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Molecular crowding is a critical feature distinguishing intracellular environments from idealized
solution-based environments and is essential to understanding numerous biochemical reactions, from
protein folding to signal transduction. Many biochemical reactions are dramatically altered by crowding, yet
it is extremely difficult to predict how crowding will quantitatively affect any particular reaction systems. We
previously developed a novel stochastic off-lattice model to efficiently simulate binding reactions across
wide parameter ranges in various crowded conditions. We now show that a polynomial regression model can
incorporate several interrelated parameters influencing chemistry under crowded conditions. The unified
model of binding equilibria accurately reproduces the results of particle simulations over a broad range of
variation of six physical parameters that collectively yield a complicated, non-linear crowding effect. The
work represents an important step toward the long-term goal of computationally tractable predictive
models of reaction chemistry in the cellular environment.

he intracellular environment is a densely concentrated region packed with a mixture of numerous types of
macromolecules and subcellular structures'. Because of this dense crowding, biochemical reactions in vivo
behave significantly differently from the same reactions in the well-mixed and dilute conditions of typical
in vitro models'. Molecular crowding, one of critical features of the intracellular environment, affects many fun-
damental cellular processes, such as protein folding’, protein aggregation®, enzyme activity*, reaction kinetics®, and
signal transduction®. Moreover, the relative size and shape of crowding agents are also crucial parameters in
molecular crowding”®.The specific effects of molecular crowding on any particular system, however, are not easily
predicted even given detailed knowledge of the specific physical parameters of the given reaction system’''.
Therefore, quantitatively characterizing how crowding influences any given reaction system is a very challenging
problem using in vivo or in vitro model systems. Computational modeling and simulation methods provide
alternative ways to estimate the effects of individual parameters singly or in combination because these methods
allow for us to easily and precisely vary reaction system parameters separately and in combination, a capability
difficult to match in any real experimental system. Prior computational models, however, have significant limitations
with respect to simulating model reaction systems under crowded conditions. Ordinary differential equation (ODE)
models generally assume a well-mixed and diluted solution and thus ignore the crowding effect. Partial differential
equation (PDE) models can include spatial constraints but also provide no explicit basis for modeling the crowding
effect specifically'>. Particle-based simulations provide a way to more directly address the molecular crowding effect
and explore how many parameter changes might influence it. Lattice-based models provide a computationally
efficient means of performing such simulations but require simplified models of particle movement and structures
and are therefore prone to exaggerating the crowding effect'®. Off-lattice models based on Brownian or Langevin
dynamics provide for more realistic simulations but at a high computational cost for highly crowded conditions'*'?,
making them unsuitable for modeling crowding for large numbers of particles or long time scales. There is conse-
quently no method that has both the realism to accurately and quantitatively simulate reactions in crowded media
and the efficiency to do so for sufficiently large system sizes and time scales to model many biological reactions.
In order to overcome the inherent limitations of the various methods available, we propose a novel strategy
intended to yield both efficiency and accuracy in modeling chemistry in crowded media. We accomplish this goal
by using relatively computationally costly particle simulations on simple test systems to determine how multiple
parameters act singly and in combination to influence the crowding effect and then fit an easily-applied regression
model to outputs of these simulations for use in quickly making crowding corrections to more efficient simulation
methods. In previous work, developed a coarse-grained two-dimensional stochastic off-lattice particle simulation
(2DSOLM)'¢ based on Green’s function reaction dynamics'” for simulating binding kinetics in various molecular
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crowding conditions. We subsequently showed that one can simplify
the problem of modeling of the crowding effect by identifying a
subset of “separable” parameters, whose effects one could learn inde-
pendently and then merge into a model of their collective effects'®.
These four parameters in 2DSOLM are the total concentration (C);
the probability of binding upon a collision between two reactant
monomers (B); the mean time for dissociation event (M), defined
as the inverse of the rate constant; and the diffusion coefficient for
reactants and inert particles (D). The work showed that such an
approach can simplify the problem of quantitatively modeling reac-
tions in crowded media by allowing one to independently account for
the influence of several separable parameters. It did not, however,
resolve the inherent problem that the crowding effect depends on
non-linear interactions of multiple physical parameters.

Here, we generalize the prior approach to account for both
separable and inseparable parameters by creating a collective
model accounting for the prior parameters and two additional para-
meters — the area ratio of dimer to monomer (¢, w15, = omr>, )
and the area ratio of inert crowding agent to monomer
B, mrt,, particle = P10 12 o) — Whose effects are inseparable from
one another and from that of the total concentration (C). Figure 1
illustrates these two cross-dependent interaction parameters. The
parameter o captures the change in excluded volume induced by bind-
ing between two reactant monomers. Fig. 1a illustrates three different
scenarios after the reaction: <2, «=2, and «>2. The first case repre-
sents a decrease in the area occupancy of two reactants, as might occur
if one molecule docks into a solvent-inaccessible binding pocket of
another molecule or the two bind tightly along two rough faces whose
solvent-accessible areas were significantly larger than their van der
Waals areas. The second case represents an unchanged area occupancy
of the product relative to the two separate reactants. The third case
represents an increase in area occupancy of the product binding, as
may occur if the proteins bind so as to establish some new solvent-
inaccessible cavities. This parameter would be expected to influence
crowding due to an entropic preference for reducing excluded volume
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Figure 1 | Ilustrations of the 2DSOLM reaction model for two different
cross-dependent interaction parameters. The parameters o and f§
correspond to sizes of reactant dimer and crowding agent relative to
reactant monomer. Cyan circles are reactant monomers, magenta circles
are reactant dimers, and open circles are inert crowding agents. (a)
Mlustration of varying o. (b) Illustration of varying f.

in conditions of high crowding. We would thus expect crowding to
tend to drive binding for «<<2 and inhibit binding for «>2.

The parameter f§ represents another cross-dependent property
describing the interaction between reactants and inert particles and
specifically influencing how effectively inert particles provide steric
hindrance to reactants. Three different cases are illustrated in Fig. 1b:
p<1, =1, and >1 for 2DSOLM. The first case corresponds
to individual inert particles smaller than reactant monomers, the
second to inert and reactant particles of equal size, and the third to
inert particles larger than reactant monomers. Unfolding experi-
ments on ubiquitin’ have shown that reducing the size of an inert
crowding agent can lead to a stronger crowding effect. However, such
anecdotal observation provides little basis for quantitatively estimat-
ing how the relative size of crowding agents to reactants will affect
any given the binding reaction system, especially in a background of
potentially multiple other parameter changes. For example, while
scaled particle theory in principle allows one to make such inferences
for some isolated parameter changes, it is difficult to generalize
to more complicated scenarios. In the present work, we develop a
unified model accounting for both the previously separable and the
inseparable parameters of the simulation, which we refer to as the
unified regression model. We show that it is possible to accommod-
ate the three inseparable parameters (0,f,C) in a single model
through a multidimensional polynomial regression model and
validate this model over variations in pairs of parameters. In addi-
tion, we validate our model of these three inseparable parameters by
comparison with estimates from scaled particle theories'**’. We then
show that it is possible to produce a full unified regression model
combining these multidimensional regression models with the prev-
iously derived separable components. Finally, we show that the uni-
fied model provides an accurate description of random changes in all
of the simulation model’s physical parameters over a broad range of
biologically relevant values in all parameters. In the process, we show
a way to build a model with nearly equivalent predictive power to the
costly particle simulations, but capable of easy evaluation for use in
correcting computationally efficient simulations of large systems and
long time scales. These findings have ramifications for our ability to
computational model a diversity of cellular functions that are likely to
be heavily influenced by intracellular crowding in two dimensional
space, such as protein synthesis, signal transduction, or cytoskeleton
assembly and disassembly.

Results

Simulation in 2DSOLM. We investigated the parameter dependence
of binding reactions in crowded media by using a two-dimensional
model of dimerization of a reactant monomer of radius 2.5nm simu-
lated in a 100nm X 100nm space with a hard reflective boundary
condition. This simple reaction model allowed us to focus on the
specific issue of binding equilibrium in a setting tractable for exploring
a broad parameter space with sufficiently large particle numbers and
numbers of replicates to produce reproducible results. We began with
our prior regression model expressing equilibrium constant as a multi-
plicative function of the effects of the four separable parameters:
C (total concentration), B (binding probability), M (inverse dissoci-
ation rate), and D (diffusion coefficient)'®. We then added the two
cross-dependent physical parameters, o and f3, which produce crowd-
ing effects inseparable from one another and from C. To extend the
prior regression model to the parameters ocand f3, we first established a
baseline simulation parameter set with default parameter values of
B=0.7, M=1ns, D=6.95X10""'m’s"!, =2, and /=1, values chosen
based on our prior simulation studies'®' to produce a reasonably
strong crowding effect as well as to approximate the temperature
and viscosity conditions of the cytoplasm®**>. We fixed one additional
simulation parameter, dy;,, describing a threshold maximum distance
at which two particles can interact with one another, to be dy;,=0.5nm
(one fifth of the radius of a reactant monomer). In SOLM simulations,
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all particles are diffusible and are separated by at least a distance of dy,.
When the simulation places two reactant monomers within a distance
of dy, of one another, they must either undergo a binding reaction or a
collision event, with probability B of binding or 1- B of collision'®. One
reactant and one inert particle or two inert particles that are placed
within dy;, of one another always undergo a collision event'®. A binding
event will result in the formation of a new dimer, while a collision will
result in the particle positions being resampled to be beyond dy;,. The
choice of dy;, influences the physical model of the simulator, in part
because dy, is effectively a radius at which particles are assumed close
enough to exert non-bonded forces on one another and initiate a
possible binding interaction and in part because it imposes an upper
limit on the maximum possible crowding level in the simulation. It
also influences computational efficiency, as small dj;, can lead to larger
numbers of events when particles are in close proximity. The default
dy, value was chosen empirically to permit physiologically reasonable
levels of crowding cases (up to 0.45 concentration) while still yielding
efficient simulations.

We then separately varied the individual parameter values for o
and f in conjunction with variations in total concentration using the
default values for the other parameters to test these cross-dependent
parameter effects on the binding chemistry. We simulated ten o
values (1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2) and seven f values
(0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6). For different o value simulations, we
simulated eight total concentrations (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.45) with dimensionless units of fraction of total simulation area
occupied by particles. To produce varying concentrations, we began
with a fixed concentration of reactants of 0.1 and then added inert
crowding particles to yield each higher value of total concentration
(e.g., C=0.1 corresponds to purely reactant monomers while C=0.25
corresponds to concentration 0.1 of reactant monomers and 0.15 of
inert crowding agents). For simulations of varying f3, we simulated
seven total concentrations (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4) again
using the fixed reactant concentration of 0.1 and varying inert mono-
mer concentrations, similar to the o simulations. Each set of para-
meters was run for 25s with 30 repetitions, with progress recorded
every 0.15625us. SOLM is a discrete event-driven method and thus
has no fixed time step, but rather jumps between discrete changes in
system states with randomly sampled waiting times between events'®.
The time interval to collect data on simulation progress only affects
visualization of results, not the actual progress of the simulation,
and was chosen to provide sufficient resolution to clearly display
transient behavior early in the curve and stochastic fluctuations at
long time scales. Data was collected at five different simulation times
(5, 10, 15, 20, 25ps) to analyze the crowding effect on the test reac-
tion, with values selected based on our prior work'®. For each con-
dition, we measured reaction progress by the mean number of dimers
as a function of time across all simulations.

Figure 2 shows the simulation results for varying values
of parameters o and f. Fig. 2a shows mean dimer counts at
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Figure 2 | Binding equilibrium as a function of concentration for varying &

and f. Cyan circles represent reactant monomers, magenta circles represent

reactant dimers, and open circles represent inert crowding particles. Embedded screen snapshots show an illustrative quasi-equilibrium state for the
maximum feasible level of crowding for each curve set. (a) Dimer counts for =1.4(top), 1.6, 1.8, 2.0, 2.2,2.4, 2.6, 2.8, 3.0, 3.2(bottom). Inset image shows

asnapshot for C=0.45 and «=1.4. (b) Equilibrium constants for «=1.4(top),

1.6,1.8,2.0,2.2,2.4,2.6,2.8, 3.0, 3.2(bottom). Inset image shows a snapshot

for C=0.45 and 2=3.2. (c) Dimer counts for f=0.4(red, top), 0.6(green), 0.8(blue), 1.0(cyan), 1.2(magenta), 1.4(black), 1.6(gray, bottom). Inset image
shows a snapshot for C=0.4 and f=0.4. (d) Equilibrium constants for f=0.4(red, top), 0.6(green), 0.8(blue), 1.0(cyan), 1.2(magenta), 1.4(black),

1.6(gray, bottom). Inset image shows a snapshot for C=0.4 and f=1.6.
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quasi-equilibrium for varying o values. As the parameter value o
decreases, the number of dimers at equilibrium rapidly increases,
especially for the high crowding cases. Interestingly, there is only a
slight difference between dimer counts at very low crowding levels
but the separation between the equilibrium counts rapidly increases
with increasing crowding level. The K., curve, calculated from simu-
lation data, more clearly shows how strongly the parameter o influ-
ences the model reaction system, as shown in Fig. 2b. These results
show that the parameter o and the parameter C are cross-dependent
and inseparable. While the size of a dimer does not significantly
influence the binding reaction under low crowding conditions, a
smaller dimer is much more conducive to binding than a larger
dimer under densely crowded conditions. The embedded images in
Fig. 2a and 2b show snapshots of the simulator at the quasi-equilib-
rium state (25ps) for «=1.4 and «=3.2 respectively at under a highly
crowded condition (C=0.45) in 2DSOLM. Fig. 2c shows mean dimer
counts at the quasi-equilibrium state based on simulation data for
varying fi. As the parameter value f§ decreases, the number of dimers
at the equilibrium state rapidly increases, especially for high crowd-
ing cases. Similar to the parameter o case, variations in f§ produce
little change at low crowding levels, but the difference rapidly
increases as the crowding level increases. The Keq curve, calculated
from simulation data, shows how strongly the parameter f§ influences
the model reaction system, as shown in Fig. 2d. These results show
that the parameter  and the parameter C are cross-dependent and
inseparable. While the size of an inert crowding agent does not
significantly influence the binding reaction under low crowding con-
ditions, binding is much more favorable in the presence of a smaller
versus a larger crowding agent under densely crowded conditions.
The embedded images in Fig. 2c and 2d show snapshots of the
simulator at the quasi-equilibrium state (25ps) for f=0.4 and
p=1.6 respectively at a highly crowded condition (C=0.4) in
2DSOLM.

Unified regression models. We developed three different polynomial
regression models: K,,(C,) with default f§ value (=1), K.,(C,) with
default o value (=2), and K,,(Co,p). To find the best-fit degree for
each model, we applied leave-one-out cross validation to models of
varying degree derived from the simulation data. For K,,(C,x), a total
of 80 different simulation data points was collected, making 11" degree
the highest possible before the number of regression coefficients
exceeds the number of data points. For K,,(C,p), a total of 49 different
simulation data points was collected, making 8" degree the highest
possible. For K,,(C,o,3), a total of 122 different simulation data points
was collected, making 7" degree the maximum possible. Figure 3
shows the root mean square errors of the leave-one-out cross valid-
ation for K,,(C,), Keg(C,f), and K,,(C,,8), respectively. Sixth degree
polynomials were selected as the best-fit models after cross validation.
The resulting best-fit regression models for K,,(C), K.,(C,f), and
K.4(Ca,) are provided in equations (1-3).

Keq(Co0t) =107" x [(—1.441) + (1.969C+3.7510)
+(—7.5Ca+17.326C* — 3.712a7)

+ (4.204Ce* +24.718C* 0 — 163.106C* + 1.943%)

+ (—1.029Co® —13.071C*¢* — 31.65C7 0+ 572.072C* — 0.5660") (1)
+(0.217Ce* —0.048C%> +44.2C% > — 167.569C* 0 — 533.094C°
+0.0850°) +(—0.044Ce’ +0.801C%0* —12.484C° o

+54.042C* % — 88.673C° 0+ 462.022C° — 0.0050:°)]

Kg(CB)=10"" x [(—0.99) + (12.39C +4.43B)
+(—22.25C—95.67C* —10.55()
+(30.73C* +84.2C* f +424.36C° 4 13.565°)
+(—31.3Cp> — 12.66C* >

(2)

—345.58C°f—896.2C* —9.35*)

+ (18.33CB* —20.06C B> + 116.16C f* + 523.21C* B+ 852.66C° + 3.13°)

+(—4.84Cf° +16.6C*f* —79.57C3 > +168.14C* 2 — 777.57C° B
+119.35C° —0.38%)]

Keq(Co0t,B) =101 x [(—2.66) + (19.85C +4.420 +2.79P)
+(—111.51C* —4.145*> —5.83 3% — 14.42Co. — 21.44Cf)
+(370.09C% +2.10° 4+ 6.71 % +7.21Co*> +28.23C3>
+55.44C%0+88.32C% ) + (— 566.94C* —0.60* —3.894*
—103.33C3—366.94C> f — 1.78Ca® —29.21C°* —21.42C%o
—11.53C?$%) +(702.26C° +0.092° +0.918° — 83.81C*a
+546.94C* f+0.33Co* +17.81C* 4 56.4C3 0% + 126.84C° 52
+0.95C%0> —23.24C% %) 4 (285.17C° —0.0050° — 0.008 3°
—137.49C°4—777.57C° f —0.05C0° — 4.84C° +50.16C* o
+156.28C* % +0.78C%a* +17.39C** —13.57C% > —79.57C% )

Surface plots of K., values as functions of both parameters « and C
are shown in Fig. S1 and S2 for simulation data and for the best-fit
polynomial regression models of degrees one through eleven.
Similarly, the surface plots of K., values as functions of both para-
meters f§ and C are shown in Fig. S3 for simulation data and for the
best-fit polynomial regression models of degrees one through eight.
Finally, the unified regression models were built, which combined
with previous regression model'® , shown in Methods.
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Figure 3 | Least-squares error rates for leave-one-out cross validation test for different polynomial degree. (a) Keg(2,C). (b) Keg(B,C). () Keglo,3,C).
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Evaluation of the unified regression models. To evaluate three
different unified regression models in equations (5-7 in Methods
below) with the best-fit sixth degree polynomials (1-3), we randomly
selected 30 test cases for each model with fixed reactant concentra-
tion 0.1 and other parameters selected uniformly at random from the
ranges C = 0.1 - 04,B =0.1-09,M = 0.6 - 1.4ns, D = 1.95 -
21.95 X 107"m?* ™', & = 1.4 - 3.2, and § =0.4 - 1.6. For each test
case, we compared mean dimer counts from the simulation to the
estimated dimer counts predicted by the unified regression models.
Simulation values were averages of over 30 repetitions per data point.
As an additional test of the performance of the model, we conducted
another 30 random trials for each model for a 200nm X 200nm
boundary and a 400nm X 400nm boundary in order to explore
whether boundary effects significantly impact the fit of the regression
model. We similarly compared these simulation results with esti-
mates from the regression model. Simulation values were averages
of over 5 repetitions per data point. Figure 4 shows the comparison
between the simulated values and estimated values from our regres-
sion models using random parameter values from the full parameter
space of each regression model. For the 100nm X 100nm cases in
Fig. 4a, d, and g, our regression model closely matches the
dimer counts derived from the particle simulations at the quasi-
equilibrium state. The results suggest that one can use the regression
model as a reliable and much faster replacement for the particle
simulations for quantitatively predicting equilibrium constants over
the parameter range examined. For the 200nm X 200nm cases in
Fig. 4b, e, and h, and the 400nm X 400nm cases in Fig. 4c, f, and i,
simulations and regression predictions still match very well,
although the total particle number increases by four and sixteen

times respectively, suggesting that boundary effects have minimal
influence even for these relatively small simulations. The five-para-
meter regression models (K.,(C,B,M,D,x) with f=1 in Fig. 4a, b, and
¢, Keq(C,B.M,D, f) with « = 2 in Fig. 4d, e, and f) accurately predicted
the simulation dimer counts for simultaneous variation across the
range of parameters previously examined singly or in pairs. The
correspondence between the regression models and full simulations
was somewhat worse for the full six parameter regression model
(Keq(C,B,M,D,a, ) in Fig. 4g, h and i). Overall though, the correlation
is strong for the vast majority of the cases, which supports the equi-
valency of the regression and simulation predictions over a broad
range of biologically relevant values for all parameters.

Comparison with scaled particle theory. The influence of non-ideal
interactions on chemical reactions can be estimated by thermo-
dynamic theories®*. The excluded volume effect that becomes sig-
nificant under conditions of high molecular crowding is one of
critical non-ideal interactions. A correction factor to the equilibrium
constant for excluded volume can be approximately calculated, yield-
ing a corrected activity coefficient of reactants and products:
Keq=T e K° where K., is an apparent equilibrium constant, K° is
the equilibrium constant in the ideal state, and I',,. is the correction
factor for the exclusion effect from interactions among particles in
the reaction system®*.

To validate our model, we calculated the correction factor and
apparent equilibrium constant for various parameter conditions for
the unified regression model in Eq. (3), 2DSOLM simulation, and
scaled particle theory in two dimensional space (2DSPT)"**. We first
ran additional simulations at an uncrowded 1% concentration case
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Figure 4 | Comparison of dimer counts obtained from regression estimates vs. simulations. A data point on the diagonal line would indicate perfect
agreement between the two values while points above the line show overestimates of simulation values and points below the line underestimates. (a) K.q(,C)
in 100nm X 100nm. (b) K¢4(2,C) in 200nm X 200nm. (c) Ke,(2,C) in 400nm X 400nm. (d) K,(5,C) in 100nm X 100nm. (e) K.4(f,C) in 200nm X 200nm.
(f) Keg( B,C) in 400nm X 400nm. (g) Kq(o,f,C) in 100nm X 100nm. (h) Ky(e,5,C) in 200nm X 200nm. (i) Ke,(o,f,C) in 400nm X 400nm. The
concentration of reactants is fixed at 0.1 and the concentration of inert crowding agents is randomly selected from 0.0 to 0.3. The other parameters are
uniformly randomly selected, with B from 0.1-0.9, M from 0.6-1.4ns, D from 1.95-21.95 X 10~ "'m? ', o from 1.4 — 3.2, and f§ from 0.4 — 1.6.
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Table 1 | K° [counts~'m?] for two different parameters (M and «)
from simulation results of 1% concentration, pure reactants. All the
other parameter values are set to default values (B=0.7,
D=6.95x10"""m?s~", p=1, and dy, = 0.5nm). The data was
collected at 5 time points (5, 10, 15, 20, 25ps) for 30 independ-
ent runs in a 500nm X 500nm simulation area.

Table 2 | K° [counts~'m?] for different dy, parameters from simu-
lation results of 1% concentration, pure reactants. All the other
parameter values are set to default values (B=0.7, M=1ns,
D=6.95%10"""m?s"!, «=2, and B=1). The data was collected
at 5 time points (5, 10, 15, 20, 25ys) for 30 independent runs in
a 500nm X 500nm simulation area.

(C=0.01, pure reactants case) with default parameter values of B=0.7,
M=1ns, D=6.95X10""m?*', «=2, =1, and d;=0.5nm. We
assumed that the interaction among particles at 1% concentration
can be reasonably ignored, allowing us to estimate an uncorrected
equilibrium constant at the ideal state (K°) from the simulation results.
We also ran simulations for three o values (1.4, 2.0, 2.6) and three M
values (0.1, 1, 10ns). In addition, we ran 1% concentration simulations
for three dy;, values (0.5, 0.25, 0.125nm). Each of these simulations was
used to calculate a K° for the appropriate condition. Tables 1 and 2
show the calculated K’ from these simulation results.

We then estimated apparent equilibrium constants as a function of
total concentration for each set of parameters examined above. For
tests of variation in « and M, we examined two different situtations of
crowding induced by 0.1 concentration of reactants (Cg) plus inert

o di, = 0.5nm 0.25nm 0.125nm
M 1.4 20 2.6 2.46e-17 4.94e-17 9.37e17
0.1ns 2.70e-18 3.43e-18 1.97e-18
Tns 2.55e-17 2.46e-17 2.07e17 crowding agents to yield the eight total initial concentrations: 0.1,
10ns 2.57e-16 2.53e-16 2.53e-16

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45. As a secondary validation of the
model outside the training conditions, we examined crowding
induced purely by reactant particles at the same eight initial concen-
trations: 0.1,0.15,0.2,0.25, 0.3, 0.35, 0.4, 0.45. In both cases, apparent
equilibrium constants for SOLM were calculated from simulations
and the apparent equilibrium constants for unified regression model
(URM) were estimated from Eq. (7). The apparent equilibrium con-
stants from scaled particle theory (SPT) were calculated using calcu-
lated K° from SOLM simulation of 1% pure reactant case and
estimated correction factors based on the equations in 2DSPT for
given parameters (concentration of reactants (Cy), concentration of
inert crowding agents (Cy), o, and f3)">*.

Figure 5 compares apparent equilibrium constants for crowding
induced by adding inert crowding agents to fixed 0.1 Cg and for pure
reactants for varying M and «. URM, SOLM, and SPT all show an
apparent equilibrium constant that nonlinearly increases with more
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2DSPT, 4=2.6 4 4
0.6 URM, 0=1.4 / 4
URM, 0=2.0
URM, 0=2.6 /
2 / 2
0.2 )
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
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Figure 5 \ Apparent equilibrium constants for SOLM, URM, and SPT for two different parameters (M and ). (a) M=0.1ns. (b) M=1ns. (c) M=10ns
for 0.1 concentration of reactants with additional inert crowding agents. (d) M=0.1ns. (e¢) M=1ns. (f) M=10ns for pure reactant simulations. All other
parameter values are set to default values (B=0.7, D=6.95X10""m?’s"', f=1, and d,;, = 0.5nm).
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compact dimers and higher total concentrations. In addition, the
apparent equilibrium constant for URM, SOLM, and SPT increases
as the mean time of dissociation events increases from 0.1ns to 10ns.
The test case for the exclusion effect mainly from the inert crowding
agent, shown in Fig. 5a,b,c, showed that URM more closely tracks the
SOLM results than does SPT, consistent with the notion that the
regression model is better able to mimic the more complicated inter-
action patterns found in the full simulations than are the more
simplified assumptions of the SPT model. However, tests involving
high crowding induced by the reactant particles themselves rather
than an inert crowding agent, shown in Fig. 5d,e,f, showed that SPT
predicts the apparent equilibrium constant more closely to SOLM
simulation results than URM does, especially in cases involving more
compact dimers. These latter results demonstrate that the ability of
the regression model to accurately capture the behavior of the par-
ticle simulation can break down outside the parameter domain to
which it was trained.

As a further demonstration of the utility of the regression
approach, we added an extension to the model to account for an
additional parameter, dy;, a threshold distance used by the simulator
for identifying possible reaction events among nearby particles, as
well as by the Green’s function reaction dynamics (GFRD) algorithm
to trigger new sampling of particle positions'®'”. This parameter can
be considered to roughly capture the difference between an inter-
action radius at which two particles can come close enough to influ-
ence and a collision radius at which they would actually sterically
interfere with one another. Figure 6 shows the apparent equilibrium
constant for fixed 0.1 Cg with added inert crowing agents for three
different f values and three different d;;, values. The parameter effect
of the threshold distance (dy,) is nonlinear and inseparable from
other parameters that influence crowding, particularly total concen-
tration (C). Because the URM was not trained to model d;;,, we added
an additional multiplicative and separable term to the URM by per-
forming a regression fit to a quadratic function in C and dy,. The
resulting term

(5.72—6.1C—18.03dy, +15.09Cdy, — 2.24C* + 16.4d3, )

provides the best quadratic fit for the given parameter range using a
leave-one-out cross-validation. The figure plots predicted K., for
SOLM simulations, SPT corrections to low-concentration simula-
tions, and the URM extended with the above C and d,;, cross-term.
There is no explicit SPT correction available for this para-
meter, although the SPT results do reflect the change in the

low-concentration equilibrium K° induced by changes in dy,. All
three models show similar non-linear behavior at the default d,;, of
0.5nm. At dy, = 0.25 nm, the extended URM provides a noticeably
closer fit to the full particle simulations than does SPT, showing that
even a crude and essentially physically naive regression model can
reasonably capture the behavior of the full simulations. At
dy,=0.125nm, results are more mixed, with the extended URM
showing a better fit for much of the range of ff and C, although
eventually breaking down at the most extreme conditions of high
concentration and small crowding agents. The results thus demon-
strate the ability of regression modeling to capture a physical effect
for which we lack a good analytical model, although also the tend-
ency of such regression models to break down as one approaches the
limits of the parameter range to which they were trained.

Incorporation of URM corrections into ordinary differential
equation (ODE) simulations. The major goal of this work is to
develop fast but versatile corrections for crowding effects that can
be incorporated into more complex simulation models. To that end,
we conducted a simple demonstration of how the URM models can
be used in building efficient crowding corrections into fast crowding-
free simulations. We simulated a homodimerization reaction,
comparing SOLM particle simulations of the reaction, standard
mass-action ODE simulation without crowding corrections, and a
crowding-corrected ODE using our unified regression model
(URM). Each SOLM particle simulation used default parameter
values (B=0.7, M=1ns, D=6.95X10""m?*"!, and a=2, =1,
d;,=0.5nm) and was repeated 30 times with the average of the 30
runs used at each time point for visualization. We repeated each
simulation using an ODE model of the system lacking correction
for any crowding effects, deriving a dissociation rate k. from the
mean dissociation time M and an association rate k,,, from kg and
the estimated idealized equilibrium constant K°. We then repeated
each simulation using an ODE with k,gagain derived from M but k,,,
derived from M and the URM-predicted equilibrium constant
K.q(C,B,M,D,,) in Eq. (7). More details of the calculations are
provided in Methods. Two sets of simulations were conducted, one
using 0.2 total concentration (0.1 Cg + 0.1 C;) and one using 0.3 total
concentration (0.1 Cg + 0.2 C;). All simulations were run for 1 ps of
simulation time. Figure 7 shows results for C=0.2 (Fig. 7a) and
C=0.3 (Fig. 7b), highlighting 0.01 ps for C=0.2 and 0.1 ps for 0.3,
sufficient to display both transient and pseudo-equilibrium behavior
in each case. While both ODE models substantially deviate from the
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Figure 6 | Apparent equilibrium constants for SOLM, URM, and SPT for two different parameters (f and dy;). (a) dy, =0.5nm. (b) dyj, =0.25nm.
(c) dy, =0.125nm for 0.1 concentration of reactants with additional inert crowding agents. All the other parameter values are set to default values (B=0.7,

M=1ns, D=6.95X10""m? !, and aa=2).
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Figure 7 | Demonstration of URM as a method for adjusting for crowding effects in simulations. Each plot shows a comparison of a full SOLM model,
an ODE model ignoring crowding effects, and an ODE model using the URM to adjust for crowding in the simulation. Each SOLM simulation uses
default parameter values (B=0.7, M=1ns, D=6.95X10""m?"', and «=2, f=1, d,, =0.5nm). Each SOLM curve shows an average over 30 repetitions,
with error bars omitted for clarity. ODEs are simulated using estimated rate parameters from the quasi-ideal equilibrium constant in table 1 and default
parameter value of M. URM simulations are simulated using the default value of M to derive reverse rates and URM estimates of k., to determine forward
rates for the given M. (a) total concentration 0.2 (0.1 Cr + 0.1 C)). (b) total concentration 0.3 (0.1 Cr + 0.2 Cp)

full particle model in the early transient phase, the URM-corrected
model adjusts to yield an equilibrium value consistent with the full
SOLM particle model while the uncorrected ODE substantially
understates the equilibrium produced by the full particle model.
Table 3 shows run times for these sample simulations, as well as
larger simulations quadrupling the simulation space and particle
counts. As the table shows, both the crowding-naive and URM-
corrected ODE models show comparable run times to one another,
essentially independent of the scale of the problem. The SOLM par-
ticle simulations, however, produce substantially longer run times
than those of either ODE model in both conditions, and show
approximately a 16-fold increase in run time as the system size is
scaled four times. This quadratic increase in problem size for the
particle methods is expected due to an approximately linear increase
in work per event and linear decrease in mean waiting time between
events with increasing problem size'®.

Discussion

We have demonstrated that it is possible to establish a unified regres-
sion model of binding equilibrium in crowded media that can in
principle incorporate any physical parameters one can model in a
full particle simulation, even when those parameters exhibit cross-
dependencies for which we lack any predictive analytical theory. We
have shown that this approach can accurately mimic a computation-
ally costly particle model over a broad range of several such para-
meters. We have in the process shown the feasibility of a strategy for

Table 3 | Run time comparison for SOLM particle simulations, ODE
simulations using URM corrections for crowding, and uncorrected
ODE simulations. The table reports run fimes in seconds for 1ps
simulations of dimerization reactions using default parameter
values for each of the three models and for two system sizes and
two crowding levels.

C=0.2 C=03
Tus (0.1Ge+0.1C) (0.1G+0.2C)
100nm X 100nm  SOLM 3.13 10.33
URM 0.36 0.38
ODE 0.3 0.3
200nm X 200nm  SOLM 46.82 163.61
URM 0.35 0.38
ODE 0.31 0.29

quantitative simulation of reaction chemistry in crowded media that
will maintain comparable accuracy to detailed particle simulations
while enabling the use of much faster simulation methods. Our
model is consistent with previous theoretical studies® in finding that
total concentration (C) and size ratio parameters (o, f§) act non-
linearly to affect the binding equilibrium constant, and further cap-
tures both the cross-dependency of three key parameters (C, «, ) on
the model reaction system and the independent parameter effects of
three other parameters (B, M, D). The correction factors and appar-
ent equilibrium constants derived from our regression model gen-
erally match well with those derived from scaled particle theory,
demonstrating that our model captures the crowding effect for vari-
ous conditions of C, o, and f, reasonably. However, because the
apparent equilibra and corrections of our regression model are based
on empirical measurements from particle simulations, the approach
will extend in a straightforward manner to a much broader range of
parameters. We have further demonstrated how one can use this
regression model as a fast correction for crowding effects in efficient
ODE simulations. While the results of this corrected ODE model
do not capture kinetics of the crowded system as well as the true
particle simulation, they nonetheless provide an alternative that
accurately captures the effects on system equilibrium of the full par-
ticle simulations while exhibiting run times comparable that of a
simple ODE.

The principal alternatives for modeling chemistry in crowded
conditions are the direct use of detailed particle models, similar to
our SOLM but potentially far more involved in the range of para-
meters and details of the physical model, and scaled particle theory,
which uses simpler models for which one can analytically calculate
the contribution of the excluded volume event to reaction equilibria.
The regression approach is intended to balance the competing ben-
efits of these two alternatives: particle models in allowing one to
explore effects of many parameters with potentially complicated
cross-dependencies and SPT in allowing one to quickly compute
corrections for crowding. Particle models are computationally costly,
making them unsuitable for extremely large systems, slow reactions,
or very complicated models. SPT’s major limitation is that it depends
on one’s ability to derive analytical models for the specific parameters
or phenomena one wishes to consider. SPTs to date make various
assumptions that one may wish to relax in practice, and such correc-
tions may prove difficult to analyze. For example, both SPT and
SOLM conventionally assume that individual particles are hard
spheres in 3D and hard circles in 2D. This assumption has been
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relaxed in various ways in the SPT literature. Rajagopalan’s group
extended from the hard-sphere interaction model of SPT to the
nonbounded square-well interaction model®, and Mittal’s group
examined both repulsive interaction and attractive interaction of
crowding particles****. In addition, Minton extended from a simple
hard sphere model in SPT to two different particle models of a
querying protein: Gaussian cloud and equivalent hard sphere to
examine the excluded volume effect on more realistic conditions™.
These are not trivial extensions, however, and are not easily made by
users of the technology who are not experts in the underlying theory.
By contrast, the results above demonstrate how a comparable exten-
sion of the regression approach can be accomplished with no major
conceptual changes to account for varying effects of an extra para-
meter, dy,, that effectively controls a difference between the collision
radius and interaction radius of reactant particles. While the essen-
tially naive modeling that goes into such regression fitting has its own
limitations and cannot replace good theory when that is available, it
does provide a serviceable substitute for theory for systems too com-
plex to allow for analytical solutions. Our regression approach thus
provides a key step towards computationally practical simulations of
complex reaction systems in crowded media and thus towards real-
istic models of intracellular biochemistry.

As our demonstration example of URM-corrected ODEs shows,
the model exhibits essentially the same thermodynamic behavior as
the full particle simulations. However, the corrected ODEs exhibit
very different kinetics from the full particle simulations, more
comparable to those of the ODE. We attribute this inaccuracy in
transient behavior to the fact that the URM at present is fit only to
thermodynamic data and thus leaves the rate constants underdeter-
mined. The regression approach can in principle be extended to fit
rate constants, not simply equilibrium constants, potentially yielding
fast corrections to both kinetics and equilibrium but future work will
be needed to explore the effectiveness of such regression corrections
on kinetics.

Even for thermodynamics, the equilibrium model is not a perfect
representation of the system and additional challenges may be cre-
ated by extending it to more parameters or unexplored regions of the
parameter space. The accuracy of full six parameter model is
decreased relative to that of the five-parameter models, which sug-
gests that more accurate accounting of cross-effects may be needed.
This observation may derive in part from our decision to omit cross
off terms in the regression equation to reduce the number of regres-
sion parameters to a feasible level. It has previously been established
that concentration acts nonlinearly on binding chemistry™'*****. We
can further conclude that allowing for cross-dependent parameters
does require a higher order model of C than the third-order model'®
that proved sufficient when capturing only the effects of separable
parameters. Further increasing model complexity may be required to
handle a richer model incorporating physical factors neglected in the
present model.

It is also important to note that although the motivation behind
this work is to improve models of chemistry in the intracellular
environment, the model itself is a highly simplified view of binding
chemistry in crowded media. The true intracellular environment is
far more complicated than our simple reaction model, containing
various mixtures of different sizes of proteins and other molecules
that are often irregularly shaped and involved in many forms of
macromolecular complex or other complicated interaction patterns.
Recent simulation work in the area has shown the value of far more
complicated physical models, e.g., in the recent work of Kim and
Yethiraj using Brownian dynamics to explore effects of crowding on
ligand binding to membrane-bound receptors. > While our work has
not been extended to such detailed models, it nonetheless shows that
it is possible to produce a simple unified mathematical model that
can reliably reproduce the results of qualitatively similar computa-
tionally costly particle simulations for variations in several key

parameters of such a system. Nonetheless, one would need to account
for many other parameters to produce a quantitatively predictive
model of a realistic intracellular medium or any particular reaction
system within it. While no method, including ours, can yet approach
that goal, the present work provides a new approach toward more
complex simulations at any degree of abstraction. Another obvious
extension of the model is to three dimensional systems. We chose to
establish the regression approach on two dimensional systems prim-
arily because it provides a simpler and more computationally tract-
able framework in which to validate and demonstrate the proposed
regression strategy. Two dimensional crowding does nonetheless
have important applications in modeling association of membrane
bound proteins®, for example in helping to explain observed patterns
of clustering in the syntaxin-1 system®®. While there are no appre-
ciable conceptual obstacles to adapting the present methods to three
dimensions, it remains to be shown that accuracy of the model would
be comparable to that in 2D and that the increased computational
cost of running particle simulations for training the regression
models would not be prohibitive.

In the future, we hope to expand on the general idea of fitting
regression models to increasingly detailed particle simulations in
order to develop more realistic and complicated reaction models
suitable for producing quantitatively predictive simulations of reac-
tion chemistry in vivo. A similar approach may prove valuable to a
diversity of fields that similarly depend on computationally costly
particle models, including various disciplines of biology, physics,
chemistry, and engineering.

Methods

2DSOLM. Our previously developed two dimensional stochastic off-lattice model
(2DSOLM)' was used to conduct all particle simulations described in the paper. A
detailed description of the simulation program and its underlying algorithms is
provided in our prior work'®. To effectively simulate some high concentration cases, a
modified initialization protocol was used, as described in our prior research'®.
Initially, all reactants are monomers. Initialization of particle positions is performed
by establishing a grid of potential particle positions at the maximum possible packing
density for whichever of reactant monomers and crowding agents occupies the larger
total area and then randomly inserting particles into the corresponding grid positions.
This protocol was developed because it makes it possible to initialize in highly
crowded conditions where independent uniform placement of particles would usually
result in overlapping particles, such as for high concentration cases. The simulation
program of 2DSOLM was implemented by C++ programming language and run on
a Linux Beowulf cluster. The collected data files were analyzed and plotted using
Matlab (R2008a). Figures 2, 3, 4, 5, 6, 7, S1, S2, S3 were generated using Matlab.
Simulation snapshots were plotted using Matlab and then simulation movies were
made using Adobe Photoshop by concatenated these snapshots. The simulation code
for 2DSOLM was released at the web site: http://www.cs.cmu.edu/~russells/projects/
crowding/crowding.html.

The specific simulations run and their parameters are as described in the Results.

Calculating thermodynamic equilibrium constants by SPT. In calculating the
thermodynamic correction factor (I'gy.=K,4/K°), we first assumed that 1% pure
reactant case can be reasonably considered as an ideal state at which interaction
among particles in such a diluted condition will be negligible*. For example, the
calculated correction factor of 1% pure reactant case using simulation data in the
default parameter value is 1.02, which is reasonably closed to the ideal state (I',,.=1).
The simulation area was set to 500nm X 500nm for this condition to yield a large
enough number of reactants to get accurate measurements for the given parameter
conditionzs at 1% pure reactants case. The correction factor for SPT

o
(rexc = %
monomer and dimer, respectively) was calculated by using the simulation data at 1%
concentration to determine K° followed by SPT analytical approximation to the
activity coefficient under crowded conditions, as described in the prior literature
on scaled particle theory in two dimensional space'>*’. The density of reactant
monomers and dimers under any given condition was calculated by the following
equations'®:

="~ where y,, and yp are activity coefficients of reactant

4K gppt1— /8Rogpr+1
P 8Kz

B

2pp,, +Pm,, = Pr>

where pr = density of reactant monomers at initial state [particle counts/simulation
area], py, = density of reactant monomers at quasi-equilibrium state in the ideal

| 1:97 | DOI: 10.1038/5rep00097

9


http://www.cs.cmu.edu/~russells/projects/crowding/crowding.html
http://www.cs.cmu.edu/~russells/projects/crowding/crowding.html

state, and pp, = density of reactant dimers at quasi-equilibrium state in the ideal
state. K is then calculated by solving the equation K/I'x.(K) — K° =0 where

A% n?
.= Real}unfs/i — VIZW — 821 ™ :eﬂn?‘M* Inyp
e 1/.(’ i elnvp
Products”’ ‘D
where activity coefficients are
28Ry . SoR%, SIR3,
Inyy=—In(1-8)+ + —
"M ( 2) 1—s, 1—s, (1782)2
281Rp . SR} SIR?
Iny,=—In(1-S,)+ + _°17D
D (1=52) -8, 1-8  (1=5)

SO:T[ZP;:“(PM+PD+91)
Si=m (Z l’iRi) =n(pyRu +ppRo+pRr)

S, = n(z p[Rf) =n(py Ry +ppRy+ PR} ),

where p (density) = number of particles / simulation area, R = radius of a particle for
each particle species: M (reactant monomer), D (reactant dimer), I (inert crowding
particle)'>*. Finally, the apparent equilibrium constant is calculated by multiplying
the correction factor to K’ which is calculated from simulation results of 1% pure
reactant cases for given parameter conditions.

Simulation movie files. We made two movie files to demonstrate the simulation
process and show the effects of the two cross-dependent parameters. Each movie
contains two different moving images, which are distinguished by different values for
a single parameter while all other parameters use the common default values. Video
S1 presents «=1.4 vs. x=2.6 for C=0.45 and video S2 presents f=0.4 vs. f=1.6 for
C=0.4. The first half of each movie shows the system in the initial (pre-equilibration)
state, and the second half of the movie shows a quasi-equilibrium state. Movie files
illustrating the simulation progress and the effects of each parameter individually
were provided for the previous independent parameters'®. High-resolution versions
of the movies can be downloaded from: http://www.cs.cmu.edu/~russells/projects/
crowding/crowding.html.

Fitting K., to simulation results. We calculated the equilibrium constant (K.q) of the
homodimerization reaction by solving for K4 as a function of the initial monomer
concentration and mean steady-state dimer concentration. We then developed a
regression model for K4 as a function of the simulation parameters by extending our
prior regression model of four parameters (C, B, M, and D) up to six parameters
(C, B, M, D, o, and f3). First, we used our prior model for the contributions of the
parameters B, M, and D, which contribute linearly and independently to the
equilibrium constant'®, as shown in equation (4):

Ky(BM.D)= () (M4 b @)
VTN 0.7) \1.0ms ) \6.95 x 10~ 11251

We then built regression models of K.4(C,), Key(C,8), and Key(C,0,8) to include the
parameter sets (), (f8), and (o, 8). Because the three parameters (C,o,f3) are cross-
dependent, they cannot each be separately incorporated into the regression model.
Unified regression models for these three test cases are provided in equations (5-7):

Keq(C,B,M,D,x):Keq(C,EX)KEq(B,M,D) (5)
Keq(CsBaM’D’/})=Keq(c’ﬂ)Keq(B’M’D) (6)
Keq(C,B,M,D,oz,ﬁ) :Keq(C,ot,ﬂ)Keq(B,M,D) (7)

To find the best-matched regression model for each of the three cases, we per-
formed least-squares polynomial regression for each parameter set, beginning with
first-order regression models and increasing the degree until it was not possible to
increase further without the number of regression parameters exceeding the number
of data points. The general forms for the three regression models of K.q(C1),
K.4(C,B), and K,(C,0.,B) are as follows:

Keg(Co00) =aq + (a1 C+ a20) + (a3Cot+ a3 C* +ase®) + -+ - (8)
Keg(C.B)=ao+ (a1 C+af) + (asCB+asC* +asf’) + - - 9)

Keg(Coop)=a0+ (a1 C+ a2+ a3 ) (10)
10
+ (asCo+asCP+agC* +a,0> +agf) + - -

Coefficients for the polynomials were calculated by the least-squares polynomial
regression. For the polynomial K,,(C,,f3), we neglected the cross o terms to reduce
the number of coefficients of the model, on the hypothesis that these terms will have a
negligible effect beyond the effects for which Cot and Cf terms account. We selected
the best-matched polynomial across degrees by minimizing the least squares error
using a leave-one-out cross validation test for each of the three cases.

Extension of the URM to account for threshold distance (d,;,). An extension to the
URM to account for effects of d,;, was developed by adapting the same protocol from
above to learn an additional multiplicative factor to the standard URM. The extension
assumed that the previous full URM K_,(C,f8) could be corrected to account for both
the direct influence of d;, and the cross-dependence of d;, and C with a multiplicative
term learned by polynomial regression on dy;, and C. Simulations for three values of
dy, (0.5, 0.25, 0.125 nm) and three values of § (0.4, 1.0, 1.6) were fit to a series of
polynomial models of the form

[(C.dw) =ao+ (a1C+ardy) + (asCdy, +a,C* +asdy,) + L

Least-squares regression with leave-one-out cross-validation found a second order
model to yield the lowest cross-validated error. These fits were then used to create an
extended URM, Ko (C,0.f,din) = I'(C.di,)Keq (C.o0, ), used to evaluate the ability of
the regression approach to incorporate additional parameters for which no equivalent
SPT theory is available.

Use of URM as a correction to ODE simulations. To demonstrate of the use of the
URM as a means of quickly providing crowding corrections for fast space-free
simulations, we conducted a set of demonstration simulations using the URM to
adjust rates to a fast ODE model. We compared this URM-corrected ODE model to
full particle simulations with SOLM and to crowding-naive ODEs. SOLM simulations
were conducted using default parameter values (B=0.7, M=1 ns,
D=6.95X10""m? "', and =2, =1, dy, =0.5 nm, 100 nm X 100 nm space) for
0.1 Cg + 0.1 Cyand 0.1 Cg + 0.2 C;. Each simulation was repeated 30 times with the
resulting values averaged at each time point for visualization. Comparable ODE
models were instantiated by assuming the dissociation rate k,is the inverse of
dissociation time M and that association time k,,, is related to the idealized equilib-
rium constant K° by the formula

kon =K kogr

K° for each simulation was estimated for the idealized no-crowding condition from
1% concentration SOLM simulations, as in table 1. URM-corrected ODEs were
derived using an ODE model with dissociation rate k. again set to M~' but k,,,
recalculated at each step of the ODE using the URM from the formula:

kon= Keq(CaB,M,D’%ﬁ)kuff

The model is thus corrected so as to yield URM-derived equilibrium values.
Simulations were run for 1 pis for each model and concentration. As an additional test
of run time scaling of the model, we repeated each simulation under identical con-
ditions but using a 200 nm X 200 nm simulation space, with particle counts scaled
proportionately to maintain concentrations at C=0.2 or C=0.3. Run times were
recorded for the ode45 call for both ODE and URM simulations and for the full
execution of the SOLM model for particle simulations.

Both ODE models were simulated with Matlab 7.7.0, R2008b using the ode45
embedded Runge-Kutta integration method. SOLM was implemented using C++
and run in GNU bash version 3.2.9 (1), release (x86-64-redhat-linux-gnu). All run
time tests were run on a single Intel (R) Core (TM) 2 Quad CPU Q9550 @ 2.83GHz,
4GB RAM workstation using Linux Fedora release 7 (Moonshine).
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