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AbstrAct
Background To assess the specificity of an algorithm 
designed to detect look-alike/sound-alike (LASA) 
medication prescribing errors in electronic health record 
(EHR) data.
Setting Urban, academic medical centre, comprising 
a 495-bed hospital and outpatient clinic running on 
the Cerner EHR. We extracted 8 years of medication 
orders and diagnostic claims. We licensed a database 
of medication indications, refined it and merged it with 
the medication data. We developed an algorithm that 
triggered for LASA errors based on name similarity, the 
frequency with which a patient received a medication 
and whether the medication was justified by a diagnostic 
claim. We stratified triggers by similarity. Two clinicians 
reviewed a sample of charts for the presence of a true 
error, with disagreements resolved by a third reviewer. 
We computed specificity, positive predictive value (PPV) 
and yield.
Results The algorithm analysed 488 481 orders and 
generated 2404 triggers (0.5% rate). Clinicians reviewed 
506 cases and confirmed the presence of 61 errors, for 
an overall PPV of 12.1% (95% CI 10.7% to 13.5%). It 
was not possible to measure sensitivity or the false-
negative rate. The specificity of the algorithm varied as a 
function of name similarity and whether the intended and 
dispensed drugs shared the same route of administration.
Conclusion Automated detection of LASA medication 
errors is feasible and can reveal errors not currently 
detected by other means. Real-time error detection is 
not possible with the current system, the main barrier 
being the real-time availability of accurate diagnostic 
information. Further development should replicate this 
analysis in other health systems and on a larger set of 
medications and should decrease clinician time spent 
reviewing false-positive triggers by increasing specificity.

IntroductIon
A wrong-drug error occurs if a patient 
receives one drug when a different drug 
was intended. Wrong-drug errors are 
common, costly and harmful.1–4 It is diffi-
cult to know precisely how often they 
occur because, like most medical errors, 
the majority are not reported. Evidence 
from several sources suggests the rate 
is roughly one per thousand prescrip-
tions.2 5 6 One identifiable cause of these 
errors is similarity between drug names 

(eg, hydroxyzine/hydralazine, Kapidex 
(dexlansoprazole)/Casodex (bicaluta-
mide), Bidex (guaifenesin)/Videx (didano-
sine) etc).7–9 Similarity in packaging 
can also be a cause, as can being stored 
adjacent to one another on a pharmacy 
shelf.10 In computerised physician order 
entry (CPOE) systems, poor user inter-
face designs can cause a prescriber to pick 
the wrong drug from among adjacent 
items on a drop-down menu, and trun-
cation of names in CPOE text fields can 
lead to errors.11–13 The severity of harm 
of a wrong-drug error depends on the 
toxicity of the drug received, the neces-
sity of the drug that the patient did not 
get, the frailty of the patient, the timing of 
the discovery of the error and the reversi-
bility of the harm once the error is discov-
ered. Some errors are relatively harmless 
(eg, lorazepam/alprazolam, Cardene 
(nicardipine)/Cardizem (diltiazem), fluox-
etine/duloxetine). Some cause permanent 
harm (eg, Durasal (salicylic acid)/Durezol 
(difluprednate)). Some are potentially 
fatal (eg, cisplatin/carboplatin, morphine/
hydromorphone).14–16

Clinicians and researchers have known 
about wrong-drug errors for many years, 
yet it has been difficult to reduce their 
frequency or to minimise the harm they 
cause. In 2004, the U.S. Food and Drug 
Administration (FDA) published a regula-
tion to require that certain human drug 
and biological product labels contain a 
bar code consisting of, at a minimum, the 
National Drug Code number. When bar 
code scanning is used in every step of the 
medication use process, it can be effec-
tive.17 Certain kinds of clinical decision 
support alerts also show promise, such as 
alerting clinicians when the medication 
they are about to order does not match 
any problem on the patient’s problem 
list.6 Other methods have been tried, 
though with limited evidence as to their 
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effectiveness, including Tall Man lettering,18 19 pre-ap-
proval testing of drug names for confusability,20 sepa-
rate storage for drugs with similar names,21 22 various 
warnings in CPOE and drug dispensing systems,6 23 24 
posted lists of confusing names,25 label and packaging 
changes,10 26 and exhortations for clinicians to be more 
careful.27

Wrong-drug errors may happen at any stage of the 
drug use process, including prescribing, transcribing, 
dispensing and administration. The present project 
focuses only on wrong-drug prescribing errors.

Automated detection is a new approach to addressing 
the risks posed by wrong-drug prescribing errors. The 
process is to run computer algorithms on electronic 
health record (EHR) and administrative claims data to 
identify when a medication order for a given patient 
does not seem to match with all of the available clinical 
and demographic information.24 28–31 One approach is 
to design algorithms to detect a mismatch between 
a drug’s indications and a patient’s active problems. 
When a provider orders metformin for a patient who 
has neither diabetes nor polycystic ovarian syndrome 
on her problem list, either the problem list is incom-
plete or the medication was ordered in error. If the 
patient has bacterial vaginosis on the problem list, 
the probability of a confusion with metronidazole is 
increased. In a recently published paper, we showed 
how an algorithm like this detected a series of confu-
sions between cycloserine and ciclosporin.24 This 
approach has promise in light of a recent analysis 
showing that for the majority of pairs of confusing 
drug names in the Institute for Safe Medication Prac-
tices’ (ISMP) list, the two drugs have different indi-
cations.32 (ISMP is a medication safety organisation 
headquartered in the USA.)

We sought to determine how automated look-alike/
sound-alike (LASA) detection algorithms perform 
more generally. The purpose of this study was to 
evaluate the usefulness (ie, positive predictive value 
(PPV) and yield) of an automated system for detecting 
wrong-drug prescribing errors across a large number 
of medication orders and a large set of possibly 
confusing drug names. Based on previous research, 
we hypothesised that the method would detect errors 
that may have gone undetected by other methods, but 
it was not clear whether the system would do so with 
a low enough false-positive rate to make it practically 
useful as a measurement and a patient safety learning 
tool.

Methods
design
This was a retrospective, observational study 
involving computerised analysis of EHR and admin-
istrative claims data to detect possible wrong-drug 
errors, followed by clinician chart review for valida-
tion.

setting
Part of the University of Illinois at Chicago, UI Health 
comprises a clinical enterprise that includes a 495-bed 
tertiary care hospital, 22 outpatient clinics and 13 
Federally Qualified Health Centers. UI Health serves 
a large patient population, with approximately 50 000 
emergency room visits, 20 000 hospital admissions and 
500 000 clinic visits per year across all sites. The inpa-
tient, ambulatory and emergency department settings 
use the same commercially available EHR, Cerner 
Millennium, to house all patient data and enter all 
medication orders using CPOE.

In addition to generating medication orders and 
prescriptions, and in order to facilitate medication 
reconciliation, the CPOE system also documents 
medications by history, allowing clinicians to record 
medications in the chart without generating a corre-
sponding prescription or order. UI Health allows 
several types of clinicians to perform some of the 
actions of adding, discontinuing, renewing or modi-
fying medication orders within the EHR. Attending 
and resident physicians perform these actions freely 
for their patients. Clinical pharmacists and nurses 
perform these actions either per protocol or by verbal, 
telephone or written order. In the inpatient setting, 
the majority of orders are entered by medical residents 
during the patient’s stay or by a clinical pharmacist or 
nurse who aids in medication reconciliation. Attending 
physicians infrequently order medications in the inpa-
tient setting. In the outpatient setting, both attending 
and resident physicians complete order entry, along 
with clinical pharmacists and nurses aiding in order 
modification and prescription refills. Medical students 
have the authority to enter orders that licensed physi-
cians review before being processed.

Medication order sets exist for various clinical 
scenarios, and providers are able to select ‘favourites’ 
so that frequently prescribed medications are easily 
accessible. Although the system displays medications 
alphabetically by default, additional features can cause 
medications to appear near each other even if they are 
not similar alphabetically. One example is metformin 
and metronidazole. Though alphabetically these would 
not be adjacent, in the favourites list of a primary care 
provider who sees many women and many diabetics, 
they could be adjacent. Another example would be 
nimodipine and famotidine. These two medications 
were on an inpatient neurosurgical order set and were 
adjacent due to the way that order set arranged drug 
classes.

data
Patients, drugs and diagnosis claims
We extracted all patient-level data from the EHR 
and administrative data systems at UI Health. This 
included all inpatient medication orders and outpa-
tient prescriptions, over a roughly 8-year period from 
1 April 2004 to 31 January 2012: 5 689 707 orders/
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Figure 1 Pseudo-code for the error detection algorithm.

prescriptions for 197 810 unique patients. Medica-
tion data included medical record number, admission 
and discharge date, gender, race, drug name, order 
type, order date and time, ordering clinician, dose, 
frequency, and administration date and time (for inpa-
tient orders). We extracted and combined all diag-
nostic claims for this same period, including date of 
service, medical record number and ICD-9 codes.

Drug indications
We licensed the 2012 DrugPoints database from 
Micromedex (Truven Health Analytics, Ann Arbor, 
Michigan, USA). This database provides FDA-ap-
proved and non–FDA-approved indications for drugs 
in common use in the USA. The database included 
brand and generic drug names, therapeutic category, 
indication, FDA approval status of indication and age 
group for the indication (adult vs paediatric). Its 10 550 
records included 2870 unique indications on 1582 
unique products. DrugPoints provided indications as 
plain text (eg, hypertension, ventricular arrhythmia, 
dysmenorrhoea, fever and headache).

Administrative claims data at UI Health recorded 
diagnoses as ICD-9 codes, so we needed to create a 
map that would link the free-text indications in the 
DrugPoints database to the ICD-9 codes in the admin-
istrative data. The process began by using automated 
matching to link DrugPoints free text with ICD-9 text 
descriptors and proceeded through multiple rounds of 
revision by physician and pharmacist members of the 
research team who, in addition to creating the indica-
tion map, simultaneously checked the indication data-
base for correctness and completeness.

Next, we excluded drugs from the indication data-
base that, according to expert judgement, had too 
many indications to be useful given our method 
of error detection. Our method relies on detecting 
mismatches between a patient’s diagnoses and a drug’s 
indications. Drugs with many indications (eg, steroids, 
pain relievers) are poorly suited to this task, whereas 
drugs with few indications (eg, metformin) are well 
suited. We also excluded drugs whose indications were 
rarely documented during this timeframe (eg, docu-
sate for constipation or acetaminophen (paracetamol) 

for pain), and we removed non-drug supplies such as 
materials used for drug administration (eg, alcohol 
swabs, syringes).

Inclusion and exclusion criteria for drug orders during 
the detection phase
To be included, drugs had to be in the indication 
database. Of the more than 5.6 million orders, only 
3 513 891 (61.8%) involved drugs that were in the 
indication map. To improve specificity, we excluded 
drugs prescribed more than once for the same patient, 
based on the assumption that prescribers are unlikely to 
refill wrong-drug orders. To be included, patients had 
to have diagnostic claims (ie, ICD-9 billing codes) on 
at least seven different days. This 7-day rule increased 
our confidence that we had sufficient data to deter-
mine whether or not a drug was justified by existing 
diagnoses. After these exclusions, the final data set 
had 488 481 records (8.6% of all extracted records), 
comprising 509 drugs for 99 343 unique patients from 
10 September 2002 to 13 July 2012. After all exclu-
sions, the main analysis included 14% of the total 
number of orders and 50% of the unique patients.

detection algorithm
Figure 1 displays the algorithm for error detection. 
For the purpose of this algorithm, a drug is justified 
if (1) an indication appears in the patient’s diagnosis 
record, or (2) a drug with the same indication as the 
prescribed drug is present in the patient’s medica-
tion history. Two drugs (eg, drug A and drug B) were 
said to have the ‘same’ indication if more than 60% 
of the indications of drug A are shared with drug B. 
We computed LASA similarity between drug names as 
the mean of 10 different similarity measures used in 
previous research.8 33

chart review
Two physicians and two clinical pharmacists reviewed 
charts to validate potential LASA medication ordering 
errors. Triggered cases were computer generated as 
described above. Each trigger provided a patient iden-
tifier, the name of the ordered medication, including 
date and time, as well as the name of the drug 
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Table 1 Similarity, number of confirmed errors, positive predictive value (PPV) and alert yield

Similarity levels Similarity range Total cases Cases reviewed Confirmed errors PPV (%) SE of PPV (%) Yield

1 0.38–0.42 1110 128 3 2.3 1.3 26
2 0.42–0.46 657 100 4 4.0 2.0 26
3 0.46–0.49 338 57 7 12.3 4.4 42
4 0.49–0.53 171 94 1 1.1 1.1 2
5 0.53–0.57 31 31 2 6.5 3.2 2
6 0.57–0.61 39 39 4 10.3 5.3 4
7 0.61–0.65 8 8 5 62.5 17.1 5
8 0.65–0.68 39 38 25 65.8 7.8 26
9 0.68–0.72 2 2 1 50.0 35.4 1
10 0.72–0.76 9 9 9 100.0 0.0 9
Total 0.38–0.76 2404 506 61 12.1 1.4 290
Higher similarity score indicates greater similarity. The range is 0 to 1.

Figure 2 Number of alerts and positive predictive value as a function of 
similarity level.

identified algorithmically as the likely intended medi-
cation. Two clinicians, blinded to each other’s evalu-
ations, independently reviewed the patient’s chart to 
assess whether the prescriber ordered the medication 
intentionally or whether another LASA medication 
was likely to have been the intended order.

If chart review did not make it clear whether the 
order was appropriate, the procedure instructed 
reviewers to give the benefit of the doubt to the 
prescriber and conclude that the order was inten-
tional (ie, not in error). If the reviewer disagreed 
with the medication that the algorithm suggested as 
the intended drug, they could provide an alternative 
confused drug name. When the two primary reviewers 
disagreed, a third clinician adjudicated the disagree-
ment, blinded to their role as an adjudicator. If a 
reviewer suggested a non–algorithm-generated LASA 
medication, this was only considered a likely confu-
sion error if the other reviewer suggested precisely the 
same alternative medication. For each confirmed error, 
we searched the literature to determine whether the 
specific error had appeared previously in a published 
case report and whether it was on the ISMP list of 
high-alert medications.34

Analysis
We applied the algorithm to the medication order data 
and generated a set of triggers. Each trigger included 
the name of an ordered drug and the name of drug 
that the algorithm identified as the intended drug. For 
each pair of ordered and intended drugs, we computed 
a numerical similarity score based on the mean of 10 
different similarity scores as described above. We 
then segmented the triggers into 10 similarity levels 
that each spanned an equal-sized range of similarity 
scores. Each range did not contain an equal number of 
triggers. We conducted manual chart review on each 
trigger as described above. Where a similarity range 
contained greater than 50 pairs, we reviewed at least 
50 pairs. Where there were fewer than 50 in a range, 
we reviewed them all. At each level of similarity, we 

then computed the PPV and the yield of the trigger, 
along with the SE of proportion for PPV. We defined 
yield as the PPV times the number of triggered orders 
in a given similarity range. We timed a small sample of 
the chart reviews to assess the reviewer burden associ-
ated with validating each trigger.

results
number of triggers
The algorithm generated 2404 triggers. Clinicians 
reviewed 506 cases and confirmed the presence of 61 
errors, for an overall PPV of 12.1% (SE 1.4%, 95% CI 
9.2% to 14.9). Based on two reviewers each timing 
their review of 22 cases, it took 3.3 min to review each 
case. In 6.1% of the cases (31 of 506), the primary 
reviewers disagreed and the adjudicator made the final 
decision. Nine of the 29 confusing name pairs (31%) 
had never before appeared in published case reports.

Table 1 shows contains information about total cases, 
cases reviewed, confirmed errors, PPV and yield.

Figure 2 charts the relationship between similarity 
range and the number of triggers generated by the 
automated detection algorithm.
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Table 2 Confirmed errors, with suspected intended medication, similarity level and number of occurrences

Similarity level Medication ordered Medication intended Number of occurrences Previously published case report

10 Cycloserine Ciclosporin* 9 Yes
9 Butabarbital Butalbital 1 Yes
8 Hydralazine Hydroxyzine 3 Yes
8 Hydroxyzine Hydralazine 2 Yes
8 Sulfadiazine Sulfasalazine 5 Yes
8 Valacyclovir Valganciclovir 3 Yes
8 Valganciclovir Valacyclovir 12 Yes
7 Clomiphene Clomipramine 3 Yes
7 Clomipramine Clomiphene 1 Yes
7 Rifampin Rifaximin 1 Yes
6 Cyclobenzaprine Ciclosporin 1 Yes
6 Lactase Lactulose 2 No
6 Methohexital* Methotrexate* 1 Yes
5 Cilastatin Cilostazol 1 No
5 Sumatriptan Somatropin 1 No
4 Dicyclomine Doxycycline 1 Yes
3 Diphenhydramine Desipramine 1 No
3 Levocetirizine Levothyroxine 1 No
3 Loratadine Lovastatin 1 No
3 Metolazone Metoclopramide 1 Yes
3 Metoprolol* Metoclopramide 1 Yes
3 Nitrofurantoin Nitroglycerin 1 Yes
3 Tizanidine Ranitidine 1 No
2 Azathioprine Azithromycin 1 Yes
2 Escitalopram Enalapril 2 Yes
2 Levocarnitine Levofloxacin 1 No
1 Cholestyramine Chlorpromazine 1 No
1 Hydrochlorothiazide Hydroxyzine 1 Yes
1 Hydroxyzine Hydrochlorothiazide 1 Yes

An asterisk indicates that the drug is on the Institute for Safe Medication Practices’ list of high-alert medications.

Table 3 Effect of route of administration mismatch on positive 
predictive value

True 
errors

Positive 
predictive 
value (%)

Number 
of cases

Percentage 
of cases (%)

All charts 61 12.1 506 100
No route 
mismatch

61 16.5 370 73.1

Route mismatch 0 0.0 136 26.9

Table 2 lists all of the true errors, along with their 
frequency of occurrence and whether or not they were 
on ISMP’s list of high-alert medications.

Post hoc analysis
During the chart review process, reviewers noticed an 
association between the routes of administration of the 
drugs thought to be confused and the likelihood of a 
true error. Specifically, if an ordered drug and a (likely) 
intended drug did not have matching routes of admin-
istration, chart review was unlikely to classify the case 
as a true error. For instance, the algorithm scores the 
names timolol and tramadol as similar. The algorithm 
might generate triggers involving this pair of drugs. 
However, an order for timolol ophthalmic is unlikely 
to be confused with tramadol because tramadol is not 
available as an ophthalmic product.

To test this hypothesis, we coded the 506 reviewed 
triggers for the presence or absence of a potential 
route mismatch. We defined a route mismatch as 
occurring when the suggested medication (ie, the one 
the algorithm predicted was the intended drug) was 
not available in the same route of administration as 

the drug that was actually ordered. For example, as 
noted above, we coded timolol ophthalmic/tramadol 
as a pair with a route mismatch.

Table 3 shows results of this analysis. Triggered orders 
with a route mismatch were not associated with any true 
errors. Excluding route mismatches from the set of trig-
gered orders reduced the number of charts to review by 
27%, thus increasing the PPV of the sample to 16.5% (as 
compared with 12% without the route mismatch rule).
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dIscussIon
An automated detection algorithm identified verified 
drug name confusion errors that were not self-inter-
cepted and may not have been detected by other means. 
The PPV was 12.1% using the initial algorithm. Post 
hoc analysis excluding triggered orders that reflected 
mismatched routes of administration improved perfor-
mance to a PPV of 17.0%. With a false-positive rate of 
over 75%, it is not likely that health systems should 
use this tool at this time as a quality measurement 
because this is lower than what systems typically use 
for medication safety measurement tools.

However, the detection algorithm can be useful 
as a trigger tool to find wrong-drug errors. These 
errors are relatively rare (eg, 1 in 1000 orders) and 
are difficult to find by existing reporting or surveil-
lance methods. Some automated methods now exist 
to find such errors, but those methods only work for 
self-intercepted errors.6 23 35 The method described 
in this paper can find errors that, at least initially, are 
not intercepted. Using our time estimate of roughly 
3 min per chart, it would take a clinician doing safety 
audits 15–20 min of chart review to find each error 
(assuming one true error for every 5–6 triggers). Put 
another way, a clinician should be able to review about 
20 triggers per hour and find 3–4 errors. This strikes 
us as a worthwhile trade-off to detect rare, elusive, but 
potentially harmful errors.

Our method may pose constraints on the number of 
triggers yielded. Using the absence of a documented 
indication as a trigger requires (1) the use of medica-
tions that have a manageable number of indications 
and (2) reliable documentation of these indications in 
the underlying data source. Because we used profes-
sional claims data, the indications of interest had to 
be present in professional bills. There are many classes 
of medications that treat indications which are not 
routinely documented in billing, especially in the inpa-
tient setting, for example, constipation, insomnia, 
itching, gastro-oesophageal reflux, pain, cramps, head-
aches and so on. As a result, our detection algorithm 
will never detect errors involving common medica-
tions used for these undocumented indications, for 
example, diphenhydramine, docusate, proton pump 
inhibitors and so on.

In addition, when medications (eg, corticosteroids) 
have a very large number of potential indications, the 
high likelihood that one of these indications is present 
in the billing data for a given patient makes its presence 
relatively uninformative. Other medications falling 
into this category include commonly ordered pain 
medications such as acetaminophen (paracetamol), 
non-steroidal anti-inflammatories and opioids.

The combination of the presumed low base rate 
of the type of error we were trying to detect and 
the exclusion of many commonly used medications 
combine to produce a trigger with relatively low yield. 
Thus, our finding only 61 errors is not that surprising. 

Nevertheless, the errors we did find were unlikely to 
be detected by any other means used today, and we 
found many pairs of confused medications that had 
not previously been reported to be confusing, that is, 
they did not appear on the ISMP list.25 The ability of 
our algorithm to detect previously unreported errors 
speaks both to the power of the method and to the 
limitations of existing mechanisms for surveillance, 
especially voluntary reporting.

The PPV of the triggers increased as the similarity of 
the names increases, not surprisingly, since similarity 
is a known risk factor for LASA errors.8 9 36 But since 
the drug name lexicon is intentionally designed to 
have few similar names,37 38 the yield at high similarity 
levels will be low. As a result, one method to improve 
the PPV (at the expense of yield) is to focus on higher 
similarity triggers.

route mismatch
That triggered orders with route of administration 
mismatches did not contribute any true positive errors 
suggests that a protective cognitive process is in force 
when clinicians select an incorrect medication that 
does not have the route that they intended to use. The 
availability of the intended route may enhance situa-
tion awareness and produce an increased likelihood of 
self-interception of the error, thus reducing the likeli-
hood of completed wrong-drug errors involving the 
wrong drug and the wrong route. We did not design 
our study to investigate this specific process, and 
future work will need to evaluate whether our spec-
ulative hypothesis about error interception is correct.

With regard to the performance of our detection 
algorithm, the exclusion of triggered orders that 
include a route mismatch should improve performance 
without loss of sensitivity. We could not measure the 
actual loss of sensitivity because, in our sample, there 
were no true errors among the triggered orders with 
mismatching routes, and thus no loss of yield occurred. 
We recommend this modification of the algorithm in 
future use.

Another use of this tool is to help find errors that 
may benefit from CPOE alerts. During the develop-
ment cycle of our tool, we found confusion between 
ciclosporin and cycloserine.24 After detecting these 
errors, we designed a real-time alert to help prevent 
confusion between these medicines, which mainly 
involved ordering cycloserine when ciclosporin was 
intended. As a tertiary medical centre with an active 
transplant programme, this error may have occurred 
more often than at a centre with fewer transplant 
patients, but using our tool can help identify pairs that 
may be more of a problem locally and serve as the basis 
for further interventions.

In the future, natural language processing, in combi-
nation with machine learning and other artificial 
intelligence techniques, should improve some perfor-
mance limitations of our method. It would increase the 
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number of indications available for analysis, particu-
larly those that do not appear in structured billing data 
but are present in free-text clinical documentation. 
In addition, indications detected via natural language 
processing would become available sooner than indi-
cations in billing data, allowing for real-time or near 
real-time alerts, whereas our method cannot function 
until diagnostic claims appear in billing data. Thus, 
we would expect that this method could be modified 
to a higher yield, higher PPV real-time or near real-
time tool in the future by integrating natural language 
processing.

limitations
This was a retrospective, single-centred study, focusing 
only on a small subset of medication orders and indi-
cations. We excluded many medications, including 
commonly used ones (eg, analgesics, antibiotics and 
corticosteroids) that had too many indications to be 
useful in our system. It was not possible to measure 
the sensitivity of the detection algorithm because there 
is no feasible way to identify all true cases of LASA 
error in the system. We did the study off-line on retro-
spective data. No information was available about the 
nature or causes of the errors (other than the general 
assumption that name confusion caused them). We did 
not assess the severity of the errors. Error detection, 
analysis and follow-up should be done in real time or 
near real time to maximise benefit for patient safety 
and to enable rapid follow-up with physicians who can 
shed light on the potential causes of error. We based the 
thresholds in the algorithm and the exclusion criteria 
used to narrow down the drug and indication database 
on expert opinion. We may have missed real errors 
because we excluded refilled drugs that had indications 
similar to those that patients received previously. The 
algorithm requires integration of several data sources 
(medication orders and administrative claims), and it 
includes natural language processing code to compute 
similarities between drug names. These complexities 
will likely make it harder to reproduce the system at 
other sites.

conclusIons
Large-scale, automated detection of LASA medication 
errors is feasible and can detect a modest number of 
medication errors that were previously undetected 
by any other method. Both patient safety and quality 
improvement could benefit from such a system. Further 
work should replicate the findings in other health 
systems, improve specificity to decrease clinician time 
spent reviewing false-positive triggers and increase 
sensitivity by using natural language processing to 
detect drug indications from free-text notes.
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