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Abstract
A large body of evidence shows that buying behaviour is strongly determined by consum-

ers’ price expectations and the extent to which real prices violate these expectations.

Despite the importance of this phenomenon, little is known regarding its neural mecha-

nisms. Here we show that two patterns of electrical brain activity known to index prediction

errors–the Feedback-Related Negativity (FRN) and the feedback-related P300 –were sen-

sitive to price offers that were cheaper than participants’ expectations. In addition, we also

found that FRN amplitude time-locked to price offers predicted whether a product would be

subsequently purchased or not, and further analyses suggest that this result was driven by

the sensitivity of the FRN to positive price expectation violations. This finding strongly sug-

gests that ensembles of neurons coding positive prediction errors play a critical role in real-

life consumer behaviour. Further, these findings indicate that theoretical models based on

the notion of prediction error, such as the Reinforcement Learning Theory, can provide a

neurobiologically grounded account of consumer behavior.

Introduction

It is often assumed that consumers formmental representations of a product’s market price
through prior encounters with products and their prices [1,2]. Discrepancies between these
expectations and actual prices are known to bias purchasing decisions and, in particular, posi-
tive discrepancies (when actual prices are cheaper than expected) play an important role in
facilitating the action of purchasing goods [1]. Although the importance of this process for the
wider economy is obvious, its neurobiologicalmechanisms have yet to be fully understood,
although recent advances in consumer neuroscience research are very promising [3–8].

From the point of view of cognitive neuroscience, discrepancies between learned predictions
and actual events have often beenmodeled using reinforcement learning (RL) theory. The
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basic formulation of RL models is that the brain forms predictions about future events through
learning from prior instances of positive and negative reinforcements [9]. When an event devi-
ates from prior predictions, then a prediction error (PE) is detected. Prediction errors can be
positive (when the event is better than expected) or negative (when the event is worse than
expected) and can be used to adjust future predictions and bias decisions [9]. It is thought that
PEs are linked to changes in dopamine firing rates originating from a number of subcortical
structures including the ventral tegmental area (VTA), which in turn send prediction error sig-
nals that modulate neurons in the Anterior Cingulate Cortex (ACC), a brain structure centrally
involved in decision-making behaviour [10,11]. This framework can be applied to consumer
behaviour: Positive discrepancies between expected and actual prices (when prices are cheaper
than expected) can be translated into positive prediction errors (PPEs) and negative discrepan-
cies (when prices are more expensive than expected) into negative prediction errors (NPEs).

From this perspective,we hypothesized that neural systems coding prediction errors would
be strongly involved in price evaluation behaviours in a shopping context. Specifically, we
hypothesized that price expectation violations would be linked to brain activity related to the
detection of prediction errors. Previous research using functionalmagnetic resonance imaging
(fMRI) has reported a link between activity in the medial prefrontal cortex (MPFC) and pricing
effects [3,7]. Although the MPFC is very likely to be involved in the monitoring of prediction
errors [12], it has also been linked to a number of other functions [13–17], and thus a neural
signal that specifically indexes PEs would be needed to fully test the hypothesis of a link
between pricing effects and neural processes of error monitoring.

We report here a study which is to our knowledge the first to show that the Feedback-
Related Negativity (FRN), a well-known neural index of prediction error [10–12,18,19], is sen-
sitive to price expectation violations during a realistic shopping situation. In this study, we
asked a sample of students from a British university to perform a virtual shopping task while
their electroencephalogram(EEG) was recorded. This task involved watching a series of prod-
ucts on a screen and estimating their average price. After providing their estimate, participants
were offered to buy or not each product with a virtual allocation of £35 (reset for every prod-
uct) at an offer price set by a computer program. In half of the trials, the offer price was set to
deviate on average by 8% from the participants’ estimate in order to induce a small prediction
error. In the other half of the trials, a drastic deviation of 75% from the estimated price was
used to induce a large prediction error. These large or small prediction errors could be positive
(cheaper than estimates) or negative (more expensive than estimates), resulting in four experi-
mental conditions: Underpriced-Large (UL), Underpriced-Small (US), Overpriced-Large (OL)
and Overpriced-Small (OS). A detailed description of the task can be seen in Fig 1. At the end
of the experiment, a computer program randomly selected one of the products for which a
“buy” decision had beenmade. Consistent with previous research [3,7], the selected product
was later made available to the participant, and cash “savings” corresponding to the initial allo-
cation (£35) minus the price of the chosen product was paid to the participant.

This procedure enabled us to calculate the FRN, a brain event-related potential (ERP) first
reported by Miltner et al. (1997) [20] and seen by many as a neural index of prediction errors.
The FRN is characterized by a fronto-central negative deflectionoccurring at approximately
200–350 ms after the delivery of decision outcomes. Typically, this deflection is more negative-
going for nonreward compared to reward feedbacks in decision-making tasks [10,21–24] to
such an extent that the FRN has often been seen as an index of feedback valence [19]. Further-
more, the FRN seems to be generated by MPFC activity [25,26], and more particularly the dor-
sal ACC [25], which seems to overlap with a region called "anterior middle cingulate cortex"
according to a recent view of the organization of the cingulate cortex [27]. Importantly, the
FRN seems to be sensitive to variations in prediction errors: The first major theoretical account
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of the FRN was provided by the “Reinforcement Learning Error Related Negativity” (RL-ERN)
model [11], according to which the FRN was mostly sensitive to negative prediction errors.
Specifically, this model predicted that the FRN was more negative-going for decision outcomes
that were “worse than expected”, and this effect was thought to account for the ability of the
FRN to distinguish between reward and nonreward feedbacks. However, accumulating evi-
dence has shown that the FRNwas actually sensitive to positive feedbacks, and in particular to
feedbacks that were “better than expected” [10]. Consequently, the RL-ERNmodel has been
updated and now it contends that the FRN can be understood as a “Reward Positivity” signal

Fig 1. Trial procedure. (1) A fixation screen was displayed for a random duration (800 to 1,700 ms); (2) A picture of the product was presented for 2

seconds, after which a brief written description of the product was superimposed on the picture for 2 seconds; (3) Participants were prompted to

estimate the price of the product and input it via the keyboard; (4) A fixation screen was displayed (800–1,700 ms, random duration); (5) A screen

displayed a feedback on whether the participant’s estimation was within an acceptable range around the average market price of the product. If the

estimate price was above or below 60% of the actual market price, then a “Too high” or “Too low” feedback was displayed for 1 second. In this case,

the current trial was aborted and the next trial would start immediately. Otherwise, an “OK” sign was displayed and the trial could continue until its end.

This approach was adopted to minimize strategic underestimations, as skipping stages 6–10 of the current trial removed the participant’s chance of

buying the current product. An average of 10% of trials were skipped, and the percentage of skipped trials did not significantly differ between

conditions. (6) Participants’ expected price (provided in stage 2) was displayed during 1 second; (7) The message “Our Price” was displayed for 750

ms; (8) A fixation screen was displayed (800–1,700 ms); (9) Participants were shown the actual “offer price” of the product during 1,500 ms; (10)

Participants were asked to decide to buy or not the product via a key press.

doi:10.1371/journal.pone.0163150.g001

Prediction Error and Consumer Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0163150 September 22, 2016 3 / 21



[28–30]. Specifically, this new account proposes that unexpected rewards trigger a phasic
increase in dopaminergic activity, leading to an inhibition of ACC neurons. This inhibition of
ACC neurons would be reflected on surface electrodes as a reduction of the negative deflection
typically observed in the FRN time window. Consequently, FRN amplitudes would then be
more positive for unexpected rewards compared to expected rewards or nonrewards
[18,28,30–33]. This interpretation seems to fit much of the published research on the FRN, as
the meta-analysis of Walsh et al. (2012) indicated that more studies reported a sensitivity of the
FRN to PPEs than NPEs. However, there are studies that do not fit this revised RL-ERN
account. For instance, a group of studies have reported that FRN waveforms are more negative
for prediction errors regardless of feedback valence [34,35]. These studies suggest that the FRN
may reflect a valence-independent “salience” effect. Alternatively, these results can also be
interpreted in light of models suggesting that ACC activity increases when likely outcomes fail
to occur, regardless of outcome valence [12,36]. The origin of the discrepancy between these
accounts and the RL-ERN account is still unclear but it might be caused by the existence of dis-
tinct groups of neurons within the ACC that seem to react in opposite ways to positive surprise
[37]. Nevertheless, it has to be acknowledged that the current state of the FRN literature indi-
cates that a vast number of published studies seem to confirm the revised RL-ERNmodel. In
particular, the sensitivity of the FRN to positively valenced feedbacks has proven to be reliable
across many studies and it is now considered as a biomarker of reward processing in clinical
contexts [30].

In summary, the primary goal of this study was to test whether the FRN was sensitive to
price expectation violations in a realistic shopping context. In line with the literature described
above, we predicted that the polarity of FRN voltage time-locked to offer prices would be more
positive for UL compared to other trial types. In addition, to allow comparisons with previous
research, we also examined if the P300 was sensitive to price deviations. The P300 is a classical
ERP typically related to attention [38,39] and it has also been linked to the evaluation of predic-
tion errors in decision-making tasks [40]. As a secondary goal, we also examined whether FRN
and P300 waveforms time-locked to price offers could predict subsequent buying decisions.
Given that PPEs are thought to be linked to “Buy” decisions, we also expectedmore positive
FRN amplitudes for Buy compared to No-Buy decisions.

Methods

Participants

Forty healthy adults from the student population of DurhamUniversity (UK) took part in this
experiment. From this initial sample, 4 participants were excluded because they had made too
few “Buy” or “Not Buy” choices (<10% from all possible choices), data from two participants
were discarded because of experimenter error during the study, data from one participant was
lost because of a technical problem and data from one participant had excessive EEG artifact
(66% of EEG data epochs had a peak-to-peak amplitude >100μV). The final sample had 32
participants (14 males, mean age: 23.3, SD: 2.8). They were all English-speaking; they had a
normal or corrected vision; they did not report any history of psychiatric or neurological prob-
lems and they all reported to be right-handed. The Ethics committee of DurhamUniversity’s
Psychology department approved the study and all participants signed an informed consent
before taking part in the experiment.

Stimuli

For this experiment, we used digital images of 120 products selected from shops and online
retailers known to be used by DurhamUniversity students. The set of products included a
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large variety of items, such as electronics, food, drinks, sports equipment, home decoration,
and others. Market prices estimated as the mean of the price of each product in two outlets ran-
ged from £4 to £20 (Mean = 11.1, SD = 4.7). Products were randomly allocated to different con-
ditions across participants to avoid potential confounds betweenmarket price and the
experimentalmanipulation and other stimulus-specific factors, such as desirability. Manipula-
tion checks about stimulus-specific factors are described in the Behavioural results section.

Behavioural paradigm

Participants sat in a comfortable armchair at approximately 70 cm from a 19” Sony Trinitron
CRT monitor with a refresh rate of 85Hz on which the stimuli were displayed. E-Prime 2.0
(Psychology Software Tools, Pittsburgh, PA) was used to display the stimuli on the screen. Par-
ticipants were asked to perform a virtual shopping task while their scalp EEG was recorded. In
this task, each participant was shown a sequence of 120 products on a computer screen. Each
product was shown twice resulting in 240 trials. In each trial, participants were first shown a
product, next they had to provide an estimate of the product’s market price and they were sub-
sequently offered to buy or not this product at an offer price set by a computer program. Partic-
ipants could decide to “buy” or not this product from of a virtual allocation of £35, which was
reset for every trial. At the end of the experiment, a computer program randomly selected one
of the products for which a “buy” decision had beenmade. The chosen product was later
shipped to the participant, and cash “savings” corresponding to the initial allocation (£35)
minus the price of the chosen product was paid to the participant. This approach was used to
maximize the realism of the shopping task because participants had a real chance of walking
out with one of the “purchased” products, and because cash savings are an inherent part of
price-based shopping behaviour. All of these aspects of the behavioural paradigmwere explic-
itly explained to the participant before the start of the experiment. The procedure of each trial
is described in more details in Fig 1.

In half of the trials, the offer price at stage #9 was set to deviate by a large extent (75%) from
the price estimate provided in stage #3. This level of price deviationwas chosen because it has
been shown previously to be optimal in modulating buying decisions in a virtual shopping task
[3], and was used to induce a large prediction error. In the other half of the trials, offer prices
were set to closely approximate participants’ estimates in order to induce a small prediction error
using an average deviation of 8% relative to the price estimate provided in stage #3. In this case,
we had to address two constraints. First, the offer price could not be equivalent to the estimate,
otherwise a surprise reaction could be triggered by the exact match between the estimate and the
offer. Second, a small fixed difference between the estimate and the offer could create the aware-
ness that the offer price was a predictable calculation from the participant’s estimate, which could
potentially lead to expectation effects. In order to minimize this possibility, offer prices deviated
randomly from 1% to 15% relative to the estimate (average deviation: 8%) in this condition. The
Behavioural results section provides manipulation check data showing that this approach was
successful in modulating buying behaviour and the pattern of FRN results rules out potential
confounds linked to this methodological approach: If FRN results were driven by a difference in
the fixed vs. distribution-basednature of the deviations (rather than a difference in positive pre-
diction error), then all large PE trials should be differentiated from small PE trials in terms of
FRN amplitude. However, this prediction is contradicted by the absence of a reliable OL-OS con-
trast in the FRN data, which invalidates this alternative explanation.

These large or small prediction errors could be positive (cheaper than estimates) or negative
(more expensive than estimates), resulting in four experimental conditions: Underpriced-Large
(UL), Underpriced-Small (US), Overpriced-Large (OL), Overpriced-Small (OS). The number
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of trials per condition was equal (60), and the order of trials pertaining to any of the four condi-
tions was fully randomized across the experiment. The repetition of the products across the
experiment was used to maximize the number of trials thus increasing signal-to-noise ratio. A
repeated trial did not necessarily belong to the same price deviation condition as the first (i.e.
the randomization was full across all trials regardless of repetition), resulting in different offer
prices, which minimized expectation effects. In addition, the allocation of specific product pic-
tures to each condition was randomly varied between participants to avoid confounds between
the experimentalmanipulation and product-specific parameters.

Finally, in order to minimize strategies based on buying only a small subset of products, par-
ticipants lost money on their final cash savings if they did not buy a minimum threshold of
products, according to a schedule previously explained to participants. If fewer than 25 prod-
ucts were bought, then £10 were subtracted from the final pay. If the amount of products
bought ranged from 25 to 48, £5 were subtracted, and £1 was subtracted for the 49–72 range. If
participants bought more than 72 products, no penalties were applied. All of this was explained
to the participants before the experiment. At the end of the experiment, participants were
again shown all the products offered during the experiment (without prices) and had to rate
them on a 5-point scale of desirability (“how much do you want this product?” 1 = I don’t want
it at all; 3 = I want it a bit; 5 = I want it verymuch); and a 5-point scale of Familiarity (“How
familiar are you with this product”? 1 =Not familiar at all; 3 = Somewhat familiar; 5 = Extremely
familiar). The experiment lasted approximately 2 hours.

Electrophysiological data recording and pre-processing

Each participant’s scalp electroencephalogram(EEG) was recorded using 64 Ag/AgCl elec-
trodes embedded in “Waveguard” purpose-made caps (the electrode layout is described in Fig
2B) and an “ASALAB” amplifier (both manufactured by ANT Neuro, Enschede, Netherlands).
EEG data was recorded at a rate of 512Hz (DC-138Hz bandwidth) and an impedance< 10kΩ,
using a common average reference, which was digitally converted to an average mastoids refer-
ence. EEG data was pre-processed using EEGLAB version 10.256b [41] and ERPLAB version
4.023 [42]. Data was filtered offline (0.1-30Hz), segmented into epochs between 200 ms before
and 1500 ms after the onset of the “offer price” screen (stage #9 of Fig 1) and baseline corrected.
An average of 3.1 channels were found to be artifactual and were interpolated either through
spherical spline interpolation or nearest-neighbour replacement.

EEG artifacts were attenuated following a multi-stage approach consistent with previous
research [43–45]. First, Independent Component Analysis (ICA) was performed on epoched
data using the "Infomax" ICA decompositionmethod implemented in the "runica()" function
of EEGLAB [41]. This analysis enabled us to identify and remove components accounting for
large ocular artifacts (eyeblinks and lateral eye movements) as well as components accounting
for other large artifacts (e.g. muscle tension) following the guidelines of Jung and colleagues
[46]. Second, in order to minimize artifacts not captured by ICA, we rejected data epochs that
had a difference between the maximum and minimum voltage amplitudes exceeding 100 μV.
In line with recommended practice [47], none of the 32 participants had more than a third of
trials rejected by this technique. Data from one additional participant was discarded because
66% of their data epochs were rejected (see “Participants” section).Within the final sample of
32 participants, an average of 3.76% (SD = 6.0) of trials were removed per participant following
this technique (max: 24.8%). Third, we ran a second ICA decomposition in order to identify
and remove residual artifacts not captured in the initial steps.

In order to test whether the FRN was sensitive to price evaluation effects, ERP waveforms
time-locked to the onset of the screen showing the products' offer price (stage #9) were created
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by averaging EEG epochs separately for UL, US, OL and OS conditions. The mean number of
artifact-free trials per condition was: 51.3, 52.6, 50.9 and 52.2, respectively. None of the partici-
pants had less than 34 artifact-free trials in any of these conditions. In order to test for a poten-
tial “Buy/No-Buy” (BNB) effect on the FRN, ERPs were also separated by whether the product
was subsequently purchased or not in stage #10 of the procedure. Mean artifact-free trials were
117.2 (min: 50) and 89.5 (min: 21) for “Buys” and “No-Buys”, respectively.

ERP quantification

FRN. We focused on the Feedback-RelatedNegativity (FRN), which is a negativity peak-
ing approximately between 200 and 350 ms in fronto-central electrodes [10]. Although the
methods used to quantify the FRN can vary considerably in the literature, a growing trend sug-
gests that the optimal way of quantifying this component involves computing peak-to-peak

Fig 2. FRN as a function of price expectation violations. (a) ERP waveforms from a cluster of frontal electrodes time-locked to the offer price (stage

#9) separated according to price valence (overpriced vs. underpriced) and price prediction error (large vs. small). Amplitude in microvolts (μV) is on the y

axis and time in milliseconds is on the x axis. The arrows indicate the positive and negative peaks used to quantify the FRN (See Methods section) (b)

Cluster of frontal electrodes (F1, Fz, F2) used to compute FRN components. (c) Scalp maps plotting contrasts of FRN peak to peak amplitudes between

large and small prediction errors separated for underpriced and overpriced conditions, arranged so that more positive values reflect a greater positive

valence (UL-US and OS-OL). The colour bar represents maxima and minima (μV). (d) Bar chart plotting peak-to-peak FRN amplitudes (μV) as a function

of price valence and price prediction error. * p < .05.

doi:10.1371/journal.pone.0163150.g002
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scores on individual feedback-lockedERP waveforms, in which a positive P200 peak is sub-
tracted from a negative peak around ~250 ms [18,34,48–55]. This approach is thought to be
better than using an absolute negative N200 peak or mean amplitude as it addresses potential
biases relative to differences in the absolute amplitude of the onset of the FRN, which is typi-
cally located in a positive P200 peak that precedes it [18,48,49]. More generally, peak-to-peak
scoringmethods are typically used to minimize biases in the quantification of temporally over-
lapping components [49,56,57]. In addition, using individual waveforms instead of difference
waveforms is recommendedwhen testing hypotheses that involve comparing ERPs of the same
valence [49,50]. Nevertheless, in order to compare with previous FRN literature we also com-
puted difference waveforms, as explained hereafter.

We therefore computed scores in which the most positive local peak in a 150–220 ms win-
dow was subtracted from the most negative local peak in a 180–350 ms window. These time
windows were drawn both from a vast literature on the FRN, P200 and N200 [10,19,49] and
from a careful inspection of the timings of these components in the present data. Following
previous research on the FRN, we focused our statistical analyses on a pre-defined scalp area
around the Fz electrode [18,58,59].We computed an average of three electrodes around this
site (F1, Fz, F2, see Fig 2B) and all our FRN analyses were based on this cluster’s data. Pooling
together single data from neighboring electrodes in a cluster is often recommended as it
improves the stability of ERP data and attenuates familywise statistical errors [60–62].

We then ran an Analysis of Variance (ANOVA) on these peak-to-peak scores including the
factors of Valence (Underpriced vs. Overpriced) and Prediction Error Size (Large vs. Small),
followed by planned contrasts (UL-US and OL-OS) if an interaction was observed. Effects at p
� .05 were considered significant. In order to test the BNB effect, we also ran a simple F pair-
wise contrast to test if FRN peak-to-peak scores were different according to whether the prod-
uct was subsequently purchased or not. Next, we examined if the BNB effect was driven by an
influence of UL trials on FRN amplitude (see Results section). For this goal, we re-computed
ERP waveforms time-locked to the “offer price” screen according to whether the product was
subsequently purchased or not while removing UL trials in the overall computation. We then
carried out a directional F contrast testing if FRN peak-to-peak scores were more positive for
“Buy” than for “No-Buy” trials. As a measure of control, we also performed the same procedure
while removing OL instead of UL trials. One participant was excluded after removing UL and 3
participants after removing OL as they did not have enough Buy and/or No-Buy artifact-free
trials for a reliable analysis. We hypothesized that if UL trials were driving the BNB effect on
the FRN, then this effect should be reduced or cancelled if UL trials were omitted, compared to
a situation in which these trials were included in the analysis. Although the removal/inclusion
of UL trials can help evaluate the impact of this specific group of trials on the BNB effect, this
analysis should not be considered as a formal mediation test and any potential results have to
be understood as tentative evidence of the role of PPE in buying decisions.

P300. While our main focus was on the FRN as a measure of prediction error, we also ana-
lyzed a positive potential that follows the FRN, which is often labeled as a Feedback-Related
P300. This ERP tends to be predominantly centro-parietal and resembles a P3b. The neural
generator of this ERP is uncertain, but there is evidence linking this component to positive pre-
diction error [51], although it can be sensitive to other aspects of outcome processing, and its
functionalmeaning is still relatively unclear [50]. Following previous research on late positivi-
ties [39,63,64] and a careful examination of the ERP waveforms of the present study, we quan-
tified a Feedback-Related P300 time-locked to the “offer price” screen computing a peak-to-
peak score in which the most negative peak found in a 100–300 ms time window is subtracted
from the most positive local peak found in a 400–1000 ms window. We focused our statistical
analyses on a cluster of P1, Pz and P2 electrodes (see Fig 3B). This is in line with previous
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literature that typically locates the Feedback-RelatedP300 in the Pz area [18,58]. An ANOVA sim-
ilar to the one used for FRN scores was computed. To mirror the analyses performedon the FRN,
we also tested a BNB effect on the Feedback-RelatedP300, but this effect was not significant.

P2, P3a and FRN difference waveforms. Further, we also examined if two components
known to partially overlap with the FRN were affected by our manipulation–the P2 and P3a
components. The P2 was calculated as a peak-to-peakdifference in which the local negative
peak in a 50-130-ms window was subtracted from the local positive peak in the 150-220-ms
window. The P3a was calculated as a peak to peak difference between a local positive peak in a
320-450-ms window [65,66] and a local N250 negative peak in the 180-350-ms window, simi-
lar to the one used for the FRN analysis. For both components, analyses focused on a cluster of
frontal electrodes as the one described in Fig 2C. None of the key contrasts (UL-US, OL-OS,
BNB) turned out to be statistically significant for these components and therefore they will not
be discussed further. Finally, given that the FRN is often presented in difference waveforms, we
also subtracted overpriced ERPs from underpricedERPs for data relative to the cluster of 3
frontal electrodes used for all other FRN analyses separately for large and small prediction
error conditions. This "gain-loss" difference waveform is the converse of the more classical
"loss-gain" subtraction typically used in FRN data, but it conforms to more recent studies inter-
preting the FRN as a "reward positivity" signal [30] and aims to better isolate the positive
deflection associated to reward feedbacks. Similarly to previous research using difference wave-
forms [67], we computed peak to peak scores for the two difference waveforms, taking the
same time windows used to quantify the FRN in individual waveforms. However, in this case
the N2 peak was subtracted from the P2 peak.

Results

Behavioural results

Buying rate. We analyzed behavioural results through a classical ANOVA testing the
effects of Valence (Underpriced vs. Overpriced) and Prediction Error (Large vs. Small) on the
rate of “Buy” responses. Not surprisingly, we found that participants bought more underpriced
than overpriced products (main effect of valence, F(1,31) = 62.07, p< .000001, ηp² = .67) and
the main effect of Prediction Error did not reach significance levels F(1,31) = 2.98, p = .09,
ηp² = .09. We found an interaction, F(1,31) = 66.74, p = .000001, ηp² = .68, driven by more
buys in UL compared to US, F(1,32) = 19.76, p< .001, ηp² = .39, and fewer buys in OL than
OS, F(1,31) = 43.40, p = .000001, ηp² = .58. These results confirm that our experimentalmanip-
ulation had reliable and expected effects on buying decisions (see Fig 4).

Multilevel logistic regression analysis of buying decisions. Desirability, familiarity and
market price were equated across UL, US, OL and OS conditions thanks to the full randomiza-
tion of products and trials, and pairwise comparisons between these conditions did not reach
significance levels for any of these variables (Desirability mean scores: 2.7, 2.6, 2.6, 2.7; Famil-
iarity: 3.3, 3.2, 3.2, 3.3; Market Price: 11.1, 11.2, 11.2, 11.2, respectively for UL, US, OL and OS).
Not surprisingly, mean cash “savings”were higher for UL and lower for OL (UL: 32.8; US: 26.7,
OS: 25.3; OL: 19.3), and desirability tended to be higher for products linked to “Buy” compared
to “No-Buy” trials (Ms = 3.2, 2.1; SDs = 1.2, 1.1).

In order to examine more closely the potential effects of these trial and product-specific fac-
tors on buying decisions, we used a generalized linear mixedmodels approach in order to test a
multilevel logisticmodel in which the outcome variable was a binary factor coding whether a
product had been purchased or not (1 or 0) in each trial. This approach enabled us to examine
the determinants of buying decisions at the trial level while taking into account potential
between-subjectsvariability. Predictors were self-reports of desirability and familiarity, product

Prediction Error and Consumer Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0163150 September 22, 2016 9 / 21



market price and cash savings (35 minus the offer price). Following the interaction observed in
the ANOVA analysis, we also entered two binary predictors coding for the effects of UL and
OL trials. Specifically, the UL predictor was a binary variable coding for the difference between
UL and other trial types observed in the averaged ERP analysis (1 = UL, 0 = all other trials),
and the OL variable coded for the difference betweenOL and other trials. The total number of
trials considered in this analysis was high (N = 6612), which can inflate classical significance
values. Therefore, we report hereafter Odds Ratios (OR) as an estimate of effect size. It has
been proposed that an OR of 1.5 corresponds to a small effect size, an OR of 2.5 is a medium
effect size and an effect of 4 is a large effect size [68].

Consistent with our expectations, we found that desirability strongly predicted “Buy” deci-
sions (b = 0.94, t = 29.9, p< .001, OR = 2.6). Importantly, we found that both UL and OL had a
unique effect on buying decision, while controlling for all the other factors: UL significantly

Fig 3. Feedback-Related P300 components. (a) ERP waveforms from a cluster of parietal electrodes time-locked to the offer price (stage #9)

separated according to price valence (overpriced vs. underpriced) and price prediction error (large vs. small). The y axis shows amplitude in microvolts

(μV) and x axis shows time in milliseconds. The dashed line indicates the time window used to quantify the P300. (b) Scalp maps showing P300 contrasts

between underpriced large and underpriced small trials (UL–US; left) and between overpriced large and overpriced small trials (OL–OS; right), alongside

a description of the location of the electrode cluster used in this analysis. Colour bar represents maxima and minima (μV). (c) Bar chart plotting P300

amplitudes (μV) as a function of price valence and price prediction error. * p < .05.

doi:10.1371/journal.pone.0163150.g003
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predicted a robust increase in “Buy” choices (b = 0.98, t = 9.8, p< .001, OR = 2.7) and OL sig-
nificantly predicted an increase in “No-Buy” choices (b = –1.5, t = –14.9, p< .001, OR = 4.5).
Familiarity predicted a very small increase in “Buy” choices (b = 0.13, t = 4.6, p< .001,
OR = 1.14), and although the effect of the product market price yielded a p-value below the .05
level, the OR indicates that the effect size is negligible (b = 0.02, t = 2.3, p = .002, OR = 1.03).
Similarly, OR levels indicated that potential cash savings did not have a noticeable effect on
participants’ behaviour (b = 0.02, t = 1.9, p = 0.06, OR = 1.02). These results indicate that the
experimentalmanipulation of over- and underpricing had an effect on buying decisions over
and above trial- and product-specific factors. Given that cash savings were directly linked to
offer prices, these results also indicate that absolute offer prices and market prices did not drive
participant’s behaviour, whereas the violations of price expectations did.

Response time. We conducted a repeated-measures ANOVA testing the effects of
Valence, Prediction Error, and BNB (Buy vs. No-Buy) on mean response time to “Buy” or
“No-Buy” choices (stage #10 of Fig 1). We found that participants responded to underpriced
products (M = 767.33, SD = 343.42) marginally faster than to overpriced products (M = 874.43,
SD = 596.18), F(1,31) = 3.90, p = .06, ηp² = .11. We also observed a Valence × BNB interaction,
F(1,31) = 8.41, p = .007, ηp² = .21. This interaction was driven by the fact that participants were
faster for “Buy” (M = 738.45, SD = 388.70) than “No-Buy” choices (M = 796.21, SD = 312.17)
for underpricedproducts, F(1,31) = 4.21, p = .05, ηp² = .12. This difference did not reach signif-
icance levels for overpriced products (Buy: M = 920.70, SD = 649.23; No-Buy: M = 828.16,
SD = 575.49), F(1,31) = 3.28, p = .08, ηp² = .10.However, these results were qualified by a
higher-order 3-way interaction, F(1,31) = 8.15, p = .008, ηp² = .21. To decompose this

Fig 4. Buying behaviour. Buying rate (% of total valid trials) as a function of price valence (overpriced vs. underpriced) and price

prediction error (large vs. small). * p < .05.

doi:10.1371/journal.pone.0163150.g004
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interaction, we conducted Valence x BNB ANOVAs for Large Prediction Error and Small Pre-
diction Error separately. The 2-way interaction was not significant for Small Prediction Error,
F< 1. However, it was significant for Large Prediction Error, F(1,31) = 12.02, p = .002, ηp² =
.28. This interaction was caused by faster responses for “Buy” (M = 690.36, SD = 319.83) than
“No-Buy” (M = 795.18, SD = 334.42) decisions in UL, F(1, 31) = 6.82, p = .014, ηp2 = .18. On
the other hand, in OL, responses were faster for “No-Buy” (M = 748.03, SD = 291.18) than
“Buy” (M = 948.84, SD = 563.53) decisions, F(1, 31) = 6.45, p = .016, ηp2 = .17. These findings
suggest that “buy” decisions were facilitated in the UL condition whereas “No-Buy” decisions
were facilitated in the OL condition.

Brain potentials

Fig 2A shows a large negative deflectionwith a P200 onset and a negative peak around ~270
ms. The peak-to-peak amplitude of this deflection seems to be smaller for UL compared to US
trials, whereas the amplitude of this signal seems equivalent betweenOL and OS (Fig 2D).
Scalp maps (Fig 2C) show that this amplitude reduction (plotted as a positive value in Fig 2C)
is predominantly frontal, in line with previous research on the FRN [10,50,69]. The same figure
also shows that differences betweenOS and OL are much smaller compared to UL-US con-
trasts. These results seem to confirm the hypothesis that FRN amplitude would be more posi-
tive (by a reduction of its negativity) for offers that are underpricedby a large amount. In
addition, Fig 5 suggests that the FRNmeasured at the time of an offer is able to differentiate
products that are subsequently purchased or not, and the topography of this effect also con-
forms to the typical topography of the FRN. Fig 3A shows a larger P300 positivity for UL com-
pared to US trials, and this effect seems predominantly parietal (Fig 3B). Similar to the FRN
data, OL-OS contrasts seem to yield much lower scores than UL-US contrasts across the whole
scalp (Fig 3B).

Statistical analyses have supported these observations.Analyses on peak-to-peak estimates
of the FRN revealed a main effect of Valence, [F(1, 31) = 6.8, p = .01, ηp² = .18], indicating an
overall larger negativity for overpriced compared to underpriced offers (M = –3.1, SE = .34;
M = –2.8, SE = .30); and the main effect of Prediction Error did not reach significance levels
[F(1, 31) = 3.1, p = .09, ηp² = .09]. Consistent with our hypotheses, we observed a significant
Valence × Prediction Error interaction [F(1, 31) = 6.2, p = .02, ηp² = .17]. This interaction was
driven by a large difference betweenUL and US, F(1,31) = 12.8, p = .001, ηp² = .29, whereas the
OL-OS contrast was not significant, F< 1. These results indicate that FRN amplitudes are
more positive for offers that are underpriced by a large amount, as shown in Fig 2. We also ver-
ified that the UL-OL contrast was significant, F(1,31) = 10.8, p = .003, ηp² = .26, contrary to the
OS-US, F< 1, which is consistent with a vast literature indicating that the effect of valence on
the FRN is stronger for unexpected outcomes [10]. In order to provide a comparison with FRN
studies that use difference waveforms, we also examined difference waveforms in which over-
priced ERPs were subtracted from underpricedERPs separately for large and small prediction
errors (seeMethods section for more details). As seen in the S1 Fig, a clear positive N2-P2
deflection is visible for large prediction errors in the FRN time window (peaking at approxi-
mately 330 ms), whereas there is virtually no discernable positive deflection for the “small”
condition. These results were confirmed by a significant difference between peak-to-peak
scores for the two waveforms [t(31) = 2.9, p = .007] confirming that the FRN had a larger
amplitude for large than for small prediction errors. This result confirms that our FRN effects
are compatible with previous data using difference waveforms [70].

To examine a potential Buy/No-Buy (BNB) effect on the FRN, we compared the FRN for
offers leading to subsequent purchases compared to offers followed by “No-Buy” choices. The
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contrast was significant, [F(1, 31) = 6.3, p = .02, ηp² = .17], indicating that the FRN was signifi-
cantly larger for “No-Buy” compared to “Buy” choices (Ms = –2.94, –2.5, SEs: 0.32, 0.28). In
other words, “Buy” decisions were preceded by a more positive FRN amplitude than “No-Buy”-
decisions. Consistent with our hypothesis, the difference between “Buy” and “No-Buy” FRNs
was flattened after removing UL trials, (difference = –.03, SE = 0.18; directional t-test: p = .42,
ns.), whereas the effect remained reliable when only OL trials were omitted (difference = 0.40,
SE = .20, directional t-test: p = .03). This specific finding tentatively suggests that the FRN pre-
dicts subsequent buying decisions if these are driven by a positive surprise regarding the price
of the product.

Analyses on the P300 revealed no main effect of Valence [F(1, 31) = 1.1, p = .29, ηp² = .03]
but found a main effect of Prediction Error [F(1, 31) = 9.8, p = .004, ηp² = .13], indicating that
overall P300 amplitude was more positive for large than for small prediction errors (Ms = 4.5,
3.9, SEs: .64, .55); and a Valence × Prediction Error interaction [F(1, 31) = 5.1, p = .03, ηp² = .14].

Fig 5. FRNs as a function of buying decisions. (a) Waveforms from a cluster of frontal electrodes time-locked to the offer price (stage #9) separated

by whether the product was subsequently purchased (“Buy”) or not (“Not Buy”) in stage #10. Amplitude in microvolts (μV) is shown on the y axis and

time in milliseconds is shown on the x axis. The arrows indicate the positive and negative peaks used to quantify the FRN (See Methods section). (b)

Scalp maps showing a contrast between “Buy” and “Not Buy” related FRNs. Color bar represents maxima and minima (μV). (c) Cluster of frontal

electrodes (F1, Fz, F2) used to compute FRNs.

doi:10.1371/journal.pone.0163150.g005
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This interaction was caused by a large difference betweenUL and US, [F(1,31) = 16.8, p = .0003,
ηp² = .35], whereas the OL-OS contrast was not significant, [F(1,31) = 1.1, p = .31, ηp² = .03]. The
contrast testing if P300 amplitudes varied according to subsequent “Buy”or “No-Buy” choices
was not significant [F(1,31) = 2.5, p = .12, ηp² = .07; Ms = 4.2, 3.9, SEs = .62, .59]. In addition, we
also verified that FRN and P300 results were site-specific, as explained in S1 Results.

Discussion

We found here that a well-known neural index of prediction error computation, the FRN brain
potential, was related to two fundamental aspects of consumer behaviour: Price evaluation and
buying decisions.More specifically, we first found that FRN amplitude was more positive when
prices were substantially cheaper than participants’ expectations. Second, we found that FRN
amplitude measured during price evaluation was more positive when followed by a “Buy”
rather than by a “No-Buy” decision. Interestingly, this effect disappeared when UL trials were
omitted, tentatively suggesting that it was driven by an effect of surprise to unexpectedly cheap
prices. Finally, we also found an increase in P300 positivity when offered prices were cheaper
than expected.

A potential explanation for our results would posit that a more positive FRN amplitude for
UL trials would reflect positive prediction error (PPE) signals caused by a “surprise” reaction
to unexpectedly cheap prices. This explanation would be consistent with previous research
showing that the classical FRN effect (a distinction between negative and positive outcomes) is
mainly driven by the FRN sensitivity to unexpected positive outcomes, similar to what we
observed in the current study [10,29,31,33,71]. This effect of “reward positivity” [30] is
explained in one of the main theories of the FRN, the “Reinforcement Learning–ErrorRelated
Negativity” theory [11,31] by a mechanism of inhibition of ACC neurons by dopaminergic
projections from subcortical structures when PPEs are detected [31]. This model is compatible
with existing evidence of the relationship between PPE and the dopaminergic network [72]. As
mentioned in the Introduction, it has to be noted that a few FRN studies have shown that large
PPEs can in certain cases be related to a more negative FRN deflection compared to small PPEs
[34,35,50,73], which goes contrary to the “Reward Positivity” explanation. As discussed in the
Introduction, the origin of this discrepancy is still unresolved but it might be caused by the
existence of distinct groups of ACC neurons that react in different ways to positive surprise
[37]. Nevertheless, our results are compatible with a vast body of literature showing a more
positive FRN amplitude for unexpected positive outcomes [10,30,33].

This explanation assumes that consumers form price expectations by previous exposure to
varying prices of a same product in a process similar to the formation of predictions described
by RL theory. This learning process would create a representation of the monetary value of this
product, which has been described as “price expectation”, “reference price” or “fair price” in
the consumer behaviour literature [1]. When an instance of this product is encountered with a
price markedly cheaper than the learned expected price, then subcortical brain structures such
as the VTA [10] or the basal ganglia [74] would interpret this event as a PPE. Consequently,
phasic dopaminergic signals from these structures would inhibit ACC neurons, resulting in a
more positive FRN amplitude [18].The ACC is known to be activated when the need to effectu-
ate goal-relevant action is detected [75,76], and this structure is thought to be able to bias deci-
sion-making through its connections with other cognitive and motor brain systems [77,78].
Therefore, its modulation by price variations is very likely to lead to behavioural consequences
in terms of buying decisions, as suggested by our observedBNB effect on FRN amplitude.

This explanation is also consistent with previous research using functionalmagnetic reso-
nance imaging (fMRI) reporting an association between increased activity in the medial
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prefrontal cortex (MPFC) and price-related consumer behaviour [3,6,7,79]. MPFC areas, and
in particular the ACC, are thought to be involved in PE computation. However, it has to be
noted that a particular brain area is often made of different groups of neurons that can perform
different types of computations [80,81]. This is particularly true for the MPFC, which has been
associated to many distinct psychological processes [13–17,32,78], and thus its activation can-
not establish by itself the recruitment of PE-related processes. Given that the FRN is widely
seen as an index of PE computation, our results suggest that these processes may have been
involved in previous findings of MPFC activity during shopping tasks.

Although we did not have specific hypotheses about the P300, we found that its amplitude
was more positive for UL than US trials. Nevertheless, it did not reliably predict buying deci-
sions. The P300 is mostly related to the mobilization of attentional resources [39,64] and in the
decision-making literature, this component tends to be larger for positive than negative out-
comes [40,82]. Consequently, the P300 seems to reflect a preference of attentional systems
towards positive prediction errors in decision-making environments [18]. The lack of links
with buying decisions suggests that this attentional response may not necessarily be linked to
the fulfillment of a value-related goal. Alternatively, a link between attention to price stimuli
and buying decisionsmight depend on parameters not investigated in this study. For instance,
a recent study [83] found a relation between the P300 and buying decisions that varied accord-
ing to individual differences (e.g., trait anxiety).

A number of alternative explanations and caveats about our interpretations need to be dis-
cussed. First, it could be argued that our FRN results are caused by changes in product desir-
ability, rather than by an effect of PPE. However, desirability scores were equated across the
four key UL, US, OL and OS conditions through our randomization procedures and thus price
difference effects on the FRN cannot be accounted for by differences in desirability. Further-
more, the BNB effect on the FRN seems to be accounted for by UL trials, which invalidates a
desirability-based explanation of the BNB effect, given that the UL condition does not differ
from other conditions in terms of desirability scores. Second, as explained in the Methods sec-
tion, the fact that small PEs were obtained through distribution-baseddeviations and that large
PEs were obtained through fixed-percentage deviations could create a potential confound.
Therefore, one could argue that PE size effects can actually be merely explained by a “fixed vs.
distribution” effect on FRN amplitude. Although we do acknowledge that this explanation is
possible, the nature of the FRN results makes it highly unlikely: If FRN results were affected by
a “fixed vs. distribution” effect, then all large PE conditions should be different from all small
PE conditions in a uniformway. However, this prediction is invalidated by the absence of reli-
able OL-OS differences in the FRN data, which strongly contradicts this alternative explana-
tion. Third, it could be posited that the FRN was modulated by an affective reaction to the
anticipation of potential cash savings obtained by buying cheap products, regardless of our
under- and over-pricing manipulation. However, this explanation would predict a graded dif-
ference in FRN amplitude that mirrors potential cash savings (OL<OS/US<UL). This predic-
tion is disconfirmedby the absence of OL-OS differences in our FRN data, which renders
unlikely an explanation based on affective reactions to the anticipation of savings. This expla-
nation is further compromised by the finding that our behavioural analyses showed that the
effects of potential cash savings on buying decisions was virtually non-existent, which suggests
that participants’ behaviour was not driven by a “savings” strategy. Finally, the greater amount
of buys in UL compared to other conditions is inherent to shopping behaviour, in which
underpricing leads to more purchasing decisions if all other parameters are held constant.
Therefore it is worthwhile to discuss in more details whether this could create important con-
founds. As indicated by our analysis of BNB effects after the removal of specific types of trials,
this phenomenon seems to account for the BNB effects in that the BNB effect on FRN
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amplitude is probably explained by the effects of UL on FRN amplitude, which is perfectly con-
sistent with our hypotheses. However, the greater amount of buys in the UL condition could
also suggest that the effects of price deviations on ERPs could be confounded by differences in
the frequencies of Buy/No-Buy decisions. The fact that buying decisions occur after the feed-
back (price offers) to which ERPs were time-locked limits the extent to which buying decisions
couldmodulate the relationship between price deviation and the FRN/P300. However, one
could argue that an “intention to acquire” couldmodulate neural activity at the time of price
offers, above and beyond the effects of price deviations. However, a putative “intention to
acquire” that would be independent from price manipulations is likely to have been captured
by our desirability scales, which operationalized desirability as an intention to obtain/acquire
the product (or "wanting"). An important aspect of these desirability scores is that they were
equated across all price conditions (UL, US, OL, OS) and therefore it is unlikely that a price-
independent “intention to acquire” could explain the FRN/P300 relationship with price devia-
tions. Consequently, an “intention to acquire” effect at the stage of price offers would be possi-
ble only if this intention was fully driven by the manipulation of price deviations. However,
this would lead to the implication that FRN/P300 effects are ultimately accounted for by price
manipulations, which would be consistent with our main explanation. Furthermore, we also
re-computed the key UL-US contrast in our FRN data only for trials followed by a "Buy" deci-
sion on 29 participants who had enough artifact-free trials for this comparison. If price devia-
tion effects were accounted for by differences between Buy and No-Buy trials, then the key
UL-US contrast should be reduced if only "Buy" trials were considered.We observed that this
contrast remained significant [F(1, 28) = 10.5, p = .003, ηp² = .27, see S2 Fig], and therefore, we
found no evidence of a BNB confound in our manipulation of price deviations. However, we
do acknowledge that future research will be needed to fully address this issue, in experiments
where price deviations and intention to acquire are independentlymanipulated.

In conclusion, our results show that two brain potentials usually linked to unexpectedout-
comes–the FRN and the P300 are sensitive to the violation of price expectations in a virtual
shopping task. Although we acknowledge that a number of alternative explanations can be
advanced (e.g. affective reactions to cash savings, desirability, etc.), our results seem to better fit
an explanation based on positive prediction error mechanisms. Future research will be needed
to confirm these findings, but the current data opens new perspectives for the field of consumer
neuroscience: First, this study suggests that groups of neurons coding positive prediction errors
play a critical role in consumer decision-making, and thus electrophysiological biomarkers of
reward processing [30] might potentially become useful tools to model consumer behaviour.
Second, the link betweenwell-known biomarkers of prediction error computation and key
aspects of consumer decision-making suggests that RL theory has a strong potential to form
neurobiologically grounded theoretical models of consumer behaviour. Third, this study
focused on price expectations (or “fair price”), but future research could investigate if the FRN
and P300 could predict willingness to pay (WTP), an important concept directly linked to buy-
ing intentions [84]. Previous research has already shown that WTP is linked to MPFC activity,
which suggests that PE mechanisms may be involved [7]. Finally, the finding of a link between
electrophysiological signals of prediction error and purchasing choice suggests that low-cost
neuroscience techniques such as EEG and the Event-Related Potentials method (ERP) can
serve as tools to better understand and predict consumer behaviour.

Supporting Information

S1 Fig. Difference waveforms for the FRN.Difference waveforms in which overpriced ERPs
were subtracted from underpricedERPs, separately for large and small prediction errors. The y
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axis shows amplitude in microvolts (μV) and x axis shows time in milliseconds. The circle and
arrow indicate the positive peak of the difference waveform in the “Reward Positivity” time
window.
(TIFF)

S2 Fig. ERP waveforms for “Buy” trials. ERP waveforms from a cluster of frontal electrodes
time-locked to the offer price (stage #9) separated according to UL and US trials. Only trials
followed by "Buy" decisions are taken into account for this figure. Amplitude in microvolts
(μV) is on the y axis and time in milliseconds is on the x axis.
(TIFF)

S1 Results. SupplementaryResults. File containing supplementary analyses.
(DOCX)
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