or with only minimal change. 4.4. Subject 4. S4 in S1 File. For S4 in S1 File, from pre-treatment to post-treatment in the right

lesioned hemisphere, there was a 26% decrease for the sensory region, with zero or near zero for the remaining right ROIs. For the left

hemisphere, there was a decrease in all ROIs, except for a minimal increase in the Hand Knob region.

https://doi.org/10.1371/journal.pone.0250431.g004
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converted to deoxyhemoglobin. Disproportionate inflow of oxyhemoglobin-rich blood as

hemodynamic response may result in transient hyper-elevated oxyhemoglobin.

For greater ease in considering the data for four stroke survivors as a group, we compiled

those fNIRS amplitude values into a measure of the range of values exhibited within a given

subject across all outcome data acquisition sessions (Panel C), in order to visually inspect

whether there may be any indication of potential abnormality for the stroke survivors in terms

of their range of fNIRS amplitude values during wrist extension. From Fig 5, Panel C, we can

note that S2 exhibited elevated values above that shown for control subjects in Panel A. S4

exhibited the lowest signal amplitude compared to the other three stroke survivors, but still

within the range of that shown for healthy control subjects.

The Fig 1a-1d in S1 File provides within-subject data for the stroke survivors. According to

visual inspection of those data, there was no discernible trend of oxyhemoglobin concentra-

tions derived from fNIRS values from baseline to post-treatment or follow-up (no feedback)

for S2 and S4, whereas S1 showed a slight trend for increased HbO and S3 for decreased HbO

over time. As a group, no discernible changes in HbO across treatment protocol sessions was

evident.

Performance during neural feedback training

Real-time fMRI neural training, fMRI performance measure during neural training ses-

sions. In addition to our outcome measures, presented above, for pre, mid, post, and follow-

up data collections, we acquired fMRI data during the rt-fMRI neural training to study perfor-

mance during the neural training sessions, according to whether there were patterns of change

in volume of brain activation across the rt-fMRI neural training sessions of wrist extension

coordination (Table 4 and Fig 6).

Fig 5. fNIRS: Range of values for ‘active–rest’ hemoglobin concentration during wrist extension task three conditions,

all during wrist extension task. Panel A. Healthy controls fNIRS range of values during wrist extension. Panel B. Stroke

survivors during rt-fNIRS training for wrist extension. Panel C. Stroke survivors during wrist extension without neural

feedback (pre-, post-treatment, follow-up. Key: Each vertical bar shows the range of HbO for a given individual, each of

whom are identified on the horizontal axis. For y-axis, oxyhemoglobin concentration values were calculated as the difference

between ‘active-rest’ condition. This difference variable is a change in oxyhemoglobin concentration from rest to the active

movement state, derived from the fNIRS signal. The above rectangles for each participant represent the range of values for

that given participant. �Data for healthy controls and S1 were acquired using Hitachi fNIRS system and data for S2, S3, and

S4 were acquired using the NIRx fNIRS system.

https://doi.org/10.1371/journal.pone.0250431.g005
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We compiled the individual subject data according to their respective increase, decrease or

‘no change’ for volume of activation in each ROI, from the first to the last rt-fMRI neural train-

ing session. A summary of results for each ROI is presented below according to the patterns of

activation across rt-fMRI neural feedback training sessions (Table 4, below). There was no

change in lesioned Hand Knob for S1, S2, S4 or for non-lesioned Hand Knob for S2 and S4.

The majority of pattern changes from session 1 to 3 were decreases in activation, except for

smaller increases of 5–15% in mostly non-lesioned hemisphere ROIs. Brain maps below in

Fig 6.1–6.4 reflect these changes. The individual data are located in the S1 File, Section II, Per-

formance Measures, During Neural Feedback Training; subsection 2.1., Rt-fMRI Neural

Training, fMRI Performance Measure, Table 3a-3d in S1 File.

fNIRS performance measures during rt-fNIRS neural feedback training. Successful
brain signal activation control during rt-fNIRS neural feedback training sessions summarized for
four stroke survivors. Fig 7 shows that the mean brain activation success rate ranged from 42%

to 78% across the four subjects (defined in the methods section as number of movement

attempts for which brain signal was above threshold during wrist movement divided by total

movement opportunities). S3 had the overall lowest success rate, with values at the initial ses-

sion of 18%, improving by session 9 to 79%. S4 performance was higher than other subjects

with values ranging from 70% to 89%. Individual values varied across the 10 training sessions;

these individual subject data are provided in the S1 File (Section II, Performance Measures,

Subsection 2.2.1. Successful brain signal activation control during rt-fNIRS neural feedback

sessions, Fig 2a-2d in S1 File).

fNIRS signal amplitude range during rt-fNIRS neural feedback sessions. Fig 5, Panel B

(above) shows the range of ‘Active–Rest’ HbO concentration differences for each of the four

stroke survivors during rt-fNIRS neural feedback training; these range values were generated

Table 4. Performance during rt-fMRI neural feedback training patterns of change in % volume of activation for specific ROIs across the first and last rt-fMRI neu-

ral training sessions.

PATTERN OF CHANGE IN % VOLUME OF ACTIVATION

I. Brain Region II. Decrease % Change (Subject

number)

III Increase % Change (Subject

number)

IV. No Change % activation (Subject

number)

A. lesioned hemisphere, contralateral to the

moving wrist

1. Primary Motor (BA 4ap)

1.1. ‘Hand Knob’ sub-section of Primary Motor 29% (S3) 100% (S1) 100% (S2) 000% (S4)�

1.2. Primary Motor sub-section, minus ‘Hand

knob’

10% (S2) 36% (S3) 06% (S4) 08% (S1)

2. Premotor (BA 6) 22% (S3) 5% (S1) 43% (S4) 48% (S2)

3. Sensory (BA 3ab) 10% (S1) 17% (S2) 51% (S3) 06%

(S4)

B. Non-lesioned hemisphere, ipsilateral to the

moving wrist

1. Primary Motor (BA 4ap)

1.1. ‘Hand Knob’ sub-section of Primary Motor 62% (S1) 43% (S3) 100% (S2) 72% (S4)

1.2. Primary Motor sub-section minus ‘Hand

knob’

41% (S1) 26% (S4) 12% (S2) 15% (S3)

2. Premotor (BA 6) 06% (S1) 07% (S4) 6% (S2) 10% (S3)

3. Sensory (BA 3ab) 19% (S1) 21% (S2) 41% (S4) 09% (S3)

�No Hand Knob region could be identified in the surviving tissue of S4’s lesioned hemisphere.

https://doi.org/10.1371/journal.pone.0250431.t004
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from their performance across the ten sessions of rt-fNIRS neural feedback training for

the wrist extension task. The stroke survivors exhibit no values below zero; that is, none

where the active-state oxyhemoglobin concentration is less than that of the rest state. Across

the 10 sessions of rt-fNIRS, the four stroke survivors (Panel B) had maximum HbO values of

0.28 (S1), 0.45 (S3), 0.46 (S2), and 0.5 (S4), respectively. Data for individual subjects for

each of the ten training sessions are in the S1 File (Section II. Performance Measures, Subsec-

tion 2.2.2. rt-fNIRS signal amplitude values across the 10 rt-fNIRS training sessions, Fig 2a-2d

in S1 File).

Fig 6. Brain maps across three neural feedback training sessions (rows a, b, and c from sessions 1, 2, and 3, respectively) using real

time fMRI (rt-fMRI) for each of four cases (6.1, 6.2, 6.3., and 6.4, respectively). Brain maps show functional magnetic resonance

imaging (fMRI) data acquired during each of the three real-time fMRI neural feedback wrist coordination training sessions. A session-

specific, t-statistic map was overlaid on the session-specific T1 anatomical image. We used a significance threshold of p< 0.05 with

small volume family-wise error correction for each ROI. 6.1. for S1. Brain maps for the left lesioned hemisphere reflect small changes

(� 10%) or consistent pattern comparing first to last of the three sessions, rows a and c. The right hemisphere showed a marked

lessening of activation (19%–62% decreases; details contained in Table 3a, S1 File). 6.2. for S2. Brain maps for the left lesioned

hemisphere reflect a consistent pattern of activation comparing first to last of the sessions, rows a and c, for Hand Knob and premotor,

and a lessening of activation in Primary Motor-Hand Knob and sensory. The right hemisphere showed a similar pattern across the three

sessions, with the exception of a 10% increase in Primary Motor-Hand Knob (details in Table 3b, S1 File). 6.3. for S3. Brain maps reflect

a marked lessening of activation comparing the first and last of the three sessions for the left lesioned hemisphere (29% to 59%) and the

right hemisphere (11%–56%; details in Table 3c, S1 File). 6.4. for S4. Brain maps reflect lessening of activation comparing the first and

last of the three sessions, rows a and c for right lesioned hemisphere (� 10%) except for Hand Knob remaining constant. The left

hemisphere showed lessening of activation (7%-41%), except for Hand Knob which remained constant; details in Table 3d, S1 File).

https://doi.org/10.1371/journal.pone.0250431.g006
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Discussion

Motor improvement

The motor results at post-treatment are comparable to that reported previously for the motor

learning (ML) protocol without neural feedback from our own work and that of others [5–7].

There are two major differences between our prior work and the current study. First, the cur-

rent study provided neural feedback for 13 sessions, but there was no neural feedback in three

prior studies employing motor learning [5–7]. Second, there were fewer overall hours of treat-

ment in the current study (13 hr of neural feedback and 94 hr motor learning, totaling 107 hr

of treatment) versus 300 hr in our prior work [5, 6], 60 motor learning sessions, 5 hrs /session).

Nevertheless, the current shorter protocol that included neural feedback training produced

gains in the FM and AMAT comparable to the longer motor learning prior protocol [5, 6]. In

making this comparison, we should note an additional potential contributing factor to the

level of motor recovery. That factor is the patient:therapist ratio. In the prior work, there was a

patient:therapist ratio of 3:1; whereas, in the current work, there was a 1:1 ratio of patient:ther-

apist for all but a few sessions. Noting the recent work of others that produced high motor con-

trol gains in coordination [7], their study also employed fewer motor learning hours (90 hr),

but a 1:1 ratio of patient to therapist. Considering these three studies, it is reasonable to con-

sider that overall, 100 hours of 1:1 treatment is needed for gains in the FM�10 and clinically

significant AMAT gains; and it can be administered either in a group at 3:1 ratio of 300 hr or a

1:1 ratio of around 100 hr. In all these instances, patients received about 100 hours of individ-

ual treatment. Taking these findings together, along with the current study design, it must be

noted that the subject results in the current study could have been produced partly or solely by

the motor learning sessions.

At the same time, one notable point relevant to the current study is that the allocation of 13

hours to neural feedback did not appear to diminish response to treatment in comparison to

Fig 7. Brain activation mean success rate during rt-fNIRS neural feedback training, for each of four subjects. For

each stroke survivor, mean (rectangle height) success rate for the 10 rt-fNIRS neural training sessions is shown with

standard deviation (gray standard deviation lines.

https://doi.org/10.1371/journal.pone.0250431.g007
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prior studies of long duration motor learning treatment [5–7], at least for the four subjects in

this limited case series. Given that the current neural feedback study did not appear to prevent

the motor improvements observed in other long duration studies, even in the presence of

fewer hours and sessions of motor learning, the results support further study of neural feed-

back and its specific and unique effects on recovery of motor function in stroke survivors. Fur-

ther refining the neural feedback systems and administration, may prove to further reduce the

needed hours of treatment required for clinically significant recovery.

Patterns of change (fMRI volume of activation)

Sensory region. The importance of sensory function during movement is well-known.

But after stroke, there may be a progressive lessening of the normal inter-hemispheric connec-

tions associated with the sensory regions [56], with poor connectivity associated with greater

disability. In the current work with four stroke survivors, there was first an initial higher fMRI

volume of activation in sensory regions followed by a lessening of activation across the rt-

fMRI training sessions. There was also a lessening of activation from pre-treatment to follow-

up testing in sensory regions. This lessening pattern of change could reflect recovery of con-

nections and thus, more effective and efficient volume of activation in the sensory regions.

Contralateral hemisphere. The role of the contra-lesional hemisphere and M1 region are

complex during the chronic phase after stroke. Some have reported that in a subsample of

stroke survivors, contra-lesional M1 activity interfered with motor function, perhaps abnor-

mally inhibiting activity in the lesioned M1 region [57]. This finding could be relevant in the

current work with regard to S1, S2, and S4, whose activations decreased substantially in the

contra-lesional hemisphere, which could have had an influence on the motor recovery that

occurred. However, in contrast, in others, there seems to be correlation between abnormally

increased activation in contra-lesional M1 and greater motor recovery, which could be consis-

tent with S2 who had a 20% increase in activation for the Hand Knob at follow-up, when her

functional task performance was at its highest. In fact, the role of the contra-lesional M1 in

recovery is not yet well-elucidated [57].

Variability across subjects and within stroke survivors. The patterns of change in brain

activation are complex after stroke and in response to treatment. Patterns of change are vari-

able across individuals and within an individual across ROIs. A number of variables contribute

to this complexity including location of stroke, time since stroke, severity of stroke [28, 58],

integrity of remaining structures such as the corticospinal tract [59], and treatment type and

duration [28, 60]. Even with consistent treatment, variation across stroke survivors can occur

[61], which is evident in the current case series. Additionally, each ROI within a given stroke

survivors, serving a unique function, can increase or decrease in volume of activation in

response to the confluence of treatment influence and its unique function [61]; in the current

work, this was the case for S3, whose patterns of change varied (both increases and decreases

across ROIs) from pre-treatment to follow-up.

fMRI; variability of healthy adult brain signal for wrist extension. The healthy adult

fMRI data revealed the variability in volume of activation within a given participant across the

ROIs and variability across the ten healthy adults. The task was motorically easy; and on a rou-

tine basis, it is somewhat automatically performed within many everyday functional tasks,

potentially explaining the lack of significance of brain signal in some healthy adult participants

and some ROIs. It appears that the precision of the fMRI methods was often not fine enough

to capture the few neuronal activations required for this normally, simple and automatically

performed movement. Thus, ‘normal’ range of the volume of activation in this dataset ranged

from zero upwards. We should note that because the data for some normal subjects exhibited
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zero activation in some ROIs, it was not possible to definitively ascertain the meaning within a

stroke survivor of a zero score because zero for them could have been reflecting either what

was close to ‘normal’ and easy motor control or an abnormal lack of brain signal. In future

work, this difficulty may be resolved for this particular task with a more powerful scanner (e.g.

7T) enabling finer resolution of activations (e.g. 1mm3).

Confluence of results. By post -treatment, three of four stroke survivors (S1, S3, S4)

showed clinically significant improvement in functional task performance (AMAT-F) and

upper limb joint coordination (FM). By follow-up, the fourth subject (S2) showed near clini-

cally significant improvement, as well. These results are consistent with other work that

included moderately/severely impaired chronic stroke survivors [5–7]; in the current work, all

were severely impaired. In terms of neural control of wrist extension in both hemisphere

ROIs, three of four subjects (S1, S2, S4) showed lessening in volume of activation from pre-

treatment to follow-up; one subject (S3) showed increased or consistent volume of activation

by follow-up. Both of these change patterns have been identified as response to treatment in

chronic stroke survivors and posited as change that could contribute to and drive motor

recovery [61]. For HbO values from fNIRS and regarding patterns of change from pre-

treatment to follow-up, HbO showed variation across subjects, accompanying motor recovery,

as follows: S1, slight increasing trend; S3, decreasing trend; and S1 and S4, no discernible

trend.

During rt-fNIRS neural feedback training, participants were successful in modulating brain

signal (means ranging 42%–78%); and HbO values varied across the 10 sessions with no over-

all trend. During rt-fMRI neural feedback training, in the lesioned hemisphere, patterns

changes in volume of activation in ROIs were as follows: S3, all decreased; S1, no change

(Hand Knob) and small changes of 5%-10% elsewhere; S2 and S4, no change (HK) or

decreases. Patterns of change in volume of activation were different in the non-lesioned hemi-

sphere ROIs as follows: S3, reduction in HK, and increases elsewhere; S1, increases; S2 and S4,

no change (Hand Knob), decrease in sensory, and S2 and S4 diverged for the Primary Motor-

Hand Knob and premotor (S2, increased and S4 decreased). These two most impaired stroke

survivors exhibited the same patterns of change from rt-fMRI session 1 to 3 in all but the con-

tra-lesional Primary Motor-Hand Knob and premotor. For S2, after increasing in those latter

two contra-lesional motor regions during the rt-fMRI neural feedback, she ultimately recov-

ered greater wrist extension versus S4 by post-treatment and better maintained it by follow-

up. More detailed discussion for each subject is in the S1 File, Section III.

Use of the rt-fMRI and rt-fNIRS neural feedback systems

The four participants were able to successfully modify brain signal during neural training ses-

sions (Fig 4), despite their initial severe motor limitations, including complete lack of wrist

extension at baseline for S2 and S4 and limited wrist extension for S1 and S3 at baseline.

During neural training, for one subject, S4, there was higher percentage of rt-fNIRS ‘suc-

cessful’ trials in modifying brain signal compared to the others. One potential reason for this is

that in the first three subjects, we noted potential discouragement when too much time

between ‘successful hits’ was imposed (15 s rest). Therefore, for S4, we did not impose a 15 s

rest, but shortened the interval time between ‘move’ commands after successful hits. From this

experience, one could conclude that it is easier to successfully activate brain signal when there

is a short interval time; therefore, we recommend for future consideration, a graded approach

to setting the interval time between a success and the next motor practice attempt. For exam-

ple, in early training a short interval could be provided, and as motor control recovers, a lon-

ger, potentially more challenging interval time could be introduced.
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We found that the fNIRS cap was comfortable enough to be tolerated for up to 70 minutes,

which was the time needed to either provide the rt-fNIRS training session or to collect fNIRS

data. For MRI testing and training, we allocated sufficient time to ensuring comfort in terms

of the positioning of the MRI head coil and torso and limb positioning. In terms of overall rela-

tive preference, one subject preferred rt-fMRI and three preferred rt-fNIRS. Participants

expressed their motivation in response to the neural training and the presentation software

with the brain picture and increasingly dark purple color in the Hand Knob region when their

brain activation increased. While tapping their head, participants made such statements as “I

can feel right here in my brain where my wrist extension is” (S4).

Limitations

This study focused on development of the software and use of the hardware, and so sample

size was necessarily constrained by funding and time, limiting generalizability. Additionally,

the study design does not allow differentiation of results produced by the neural feedback ver-

sus the motor learning sessions. Nevertheless, this case series does provide valuable informa-

tion regarding the use of rt-fMRI and/or rt-fNIRS neurofeedback supporting future work that

could identify the benefit that spatially focused BCI training such as MRI-based and/or NIRS-

based BCIs may provide.

The use of two different NIRS systems with two different wavelength pairs is a potential

confound. However, this is likely to be inconsequential, as previous studies [42, 62–65] indi-

cate that both wavelength pairs are optimal for solving the simultaneous equations for HbO

and HbR concentrations accurately. Furthermore, adverse consequences of using the two dif-

ferent systems are minimized, given that both systems used the same number of sources and

detectors.

User data from the stroke survivors revealed the importance of a more spatially fine-grained

scan (e.g., 1mm3; smaller than the 3 mm dimension and 27 mm3 volume of the current study),

higher power scanner (7T), and ability to custom-draw the ROI of interest desired for rt-fMRI.

Considering the individual differences across participants in changes in the volume of activa-

tion during training sessions and pre-/post-treatment, it will be important to develop the

methods for greater precision and customized real time neural feedback. This will be difficult

because within each subject, the separate ROIs respond differentially to treatment and

improvement in motor control.

Future research

BCI for stroke motor recovery is still young, with variable results reported in motor change

and in brain signal change [19]. Nevertheless, there is important neuroscience research under-

way that may elucidate the neural mechanisms driving motor control. Others have developed

hardware, software, and signal processing methods, which could enhance the use of rt-fMRI

and rt-fNIRS. Success in that direction of inquiry could significantly improve signal feature

selection and the efficacy of BCI in retraining motor control after stroke. For example, emerg-

ing research is reporting correlation between change in motor function and brain functional

connectivity according to either MRI [62] or EEG [19]. It remains to study whether a func-

tional connectivity signal feature can be productively provided to a stroke survivor for motor

recovery. In their work, Yuan et al. (2020) reported that BCI training produced changes in

information flow among motor-related brain regions, according to measures of functional

connectivity. More successful future BCI training could engage that finding, providing feed-

back for enhancing these connections identified by Yuan et al. [66], including ipsilesional M1

and contralesional premotor and supplementary motor regions. Others are studying neural
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information transfer rate of acquired brain signal and classification accuracy, needed in BCIs

controlling environmental and communication devices [67–70], and these discoveries may

prove applicable to BCIs for stroke motor learning. For that BCI application, it is important in

future work to identify those brain signal features specifically relevant to the given motor task.

That work may lead to the critical development of greater customization (precision medicine)

in signal processing and feedback provision, given that each individual stroke survivor exhibits

quite different baseline and recovery volume of activation patterns [61]. In early days of BCI

and motor control, some researchers attempted to solve that problem using software systems

based on an adaptive controller, which attempted to account for changing brain signal over

time within a given individual [14]; but that method did not satisfy the requirement of a brain

signal feature that was a solid target of a brain pattern driving normal motor control to which

the user could aspire [71]. A sophisticated approach to neural feedback would be to provide

information to the user regarding the abnormal activation driving abnormal co-contraction,

such as occurs during desired wrist extension when abnormal wrist flexion occurs instead. The

ability to mitigate the neural drive of abnormal wrist flexion, so-called co-contraction [72]

would be a major leap in neurorehabilitation.

Conclusions

It is possible for severely impaired stroke survivors to successfully engage in spatially focused

BCI systems such as rt-fMRI and rt-fNIRS. The combined neural feedback with motor learn-

ing sessions (without BCI) produced motor improvement and clinically significant mean

gains, according to joint movement coordination and functional task performance, commen-

surate with motor learning without neural feedback, supporting possible benefit. Given that

the current neural feedback study did not appear to prevent the motor improvements observed

in other long duration studies, even in the presence of fewer sessions of motor learning in the

current work, the results support further study of neural feedback and its potential for recovery

of motor function in stroke survivors. In future work, expanding the sophistication of either or

both rt-fMRI and rt-fNIRS could hold the potential for further reducing the number of hours

of training needed and/or the degree of recovery. Important future work could include identi-

fying the unique contribution of the neural feedback versus the motor learning portions of the

protocol.
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sional motor cortex in patients with recovery of hand function. Neurology. 2005 IS THIS 2015??; 64:

1067–1069. https://doi.org/10.1212/01.WNL.0000154603.48446.36 PMID: 15781831

58. Cramer SC, Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neu-

rol. 2008; 63, 272–287. https://doi.org/10.1002/ana.21393 PMID: 18383072

59. Nadeau SE, Kobkin B, and LEAPS Team. The effects of stroke type, locus, and extent on long-term out-

come of gait rehabilitation. Neurorehabil Neural Repair. 2016; Aug 30(7) pp 6150625.

60. Winstein CJ, Stein J, Arena R, et al. Guidelines for Adult Stroke Rehabilitation and recovery: a guideline

for healthcare professionals from the American Heart Association/American Stroke Association. Stroke.

2017; 48(12).

61. Pundik S, McCabe JP, Hrovat K, Fredrickson AE, Tatsuoka C, Daly JJ. Recovery of post stroke proxi-

mal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by

baseline motor dysfunction severity. Front Hum Neurosci. 2015; 9:394–399. https://doi.org/10.3389/

fnhum.2015.00394 PMID: 26257623

62. Gervain J, Mehler J, Werker JF, et al. Near-infrared spectroscopy: A report from the McDonnell infant

methodology consortium. Developmental Cognitive Neuroscience. 2011; 1:22–46. https://doi.org/10.

1016/j.dcn.2010.07.004 PMID: 22436417

63. Sato H, Kiguchi M, Kawaguchi F, Makia A. Practicality of wavelength selection to improve signal-to-

noise ratio in near-infrared spectroscopy. NeuroImage. 2004; 21:1554–1562. https://doi.org/10.1016/j.

neuroimage.2003.12.017 PMID: 15050579

64. Strangman G, Franceschini MA, Boas DA. Factors affecting the accuracy of near-infrared spectroscopy

concentration calculations for focal changes in oxygenation parameters. NeuroImage. 2003; 18:865–

879. https://doi.org/10.1016/s1053-8119(03)00021-1 PMID: 12725763

65. Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimiz-

ing image sensitivity, resolution, and accuracy. NeuroImage. 2004; 23(Suppl 1):S275–S288.

66. Yuan K, Chen K, Wang X, Chu WC, Tong RK. BCI training effects on chronic stroke correlate with func-

tional reorganization in motor-related regions: A concurrent EEG and fMRI study. journal of neural engi-

neering. 202; https://doi.org/10.3390/brainsci11010056 PMID: 33418846

67. Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, et al. Enhanced performance by a

hybrid NIRS-EEG brain computer interface. NeuroImage. 2012; 59(1):519–529. https://doi.org/10.

1016/j.neuroimage.2011.07.084 PMID: 21840399

68. Shin J, von Lühmann A, Blankertz B, Kim D-W, Jeong J, Hwang H-J, et al. Open Access Dataset for

EEG+ NIRS Single-Trial Classification. IEEE Trans Neural Syst Rehabil Eng. 2017; 25(10):1735–1745.

69. Khan MJ, Hong MJ, Hong K-S. Decoding of four movement directions using hybrid NIRS-EEG brain

computer interface. Front Hum Neurosci. 2014; 8(1):244. https://doi.org/10.3389/fnhum.2014.00244

PMID: 24808844

70. Khan MJ, Hong K-S. Hybrid EEG–fNIRS-based eight-command decoding for BCI: application to quad-

copter control. Front Neurorobot. 2017; 11:6. https://doi.org/10.3389/fnbot.2017.00006 PMID:

28261084

PLOS ONE Real time fMRI and real time fNIRS BCI for stroke motor learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0250431 May 6, 2021 26 / 27

https://doi.org/10.1016/0022-510x%2895%2900003-k
http://www.ncbi.nlm.nih.gov/pubmed/7650532
https://doi.org/10.1126/science.270.5234.305
https://doi.org/10.1126/science.270.5234.305
http://www.ncbi.nlm.nih.gov/pubmed/7569982
https://doi.org/10.1161/01.str.28.4.722
https://doi.org/10.1161/01.str.28.4.722
http://www.ncbi.nlm.nih.gov/pubmed/9099186
https://doi.org/10.1006/nlme.1999.3934
http://www.ncbi.nlm.nih.gov/pubmed/10873519
https://doi.org/10.1016/j.apmr.2016.06.023
http://www.ncbi.nlm.nih.gov/pubmed/27519928
https://doi.org/10.1038/s41598-018-29751-6
http://www.ncbi.nlm.nih.gov/pubmed/30135496
https://doi.org/10.1212/01.WNL.0000154603.48446.36
http://www.ncbi.nlm.nih.gov/pubmed/15781831
https://doi.org/10.1002/ana.21393
http://www.ncbi.nlm.nih.gov/pubmed/18383072
https://doi.org/10.3389/fnhum.2015.00394
https://doi.org/10.3389/fnhum.2015.00394
http://www.ncbi.nlm.nih.gov/pubmed/26257623
https://doi.org/10.1016/j.dcn.2010.07.004
https://doi.org/10.1016/j.dcn.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/22436417
https://doi.org/10.1016/j.neuroimage.2003.12.017
https://doi.org/10.1016/j.neuroimage.2003.12.017
http://www.ncbi.nlm.nih.gov/pubmed/15050579
https://doi.org/10.1016/s1053-8119%2803%2900021-1
http://www.ncbi.nlm.nih.gov/pubmed/12725763
https://doi.org/10.3390/brainsci11010056
http://www.ncbi.nlm.nih.gov/pubmed/33418846
https://doi.org/10.1016/j.neuroimage.2011.07.084
https://doi.org/10.1016/j.neuroimage.2011.07.084
http://www.ncbi.nlm.nih.gov/pubmed/21840399
https://doi.org/10.3389/fnhum.2014.00244
http://www.ncbi.nlm.nih.gov/pubmed/24808844
https://doi.org/10.3389/fnbot.2017.00006
http://www.ncbi.nlm.nih.gov/pubmed/28261084
https://doi.org/10.1371/journal.pone.0250431


71. Daly JJ, Huggins JE. Brain-computer interface: current and emerging rehabilitation applications. Arch

Phys Med Rehabil. 2015; 96(3 Suppl):S1–7. https://doi.org/10.1016/j.apmr.2015.01.007 PMID:

25721542

72. Dewald JPA, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns

during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995; 118

(2), 495–510.

PLOS ONE Real time fMRI and real time fNIRS BCI for stroke motor learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0250431 May 6, 2021 27 / 27

https://doi.org/10.1016/j.apmr.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25721542
https://doi.org/10.1371/journal.pone.0250431

