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SUMMARY
Many tumors are hierarchically organized with a minority cell population that has stem-like properties and enhanced ability to initiate

tumorigenesis and drive therapeutic relapse. These cancer stem cells (CSCs) are typically identified by complex combinations of cell-sur-

facemarkers that differ among tumor types. Here, we developed a flexible lentiviral-based reporter system that allows direct visualization

of CSCs based on functional properties. The reporter responds to the core stem cell transcription factors OCT4 and SOX2, with further

selectivity and kinetic resolution coming from use of a proteasome-targeting degron. Cancer cells marked by this reporter have the

expected properties of self-renewal, generation of heterogeneous offspring, high tumor- andmetastasis-initiating activity, and resistance

to chemotherapeutics. With this approach, the spatial distribution of CSCs can be assessed in settings that retain microenvironmental

and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.
INTRODUCTION

The cancer stem cell model proposes that the parenchymal

cells of tumors are hierarchically organized (Clevers, 2011;

Magee et al., 2012). At the apex of the hierarchy are cells

that are uniquely capable of initiating and sustaining

tumorigenesis, a property that is tightly linked to their abil-

ity to self-renew. These are the cancer stem cells (CSCs),

which give rise to the phenotypically diverse and more

differentiated, but nontumorigenic, offspring that make

up the bulk of the tumor. Thus, cancer can be viewed as a

caricature of normal development (Pierce and Speers,

1988). With some notable exceptions, such as melanoma,

there is evidence supporting this model for many tumor

types (Magee et al., 2012), and a hierarchical structure is

even maintained to some extent in established tumor cell

lines cultured in vitro (Locke et al., 2005).

CSCs are thought to play a major role in driving disease

recurrence, due to the intrinsically enhanced therapeutic

resistance that results from high expression of multidrug

transporters, enhanced DNA damage checkpoint activa-

tion and repair mechanisms, and altered cell-cycle kinetics

in CSCs (Alison et al., 2012). Thus, understanding CSC

biologywill be critical to the development ofmore effective

cancer therapies. CSCs are most commonly identified by

fluorescence-activated cell sorting (FACS) analysis, through

combinations of cell-surface markers that enrich for cell
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populations with enhanced tumor-initiating activity

in vivo (Magee et al., 2012). However, the optimal marker

combinations are very dependent on the tissue and specific

cell of origin of the tumor, and even well-established

markers such as CD44+CD24�/lo for breast cancer and

CD133+ for brain tumors do not robustly distinguish

tumorigenic from nontumorigenic cells in all patient sam-

ples (Magee et al., 2012; Visvader and Lindeman, 2012).

Importantly, identification of CSCs by cell-surface marker

phenotype cannot readily be used to monitor CSCs

in situ in the tumor, with all the extrinsic microenviron-

mental cues intact. Furthermore, this approach cannot be

used for real-time assessment of CSC behavior at a single-

cell rather than a population level. These limitations have

impeded characterization of CSCs in preclinical models,

where the ability to observe the CSC directly, and monitor

the behavior of individual cells in time and space, would

give new insights into CSCs properties and their response

to therapy.

To address this need, we have developed a functional

imaging approach for CSC identification. The stem cell

phenotype in embryonic stem cells (ESCs) is maintained

by a central triad of master transcriptional regulators,

OCT4, SOX2, and NANOG, which promote stemness by

upregulating genes involved in pluripotency and self-

renewal while suppressing genes involved in differentia-

tion (Young, 2011). Indeed, ectopic expression of just three
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factors, OCT4, SOX2, and KLF4, is sufficient to induce

pluripotency and stem-like characteristics in differentiated

somatic cells (Schmidt and Plath, 2012), suggesting that

reactivation of stem cell transcription factors might be

an efficient mechanism for transformed cells to acquire

the ability to self-renew. We therefore hypothesized that

OCT4 and SOX2, the two most upstream regulators of

the stem cell phenotype, would be active inCSCs and could

be used to drive a reporter construct that would mark the

CSCs. In support of this hypothesis, embryonic stem-like

gene expression signatures are found to be enriched in

many aggressive tumors (Ben-Porath et al., 2008), and

myeloid leukemia stem cells have been shown to employ

a transcriptional program that ismore similar to embryonic

than adult stem cells (Somervaille et al., 2009). Promoter-

reporter constructs based on portions of the promoters of

OCT4, SOX2, or NANOG have been widely used in moni-

toring the reprogramming of somatic cells to the induced

pluripotent state (Hotta et al., 2009) but have had only

limited application in identifying CSCs (Levings et al.,

2009), where expression levels of these transcription fac-

tors are likely to be much lower. In addition, the relatively

large promoter regions used in such constructs invariably

contain response elements for additional transcription

factors, which may reduce reporter specificity.

To overcome these problems of sensitivity and speci-

ficity, we have generated a flexible, lentiviral-based stem-

cell reporter system in which six tandem repeats of a

composite OCT4/SOX2 response element are used to drive

expression of a fluorescent protein reporter. We show that

this reporter identifies a cell population in human breast

cancer cell lines and primary human tumor samples that

has the expected characteristics of CSCs, including enrich-

ment for tumor-initiating ability and increased resistance

to chemotherapeutics in vitro and in vivo. With this

approach, the CSCs can be directly imaged in tumors and

monitored by time-lapse photography for properties such

as phenotypic plasticity and response to therapeutics.
RESULTS

The SORE6 Reporter Marks a Minority Tumor Cell

Population that Is Enriched for Stem Cell

Transcription Factors

We designed a modular lentiviral reporter construct in

which six concatenated repeats of a composite SOX2/

OCT4 response element (SORE6) from the proximal hu-

man NANOG promoter (Kuroda et al., 2005) were coupled

to a minimal cytomegalovirus (CMV) promoter and used

to drive expression of reporter genes (Figure 1A). The

construct was designed using flexible Gateway multisite

recombinational cloning, so that a variety of different fluo-
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rescent proteins or other genes of interest can rapidly be

introduced into the construct if Att1-2 entry clones are

available. The majority of our experiments used a destabi-

lized copepod GFP-based reporter construct (SORE6-GFP),

in which the destabilization of the fluorescent reporter is

predicted to result in greater temporal resolution. Further-

more, since stem cells have lower-than-normal 26S protea-

somal activity (Vlashi et al., 2009), the destabilization

sequence adds further specificity for the stem cell. Where

indicated, we used destabilized mCherry as an alternative

reporter in cells that already constitutively expressed GFP.

To validate the approach, we first introduced the SORE6-

GFP reporter into mouse embryonic stem cells (mESCs),

which express SOX2 and OCT4 at high levels (Young,

2011). Although transduction efficiency was not high

in these unselected cultures, a significant fraction of the

mESCs showed strong expression of the reporter, which

was greatly reduced by 2 days of treatment with retinoic

acid to induce mESC differentiation (Figure 1B). Thus the

reporter behaved as expected in ESCs. We then showed

that two commonly used human breast cancer cell

lines (MCF7 and MCF10Ca1h) express detectable levels of

SOX2 and OCT4 mRNA in bulk culture, though the level

was two to four orders of magnitude lower than is seen in

the human teratocarcinoma line NT2 (Figure 1C). It should

be noted that theOCT4 primer pair we used does not detect

the OCT4 pseudogenes that can confound this type of

analysis (Atlasi et al., 2008; Lengner et al., 2008).

To determinewhether such low levels of SOX2 andOCT4

were sufficient to drive reporter expression, we transduced

the MCF10Ca1h breast cancer cell line with the SORE6

reporter. Following selection with puromycin to ensure

the presence of reporter construct in all cells, we found

the SORE6-GFP reporter to be expressed in a minority pop-

ulation of cells in the culture (SORE6+ cells), ranging from

�7%–15% depending on culture conditions (Figure 1D). A

constructwith theminimal CMVpromoter, but lacking the

SORE6 element, was used as a gating control. Experimental

overexpression of SOX2 and OCT4 in the MCF10CA1h

cells showed that the reporter can respond to either factor

individually, but strongest expression is seen when both

are present (Figure 1E). Conversely, simultaneous knock-

down of endogenous SOX2 and OCT4 with small inter-

fering RNA (siRNA) gave a greater reduction in reporter

expression than knockdown of either individually (Figures

S1A and S1B available online). On a single-cell level,

all cells that were positive for the SORE6-GFP reporter

expressed OCT4 (Figure S1C). As expected, SORE6+ cells

recovered by FACS sorting from MCF10Ca1h cells trans-

duced with SORE6-GFP showed substantial enrichment

(7- to 26-fold) for transcripts of the core stem cell transcrip-

tion factors OCT4, SOX2, and their downstream target

NANOG (Figure 1F). We next compared expression of the
hors



Figure 1. The SORE6 Reporter Marks a Minority Cell Population that Is Enriched for Stem Cell Genes
(A) Schematic of the lentiviral stem cell reporter. AttB1,B2,B4,B5 represent AttB sites for modular Gateway recombinational cloning. SORE
is the SOX2/OCT4 composite response element. For details of other elements, see Supplemental Experimental Procedures.
(B) FACS analysis showing activity of SORE6-GFP reporter in mouse ESCs with and without treatment with retinoic acid (RA) for 2 days to
induce differentiation.
(C) Quantitative RT-PCR assessing the expression of stem cell transcription factors in bulk culture of breast cancer cell lines, compared with
the human teratocarcinoma line NT2 as a positive control. Results are normalized to PPIA and to the lowest-expressing cell line for each gene.
(D) FACS analysis showing that the SORE6 reporter identifies a minority population in cultures of MCF10Ca1h cells. SSC, side scatter.
(E) FACS analysis showing effect on SORE6 reporter activity of overexpressing OCT4 and/or SOX2 in MCF10Ca1h cells.
(F) Quantitative RT-PCR to assess expression of master stem cell transcription factors in FACS-sorted SORE6+ and SORE6� cells, normalized
to sham-sorted cells as the control. Results are mean ± SEM (n = 3 technical replicates).
(G) Representation of SORE6+ cells in breast cancer cell lines of increasing malignancy. Results are mean ± SEM of three independent
experiments. *p < 0.05; **p < 0.01; ****p < 0.0001, Student’s t test.
See also Figure S1.
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Figure 2. SORE6+ Cells Are Enriched for the Ability to Self-Renew, Generate Heterogeneous Offspring, Undergo Asymmetric
Division, and Generate Tumorspheres
(A) FACS plots showing that sorted SORE6+ MCF10Ca1h cells can regenerate SORE6� cells in culture. P1, first passage after sort; P2, second
passage.

(legend continued on next page)
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reporter in several breast cancer cell lines representing

different degrees of malignancy. The relatively well-differ-

entiated, estrogen-receptor-positive breast cancer cell lines

MCF7 and MCF10Ca1h had �10% SORE6+ cells, while the

more malignant MCF10Ca1a and the highly aggressive

MDA-MB-231 cells had an increasingly higher representa-

tion of SORE6+ cells in the culture (Figure 1G). SOX2 and

OCT4 mRNA levels were correspondingly higher in the

more malignant cell lines (Figure S1D). Thus, despite the

low expression of stem cell transcription factors in bulk

culture, the SORE6 reporter is capable of identifying a

minority population of cells that express these factors in

several breast cancer cell lines.

The SORE6+ Population Can Self-Renew, Give Rise to

Phenotypically Heterogeneous Offspring, Divide

Asymmetrically, and Form Tumorspheres In Vitro

A central tenet of the CSC hypothesis is that CSCs can self-

renew and give rise to more committed daughter cells,

while the regeneration of CSCs from more differentiated

daughter cells is a much lower frequency event (Magee

et al., 2012). To address this issue, MCF10Ca1h cells were

sorted into SORE6+ and SORE6� populations and placed

in culture. The SORE6+ population rapidly regenerated

a SORE6� cell population, which increased with passage

in culture until the original equilibrium state was restored

by passage �2–3 (Figures 2A and 2B). In contrast, SORE6�
cells were largely incapable of regenerating a SORE6+ pop-

ulation (Figure 2B). MCF10Ca1h tumors have differenti-

ated luminal and myoepithelial components, consistent

with the CSC having arisen from a bipotential progenitor

(Santner et al., 2001). As expected, the SORE6� daughters

arising from SORE6+ cultures expressed the differentiated

luminal marker cytokeratin 8 (CK8) or the basal marker cy-

tokeratin 14 (CK14), while the SORE6+ cells were negative
(B) Fluorescent images showing sorted SORE6+ or SORE6� MCF10Ca1
(blue), and SORE6+ cells are green.
(C) MCF10Ca1h culture from (B) immunostained for cytokeratin 5 (CK5
(D) Freeze frames from the time-lapse Movie S1 showing SORE6+ cel
SORE6+ cells followed by time-lapse videomicroscopy. In frame 1 (t =
(cluster 1) and the double-headed arrow marks a doublet of SORE6+ an
after undergoing several symmetric self-renewing divisions, has beg
Cluster 2 has now generated a colony on the right that is predominant
the SORE6+ cells. Frame 3 (t = 94 hr) and frame 4 (t = 112 hr) show tha
SORE6+ cells in cluster 1. The group of predominantly SORE6+ cells mark
outside of the field. Scale bar, 200 mm.
(E) Asymmetric mitoses in FACS sorted SORE6+ and SORE6� or sham-
metrically distributed BrdU-labeled DNA in a pair of mitotic daughte
Results are mean ± SEM for three independent experiments, each eva
(F) Tumorsphere formation by sorted SORE6+ and SORE6� or sham-so
experiments). Representative phase-contrast images of tumorspheres
(G) Fluorescent image of large tumorsphere derived from sorted SORE
See also Figures S2 and S3 and Movie S1.
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for these markers but showed some positivity for CK5

(Figure 2C), a marker of more primitive progenitors (Kabos

et al., 2011). Thus, the SORE6+ cells themselves are rela-

tively undifferentiated but can give rise to differentiated

offspring of both mammary epithelial lineages. Time-

lapse videomicroscopy clearly showed the appearance

of SORE6� cells in colonies that grew from SORE6+ cells

(Figure 2D; Movie S1).

In somatic stem cells, self-renewal is often associated

with the ability to undergo asymmetric cell divisions, in

which one daughter cell retains the property of stemness,

while the other is committed to differentiate (Magee

et al., 2012). Asymmetric division with respect to cell fate

can involve asymmetric segregation of newly synthesized

DNA strands (Conboy et al., 2007), and this type of asym-

metric division has been phenotypically associated with

a hierarchical organization and cell fate in lung cancer

models (Pine et al., 2010). By assessing the frequency of

asymmetric distribution of bromodeoxyuridine (BrdU)-

labeled chromatin between mitotic daughters, we showed

that SORE6+ cells had a higher frequency of asymmetric

division than SORE6� or sham-sorted cultures (Figure 2E).

Another property of normal and malignant stem cells

is the ability to proliferate and form large sphere-like

structures under anchorage-independent conditions

(Shaw et al., 2012). We showed that SORE6+ cells from

MCF10Ca1h cultures were enriched for the ability to

form large tumorspheres (Figure 2F) and that each tumor-

sphere contained just one or a few SORE6+ cells (Figure 2G),

consistent with previous observations that such spheres

contain an average of one sphere-forming cell (Shaw

et al., 2012). Proteasomal blockade with MG-132 to slow

degradation of the destabilized GFP reporter moiety

led to an �2-fold increase in the proportion of SORE6+

cells in MCF7 cultures and a corresponding decrease in
h cells after 5 days in culture. Cell nuclei are visualized with DAPI

), cytokeratin 8 (CK8), or cytokeratin 14 (CK14). Scale bar, 20 mm.
ls generating SORE6� offspring. MCF10Ca1h cultures enriched for
6 hr), the single-headed arrow marks a small cluster of SORE6+ cells
d SORE6� cells (cluster 2). Frame 2 (t = 78 hr) shows that cluster 1,
un to generate SORE6� cells around the periphery of the colony.
ly SORE6�, suggesting the SORE6� cells may proliferate faster than
t when cluster 2 expands to contact cluster 1, there is a rapid loss of
ed by the dashed line in the top left of frame 4 has migrated in from

sorted MCF10Ca1h cultures. Representative z stack image of asym-
r cells and quantitation of asymmetric mitoses as % total mitoses.
luating 30–50 mitoses/condition. ***p < 0.001; Student’s t test.
rted MCF10Ca1h cells. Results are mean ± SEM (three independent
are shown.
6+ MCF10Ca1h cells. Scale bar, 20 mm.
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Table 1. In Vivo Limiting Dilution Assay for MCF10Ca1h Cells

Cell Population

No. of Cells Implanted/Site

1/CSC Frequency 95% CI

5,000 2,500 500 100

Tumor Incidence

Sham sort 5/6 4/6 1/6 1/6 2,343 4,564–1,203

SORE6� 2/6 1/6 0/6 0/6 14,308 44,186–4,633

SORE6+ 6/6 5/6 4/6 3/6 722 1,497–438

The indicated number of cells was implanted orthotopically into nude mice, and tumor incidence was assessed after 3 months. CSC frequencies were calcu-

lated using ELDA software. CI, confidence interval.
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tumorsphere-forming efficiency of the SORE6+ fraction

(Figure S2), confirming that the destabilizing sequence

on the GFP significantly increases the specificity of the

reporter. Overall, the data show that the SORE6 reporter

marks cells that are relatively undifferentiated, with

the ability to self-renew, divide asymmetrically, and give

rise to phenotypically heterogeneous, more differentiated

offspring, all of which are important properties of CSCs.

Breast cancer CSCs have been identified by cell-surface

marker combinations, most commonly CD44+CD24lo/�,
as well as by expression of ALDH1 (Visvader and Linde-

man, 2012), so we investigated the status of these CSC

markers in our SORE6+ population. We found no enrich-

ment of the CD44+CD24� marker combination in our

SORE6+ fractions and substantial though variable overlap

with the ALDH1-positive population (Figure S3). The

overlap between the CD44+CD24� marker combination

and ALDH positivity has previously been shown to be

very low (Ginestier et al., 2007), suggesting that existing

methods for detecting CSCs are not fully concordant.

Furthermore, the CD44+CD24� phenotype correlated

more closely with basal phenotype than with tumorige-

nicity in breast cancer cell lines (Fillmore and Kuperwasser,

2008). It is becoming apparent that there is heterogeneity

even within stem cell populations (Schober and Fuchs,

2011), so it is possible that the different methods enrich

different subpopulations of CSCs.

SORE6+ Cells Are Enriched for Tumor- and

Metastasis-Initiating Activity In Vivo

The gold-standard assay for a CSC is the ability to initiate

and sustain tumorigenesis in vivo.We performed an in vivo

limiting dilution assay in the MCF10Ca1h model to assess

the relative tumor-initiating ability of SORE6+ and SORE6�

cells following orthotopic implantation into nude mice,

and we observed a �203 enrichment of tumor initiating

capacity in the SORE6+ compared with the SORE6�

cell populations (Table 1). Similar enrichment was seen

with two additional breast cancer models, MCF7 cells (es-

trogen-receptor-positive breast cancer) and MDA-MB-231
160 Stem Cell Reports j Vol. 4 j 155–169 j January 13, 2015 j ª2015 The Aut
cells (triple-negative breast cancer) (Table 2). To assess

long-term self-renewal and tumor-initiating ability, cells

were recovered from tumors that arose at each passage

and were resorted into SORE6+ and SORE6� fractions and

reimplanted for the subsequent serial in vivo passage.

SORE6+ cells sustained the ability to initiate tumorigenesis

through multiple serial transplant generations in both

the MCF10Ca1h and MDA-MB-231 models (Figure 3A).

MCF10Ca1h tumors characteristically show a heteroge-

neous histology with areas of clear cells along with well

differentiated structures and areas of poorly differentiated

pleomorphic cells (Santner et al., 2001; Tang et al., 2003),

and tumors derived from MCF10Ca1h SORE6+ cells

after three serial transplant generations showed the same

histopathology as the parental cell line (Figure 3B). The

occasional small tumors that arose from implantation of

SORE6neg Linneg cells were invariably found to contain a

small population (0.2%–0.3%) of SORE6+ cells, suggesting

either that the FACS sort was not 100% efficient or

that SORE6+ cells may be generated from SORE6� cells

as a low-frequency event in vivo. Confocal images of

MCF10Ca1h tumors confirmed that the SORE6+ cells

were a minority population in vivo and showed individual

SORE6+ cells or small clusters of SORE6+ cells scattered

through the tumor parenchyma (Figure 3C). A similar

pattern was seen in MDA-MB-231 tumors, where the

CSCs tended to be localized in clusters (Figure 3D). Note

that for the MDA-MB-231 model, the stem cell reporter is

red (SORE6-dsmCherry), since the tumor cells were already

constitutively marked with GFP.

It has been proposed that a subset of CSCs may be intrin-

sically migratory and/or invasive (Brabletz et al., 2005).

Using aMatrigel invasion assay, we found that SORE6+ cells

from the nonmetastaticMCF10CA1h andmetastaticMDA-

MB-231 cell lines were significantly more invasive than

SORE6� or sham-sorted cells (Figure 3E). Furthermore,

SORE6+ cells were strongly enriched for the ability to

initiate metastases in the lung in vivo following injection

into the tail vein (Figure 3F). Individual metastases that

formed from SORE6+ cells showed just a small fraction of
hors



Table 2. Enrichment for Tumor-Initiating Cells in SORE6+ Fractions from Three Human Breast Cancer Cell Lines

Cell Line Breast Cancer Subtype CSC Frequency SORE6� CSC Frequency SORE6+ Enrichment Factor p Value

MCF7-EP ER+ 1/9,097 >1/430 >21.1 1.2 3 10�09

MCF10Ca1h ER+ 1/14,308 1/722 19.8 6.9 3 10�08

MDA-MB-231 TNBC 1/549 1/58 9.5 4.5 3 10�08

Tumor cells at different dilutions were implanted orthotopically into nude mice, and tumor incidence was assessed after 1–3 months, depending on the

model. CSC frequencies were calculated using ELDA software. p value is for chi-square test. ER, estrogen receptor; TNBC, triple-negative breast cancer.
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SORE6+ cells, with the bulk of the cells in the lesion having

differentiated to a SORE6� phenotype (Figure 3G). As was

seen with the primary tumors, the rare metastases that

formed from SORE6� cells also showed the presence of

SORE6+ cells, reflecting either incomplete sorting or

phenotypic plasticity. In either case, it appears that the

development of a metastasis is invariably associated with

the presence of SORE6+ cells.

SORE6+ Cells Are Relatively Resistant to

Chemotherapeutics

CSCs are intrinsically more resistant to chemotherapeutics

(Alison et al., 2012). On treatment of MCF10Ca1h cultures

with doxorubicin (50 nM) or paclitaxel (25 nM) for 2 days,

extensive cell death was observed among SORE6- cells (Fig-

ure 4A; Movies S2 and S3), and the proportion of SORE6+

cells in the culture increased dramatically (Figure 4B).

The effect of paclitaxel was dose dependent, with greater

enrichment of SORE6+ cells at higher doses (Figure 4C).

Similar results were seen in vivo, where treatment of mice

bearing MCF10Ca1h tumors with the chemotherapeutic

Cytoxan led to a substantial increase in the proportion of

SORE6+ cells in the tumors after three cycles of treatment

(Figures 4D and 4E).

The SORE6 Reporter Marks a Minority Population of

Cells with Tumor-Initiating Activity in Primary

Human Tumor Cell Cultures

All the experiments to this point were donewith well-estab-

lished human breast cancer cell lines. To test whether the

reporter could be used to transduce primary tumor cell cul-

tures, we acquired eight primary human breast cancer sam-

ples of which three successfully generated explant cultures

and patient-derived xenografts. Explanted tumor cell cul-

tures were transduced with SORE6 or minCMVp control

reporters and briefly selected with puromycin. As with the

cell lines, a minority of cells (7%–14%) in the primary cul-

tures were SORE6+ (Figure 5A). Sorted SORE6+ cells placed

in culture regenerated a significant population of SORE6�

cells within 3 days, while the SORE6� cells failed to regen-

erate SORE6+ cells (Figure 5B). On implantation in athymic

nude mice, the sorted SORE6+ cells were significantly more
Stem Ce
tumorigenic than SORE6� cells for all three primary samples

(Figure 5C). Finally, confocal images of freshly excised xeno-

graftedCBOT01 tumors arising fromSORE6+ cells showclus-

ters of SORE6+ cells localized primarily at the edge of the tu-

mor (Figures 5D and 5E). Overall, the data suggest that the

SORE6 reporter can identify a subpopulation of tumor cells

that are enriched for CSC-like properties in primary cultures

of human breast cancer as well as in established cell lines.
DISCUSSION

It is increasingly appreciated that a tumor represents

a whole ecosystem of mutually interacting cellular and

acellular components that generate a continually evolving

tumor microenvironment (Quail and Joyce, 2013). Many

aspects of this dynamic and complex microenvironment,

such as hypoxia and inflammation, can modulate CSC

properties and response to therapy (Conley et al., 2012;

Cui et al., 2013; Korkaya et al., 2012) and function in

different spatial contexts within the tumor. Thus, it would

be desirable to observe the behavior of the CSCs in their

native habitat with all microenvironmental cues intact.

Here, we have developed and validated a flexible and

powerful lentiviral-based reporter system for direct visuali-

zation, quantitation, and isolation of the cells with CSC

properties in multiple preclinical tumor models in vitro

and in vivo. Cells detected by thismethod are relatively un-

differentiated, can self-renew and give rise to phenotypi-

cally heterogeneous offspring, show enhanced asymmetric

division, and are enriched for tumor-initiating and metas-

tasis-initiating ability in vivo. Importantly, the marked

cells are also relatively resistant to chemotherapeutics, sug-

gesting that a highly clinically relevant tumor cell subpop-

ulation is being detected with this reporter.

Our approach depends on the presence of the stemness

transcription factors SOX2 and/or OCT4 in the CSC.

SOX2 is expressed in immature cells of many self-renewing

epithelial tissues in the adult animal (Arnold et al., 2011),

and it has been detected in a variable percentage of cells

in many malignant tissues, some of which clearly depend

on SOX2 for their tumor-initiating ability (Gangemi
ll Reports j Vol. 4 j 155–169 j January 13, 2015 j ª2015 The Authors 161
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et al., 2009). Detection of OCT4 is complicated by the

existence of alternate transcripts and pseudogenes, and

evidence is convincing that OCT4 is not expressed in adult

somatic stem cells (Lengner et al., 2008). However, ectopic

expression of OCT4 in the intestinal epithelium and

epidermis blocks differentiation and leads to uncontrolled

proliferation of progenitor cells (Hochedlinger et al., 2005),

and forced overexpression of OCT4 in primary breast

epithelial cells generated tumor-initiating cells (Beltran

et al., 2011), suggesting that reactivation of epigenetically

silenced OCT4 would be a parsimonious route to tumor

formation. Ionizing radiation was recently shown to repro-

gram differentiated breast cancer cells into cells with

CSC characteristics associated with reexpression of OCT4

and SOX2, further supporting an intimate connection

between stemness and OCT4/SOX2 expression (Lagadec

et al., 2012). So far, our reporter has identified a minority

cell population in all the primary and established breast

cancer cells we have studied, suggesting that the presence

of functional SOX2/OCT4 in a subpopulation of tumor

cells may be a relatively widespread phenomenon.

Complementary approaches to visualizing the CSCs

have taken advantage of different biological properties of

the tumor hierarchy, such as low expression of 26S protea-

some activity in CSCs (Vlashi et al., 2009) or high expres-

sion of LET7C in differentiated cells (Ibarra et al., 2007).

Our construct uses a tandemly repeated OCT4/SOX2

response element to drive reporter expression, but our

fluorescent protein also incorporates the ornithine decar-

boxylase degron sequence that is targeted by the 26S pro-

teasome (Li et al., 1998), and this feature confers additional

specificity for the CSCs. Despite the relatively low expres-

sion of SOX2 and OCT4 in CSCs, we have shown that

our reporter can be used to detect and localize CSCs in

freshly excised tumors and metastasis-bearing lungs. In

principle, it should be possible to extend the approach to

intravital imaging. Such a strategy will allow further inves-
Figure 3. SORE6+ Cells Are Enriched for Tumor- and Metastasis-In
(A) Tumor-initiating ability of SORE6+ cells is maintained over multip
(B) H&E-stained sections showing histology of parental MCF10Ca1h
passages in vivo. Scale bar, 50 mm.
(C) Confocal z stack image showing spatial localization of SORE6+ cells
marked in red, and SORE6+ cells are green. Arrows point to SORE6+ ce
(D) Confocal z stack image showing spatial localization of SORE6
constitutively marked in green, while SORE6+ cells are red. Arrows ind
associated with nuclei and probably represent dead cell debris. Scale
(E) Matrigel invasion assays using sorted SORE6+ and SORE6� and sham
mean ± SEM (n = 3 technical replicates). Representative images are s
(F) Lung metastases formed following tail-vein injection of sorted SOR
Results are shown as median ± interquartile range for n = 5 mice/gro
(G) Confocal z stack image of a lung metastasis derived from a SORE6+ M
that are positive for the SORE6 reporter. The tumor cells are constitut
Scale bar, 200 mm.
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tigation of the location of CSCs in different tumors, the

nature of CSC niches, interactions between CSCs and their

microenvironment, and longitudinal monitoring ofmigra-

tion and survival characteristics of CSCs, both in the unper-

turbed state and in response to therapeutic intervention.

Importantly, the tumor cell subpopulation marked by

our reporter is considerably more resistant to conventional

chemotherapy than the bulk population, and the reporter

systemhas the potential to be adapted to a high throughput

format to screen for drugs that target these resistant cells.

Although the hierarchical organization of normal tissues

is relatively rigid and unidirectional, there is evidence for

greater plasticity in the organizational structure of tumors

(Magee et al., 2012), and this plasticity will pose challenges

for effective therapy if non-CSCs can reacquire CSC attri-

butes.Withour reporter system, itwillbepossible toobserve

stem cell plasticity directly, whether driven by intrinsic

mechanisms, such as stochastic fluctuations in gene expres-

sion, or throughextrinsicmechanisms, suchas inductionof

anepithelial-to-mesenchymal transition (Mani et al., 2008),

irradiation (Lagadec et al., 2012), or inflammation (Korkaya

et al., 2011; Schwitalla et al., 2013). The ability to observe

the CSCs directly and in real time as they interact with

neighboring cells or environmental components should

generate new insights and suggest testable hypotheses

regarding the properties of this critically important cell

population in many preclinical cancer model systems.
EXPERIMENTAL PROCEDURES

Cell Culture and Treatment with Chemotherapeutics
The MCF10CA1h and MCF10Ca1a cell lines were obtained from

the Karmanos Cancer Institute Cell Line Resource and cultured in

Dulbecco’s modified Eagle’s medium (DMEM)/F12 with 5% horse

serum (Santner et al., 2001). Early-passage MCF7 cells were ob-

tained fromDr. Michael Brattain and were cultured in Eagle’s min-

imum essential medium, 10% fetal bovine serum (FBS) with 2 mM
itiating Ability In Vivo and Can Be Visualized In Situ
le transplant generations.
tumors and tumors generated by SORE6+ cells after three serial

in freshly excised MCF10Ca1h tumors. Tumor cells are constitutively
lls. Scale bar, 100 mm.
+ cells in MDA-MB-231 tumors. Note that here, tumor cells are
icate yellow SORE6+ tumor cells. In this image, the red dots are not
bar, 200 mm (left) or 40 mm (right).
-sorted cells from MCF10Ca1h and MDA-MB-231 cultures. Results are
hown for the MDA-MB-231 cells. Scale bar, 100 mm.
E6+ and SORE6� and sham-sorted cells from MDA-MB-231 cultures.
up. *p < 0.05, two-way ANOVA.
DA-MB-231 cell, showing rare yellow cells (some marked by arrows)
ively marked with GFP, while the SORE6 reporter drives dsmCherry.
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Figure 4. SORE6+ Cells Are Relatively Resistant to Chemotherapeutics
(A) Cultures of MCF10Ca1h cells after 2 days of treatment with doxorubicin (50 nM) or paclitaxel (25 nM) showing selective killing of
SORE6� cells. See also Movies S2 and S3. Scale bar, 200 mm.
(B) Effect of treatment with doxorubicin (Dox; 50 nM) or paclitaxel (Pac; 25 nM) on the relative representation of SORE6+ cells in the
MCF10Ca1h culture assessed by flow cytometry after 48 hr. Results are mean ± SEM for three technical replicate determinations.
(C) FACS profile of MCF10Ca1h cells after 4 days of treatment with 25 nM or 50 nM paclitaxel (Pac), together with quantitation of SORE6+

cells by FACS analysis. Results are mean ± SEM for three technical replicates.
(D) Schematic for treatment of MCF10Ca1h tumors with Cytoxan.
(E) The effect of Cytoxan on SORE6+ cell representation in tumors from Cytoxan- or vehicle-treated mice. Results are median ± interquartile
range for n = 5–8 mice/group.
See also Movies S2 and S3.
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glutamine and 1% nonessential amino acids. MDA-MB-231 cells

from the American Type Culture Collection (ATCC) were cultured

in DMEM with 10% FBS. The mESC line R1/E from ATCC was

cultured in 0.1% gelatin-coated cell culture plates with mESC

growth medium containing KO-DMEM, 15% FBS, and 100 mM

nonessential amino acids, 0.1 mM 2-mercaptoethanol, and 2 mM

L-glutamine plus 1,000 U/ml leukemia inhibitory factor (Milli-

pore). Differentiation of R1/E cells was induced by treatment with

5 mM retinoic acid for 4 days and confirmed by visual assessment
164 Stem Cell Reports j Vol. 4 j 155–169 j January 13, 2015 j ª2015 The Aut
of cell morphology. Where indicated, tumor cells were treated

with 50 nM doxorubicin or 25–50 nM paclitaxel for 2 days prior

to analysis by flow cytometry. Details of primary breast cancer

cultures are given in Supplemental Experimental Procedures.

Generation of Lentiviral Reporter Constructs
A stem cell enhancer minigene was designed, based on the obser-

vation that the proximal NANOG promoter region has highly

conserved composite binding element for SOX2 and OCT4 with
hors
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the sequence 50-TTTTGCATTACAATG-30 that is essential for prop-
erly regulated expression of NANOG in ESCs (Ibarra et al., 2007). A

minigene containing six tandem repeats of this composite element

with eight bases of native flanking sequence on either side of the

element, was synthesized by Integrated DNA Technology and

named ‘‘SORE6’’ for SOX2/OCT4 response element3 6. Lentiviral

reporter constructs were generated byGatewayMultisite LR recom-

binational cloning using the manufacturer’s protocols. Individual

entry clones were generated for the SORE6 minigene, a minimal

CMV promoter (minCMVp), and two destablized fluorescent pro-

teins, dscopGFP and a new destabilized form of the monomeric

Cherry fluorescent protein (dsmCherry) that we constructed

by addition of the PEST destabilization sequence (Corish and

Tyler-Smith, 1999). Entry clones were assembled into pDest-663,

a lentiviral destination vector based on the pFUGW lentiviral back-

bonewith puromycin selection. A detailed description ofminigene

sequence, generation of the Entry clones and the recombinational

cloning strategy is given in Supplemental Experimental Proce-

dures. minCMVp-GFP and minCMVp-mCherry constructs in

which the SORE6 element was omitted serve as matched controls

to allow assessment of background expression of fluorescent pro-

teins due to the minimal CMV promoter alone.
Lentivirus Generation and Cell Transduction
Replication-defective infectious lentivirus was generated using

the pPACK1 Lentiviral Vector Packaging Kit (Systems Biosciences).

For transduction with lentiviral constructs, exponentially growing

target cells were exposed to viral supernatants at an MOI of 1

for 24 hr with 5 mg/ml Polybrene. Transduction efficiency was

typically >80%. Transduced cultures were either selected with

2 mg/ml puromycin for 5 days or the 5% brightest cells in the

SORE6+ gatewere collected by FACS sorting and put back in culture

to recover the original population equilibrium. Transduced mouse

embryonic stem cells were used without further selection since

puromycin induced differentiation. In vivo experiments were

performed within 2–3 weeks of transduction.
In Vivo Tumorigenesis and Metastasis
All animal studies were done under a protocol (LC-070) approved

by the National Cancer Institute, in accordance with Association

for Assessment and Accreditation of Laboratory Animal Care

guidelines. To determine tumor-initiating capacity in different

cell populations, in vivo limiting dilution assays were performed

and CSC frequency was calculated using extreme limiting dilution

analysis (ELDA) (Hu and Smyth, 2009). Breast cancer cell lines or

primary cultures were sorted, where applicable, and suspended

in serum-free DMEM/F12 medium with 50% of growth factor

reduced Matrigel (BD Bioscience), and 100–5,000 cells were surgi-

cally implanted into the #2 and #7 mammary fat pads of 6- to 8-

week-old female athymic NCr nu/nu mice (Animal Production

Program, Frederick National Laboratory for Cancer Research, Fred-

erick, MD). MCF7 cells were inoculated into ovariectomized mice

that had been implanted with 1.7 mg slow-release estradiol pellets

(Innovative Research). Tumorsweremeasuredweekly with calipers

and all mice on a given experiment were euthanized with CO2

before the tumor diameter of the largest tumor reached 2 cm (typi-

cally 2–3 months for MCF10Ca1h and MCF7EP tumors and 1–
Stem Ce
2 months for MDA-MB-231 tumors). To determine the metastatic

potential of MDA-MB-231 cells, 5-week-old female nude mice

were injected intravenously with 100,000 tumor cells in 0.2 ml

of DMEM in the tail vein. The mice were euthanized 8 weeks after

tumor cell inoculation, and lungs were harvested for fluorescent

imaging or for histologic assessment of metastatic burden on

hematoxylin and eosin (H&E)-stained sections of formalin-fixed

inflated lungs.

Cell Recovery from Xenografted Tumors
Freshly excised tumors were minced with scalpel blades, and

tumor pieces were digested with DMEM/F12 medium containing

5%horse serum, 1mg/ml collagenase I (Sigma), and 1mg/ml colla-

genase D (Sigma) for 2 hr at 37�C. Cells were then washed with

Hank’s balanced salt solution (HBSS) (Invitrogen) and suspended

in 0.05% Trypsin/EDTA (Invitrogen) for 5 min at room tempera-

ture (RT). During trypsinization, cells were passed through 18G,

22G, 27G needles followed by passage through a 40 mm cell

strainer (BD Bioscience). Following addition of Trypsin Neutralizer

Solution (Invitrogen), cells were collected by brief centrifugation.

Cell pellets were washed with HBSS, suspended in DMEM/F12

medium, and analyzed by flow cytometry or FACS sorted.

Flow Cytometry and Fluorescence-Activated Cell

Sorting
Subconfluent cultured cells were collected by trypsinization and

cell pellets were washed three times with PBS prior to resuspension

in PBS with 4% fetal bovine serum. Flow cytometry was done on a

FACSCalibur (Becton Dickinson) for GFP expression alone or an

LSR II (BD Biosciences) for detectingmCherry and GFP expression,

and data were analyzed using FlowJo software (Tree Star). Cells

transduced with the minCMVp-GFP or minCMVp-mCherry lenti-

viruseswere used asmatchednegative controls for gatingpurposes,

and cells were defined as SORE6+ if the fluorescence in the FL1

channel exceeded that of 99.9% of the cells transduced with con-

trol virus. For FACS, cells transduced with SORE6-GFP were sorted

using a BD FACS Aria IIu Cell Sorter (BD Bioscience), while cells

transducedwith SORE6-mCherrywere sortedusing aMoFloAstrios

High Speed Sorter (Beckman Coulter). Again, minCMVp-GFP or

minCMVp-mCherry were negative controls for gating, and typi-

cally, the top 5% of cells in the SORE6+ gate were collected. Cells

recovered from tumors were stained with 20 ml /106 cells of APC

Mouse Lineage Antibody Cocktail (BD Bioscience) for 30 min at

RT, washed with HBSS, and analyzed by flow cytometry or sorted

by FACS as above. For analysis of cell-surface marker profiles, cells

were labeled with allophycocyanin-conjugated-CD44 and phyco-

erythrin-conjugatedCD24 antibodies (BD Pharmingen). For all an-

alyses and sorts, dead cells were eliminated by 7AAD staining.

Time-Lapse Videomicroscopy and

Immunofluorescence
A total of 2,500–50,000 cells were seeded in 12-well plates. Nine

images per well were acquired every 2–3 hr for a period of

2–5 days, using the IncuCyteFLR live-cell imaging system (Essen

Instruments) equipped with 203 objective lens, which can take

high-definition phase-contrast and green fluorescence images

in real time. Images were analyzed using IncuCyte Software. For
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immunofluorescent staining, 10,000–20,000 MCF10Ca1h cells

were plated onto Borosilicate Chambered Coverglass (Lab-Tek)

for 1–5 days in regular growth medium and then fixed and immu-

nostained for cytokeratin markers as detailed in Supplemental

Experimental Procedures.

Asymmetric Division
MCF10Ca1h transduced with Sore6-GFP were cultured in 1 mM

BrdU (Sigma) containing cell culturemedium for 2 weeks to ensure

all cells were labeledwith BrdU. Cells were then sorted forGFP-pos-

itive and GFP-negative cells. Sorted cells were cultured for two cell

divisions in the absence of BrdU (the chase) and then collected by

mitotic shake-off for analysis of mitotic pairs with asymmetrically

distributed BrdU label as described previously (Pine et al., 2010),

with more details in Supplemental Experimental Procedures.

Tumorsphere Formation and Cell Invasion Assays
To assess tumorsphere-forming ability, single-cell suspensions of

tumor cells were plated in ultra-low-attachment 24-well plates

(Corning) at 2,500 cells/well in regular growth medium. After 5–

7 days, wells were examined under an inverted microscope at 3

40 magnification, and the number of spheres of >100 mm in diam-

eter were counted for a total of 15–20 independent fields per well

and three replicate wells per condition. Confocal images of repre-

sentative tumorspheres were acquired using a Zeiss 710 confocal

microscope (Carl Zeiss). Cell invasion assays were carried out using

the Growth Factor Reduced BDMatrigel Invasion Chamber (8 mm,

BD Biosciences). A total of 5,000 cells were plated in each chamber

in normal growthmedium for 3 days. The cells on the upper side of

themembranewere removedwhile the cells on the lower side were

methanol-fixed and stainedwith 0.05% crystal violet. The invaded

cells were counted under an inverted microscope at 320 magnifi-

cation, for a total of 20–25 independent fields per well and three

replicate wells per condition.

Confocal Imaging
Confocal imaging of freshly excised tumors and lungs was done

using a Zeiss 780 Confocal microscope setup with 405, 488, and

561nm lasers. Confocal images were sequentially acquired with

Zeiss ZEN software on a Zeiss LSM Confocal system (Carl Zeiss).

For the deeper optical sections (250 mm) in excised tumors, a Zeiss

710 upright confocal microscope was used.
Figure 5. The SORE6 Reporter Marks a Minority Population with
Human Breast Cancer
(A) Explant cultures of three independent primary human breast canc
control lentivirus, and the SORE6+ population was assessed by FACS.
(B) FACS plots showing that SORE6+ cells from the primary human b
SORE6� cells after 3 days in culture.
(C) Relative enrichment of SORE6+ cells for tumor-initiating ability in
of sorted cells in vivo. Two independent experiments were performed.
software.
(D) Confocal z stack image (50 mm depth) of freshly excised xenogra
showing green SORE6+ cells in clusters at the edge of the tumor (arro
(E) Deeper (250 mm) confocal z stack image showing SORE6+ cells (arr
harmonic generation, since DAPI could not penetrate to sufficient de

Stem Ce
Statistical Analysis
Statistical analyses were done using the statistical tools in Graph-

Pad Prism5.0 (GraphPad Software). Specific tests used are indicated

in the text. p < 0.05 was considered significant.

Additionalmethodological details can be found in Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and three movies and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.11.002.
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