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Abstract

Objective: To assess a new approach (weighting by “income probabilities [IP]”) that
uses US Census data from the patients' communities to approximate individual-level

income, an important but often missing variable in health services research.

Data Sources: Community (census tract level) income data came from the 2017

5-year American Community Survey (ACS). The patient data included those diag-

nosed with cancer in 2017 in Ohio (n = 65,759). The reference population was the

2017 5-year ACS Public Use Microdata Sample (n = 564,357 generalizing to

11,288,350 Ohioans).

Study Design/Methods: We applied the traditional approach of income approxima-

tion using median census tract income along with two IP based approaches to esti-

mate the proportions in the patient data with incomes of 0%–149%, 150%–299%,

300%–499%, and 500%+ of the federal poverty level (FPL) (“class-relevant income

grouping”) or 0%–138%, 139%–249%, 250%–399%, and 400%+ FPL (“policy-
relevant income grouping”). These estimated income distributions were then com-

pared with the known income distributions of the reference population.

Data Collection/Extraction Methods: The patient data came from Ohio's cancer reg-

istry. The other data were publicly available.
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Principal Findings: Both IP based approaches consistently outperformed the tradi-

tional approach overall and in subgroup analyses, as measured by the weighted aver-

age absolute percentage point differences between the proportions of each of the

income categories of the reference population and the estimated proportions gener-

ated by the income approximation approaches (“average percent difference,” or

APD). The smallest APD for an IP based method, 0.5%, was seen in non-Hispanic

White females in the class-relevant income grouping (compared with 16.5% for the

conventional method), while the largest APD, 7.1%, was seen in non-Hispanic Black

females in the policy-relevant income grouping (compared with 18.0% for the con-

ventional method).

Conclusions: Weighting by IP substantially outperformed the conventional approach

of estimating the distribution of incomes in patient data.
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residence characteristics/statistics and numerical data, social class, income/statistics and
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What is known on this topic

• Individual-level income is often a key variable of interest in biomedical research studies since

the impact of socioeconomic status on health has been repeatedly demonstrated.

• When individual-level income is not directly available, it is often proxied from community-

level data using approaches that can lead to significant misclassifications.

What this study adds

• This study finds that using income probabilities (IP) can more accurately estimate individual-

level income compared with the traditional approach of proxying individual-level income

using median census tract income.

• Weighting by IP performs particularly well at the extremes of the income distribution, which

is often of key importance in health disparities studies.

1 | INTRODUCTION

Individual-level measures of income are often a key variable of

interest in biomedical research studies since the impact of socioeco-

nomic status on health has been repeatedly demonstrated. However,

clinical data rarely capture this information directly, given the

impracticality of soliciting income data from patients in health care

settings. In datasets where patients' communities of residence are

known, researchers have approximated individual-level income using

community-level income from the US Census.

The most common and conventional implementation of this

approach assigns individuals the median income of their communities

of residence.1–4 The infidelity between community-level (aggregate)

and individual-level income has been documented in a broad range of

settings5–9 and can lead to large numbers of income misclassifica-

tions.3,10,11 Nonetheless, because individual-level income proxied

using median community-level income can often explain at least some

of the variability observed in study outcomes,3 and the lack of

reasonable alternatives, such an approach is generally accepted.12

In studies where income is a key exposure or a stratifying variable

of interest, more accurate approaches to income approximation are

desirable. Thus, this study describes and assesses a method of approx-

imating individual-level income from community-level income data,

coined here as weighting by “income probabilities [IP],” that can

potentially reduce income misclassification compared with conven-

tional approaches. When weighting by IP, the probability of commu-

nity residents having a certain, investigator-defined categorical

income value is calculated using community-level count income data

from the American Community Survey (ACS) of the US Census. These

probabilities are then used as observation weights for individual

patients, leading to synthetic datasets that are stratified into the dif-

ferent investigator-defined income categories.

This IP based approach holds theoretical promise for two reasons.

First, it is a “probabilistic” method of individual-level income approxi-

mation compared with conventional “deterministic” approaches. Con-
ventional approaches are deterministic in the sense that all patients

from the same community are proxied a single income value. A deter-

ministic approach can lead to many misclassifications by
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underestimating the numbers of patients on both the low and high

end of the income spectrum, while overestimating the number of

patients in the middle of the spectrum. Conversely, in weighting by IP,

patients are assigned a probability of having a particular categorical

income given their community of residence rather than a specific

income value. When these probabilities are used as observation

weights for the patients, and when the patients are aggregated, the

distribution of the approximated incomes of the patients is expected

to faithfully recapitulate the income distribution of the patients' com-

munities of residence (assuming the patients are representatively sam-

pled from their communities). The second related advantage of

weighting by IP is that no patients are explicitly excluded from a

particular income category. This preserves power compared with

conventional approaches.

To evaluate whether the theoretical promise of weighting by

IP translates practically, we evaluated two proposed IP based

approaches against the conventional approach of assigning individual-

level income categories to patients using median community-level

income data. The three approaches were assessed by applying them

to patient data from the Ohio Cancer Incidence Surveillance System

(or OCISS, Ohio's state cancer registry) and comparing the resulting

distribution of the income categorizations against a reference popula-

tion derived from the ACS's Public Use Microdata Sample for Ohio.

2 | METHODS

2.1 | The calculation of IP and the general
approach of weighting by IP

An investigator interested in identifying patients with incomes less

than 200% of the federal overty level (FPL) might proxy individual-

level income for the patients using the median community-level

income data from their communities of residence in the conventional,

prevailing approach. Commonly, census tract-level community income

data from the US Census are used. Thus, the presumed patients with

individual-level incomes <200% FPL would only include those living in

census tracts where the median census tract income is <200% FPL.

Like the conventional approach of income estimation, weighting

by IP uses community-level (census tract) income data from the US

Census to approximate individual-level income. In its most basic form,

IP are calculated by simply taking the count of individuals within a cer-

tain income bracket in each census tract, divided by the total popula-

tion of that census tract. To extend the above example, an

investigator interested in identifying patients with incomes <200%

FPL using weighting by IP would calculate two IP for each census

tract—one for <200% FPL and one for 200%+ FPL. Once these IP for

the census tracts are created, they are applied back to the individual

patients based on the patient's census tract of residence. The IP are

then used as observation weights to generate income-specific

statistics for the patients.

Consider an example of a dataset of 10 patients for which an

investigator wishes to estimate their incomes. From the available

patient address information, it is known that half of these patients live

in a “wealthy” census tract (“Community B”), and half live in a

“poorer” census tract (“Community A”). From the US Census, it is

ascertained that a total of 50 people live in the wealthy census tract,

of which 20 have incomes <200% FPL. Thus, the probability of having

an individual-level income of <200% FPL is 0.40 in this census tract

(and the probability of having an individual-level income of 200%+

FPL is 0.60). In the poorer census tract, the US Census indicates that

there are 50 residents, of which 40 have incomes <200% FPL; thus,

the probability of having an individual-level income <200% FPL is

0.80 for this census tract, while the probability of having an

individual-level income of 200%+ FPL is 0.20. These probabilities are

the IP. The IP are then applied back to the 10 patients using their cen-

sus tracts of residence (for example, each of the five patients from the

wealthy census tract is assigned a “<200% FPL income probability” of
“0.40” and a “200%+ FPL income probability” of “0.60,” while each

of the five patients from the poorer census tract is assigned a “<200%
FPL income probability” of “0.80” and a “200%+ FPL income proba-

bility” of “0.20”). To calculate the total number of patients estimated

to have incomes <200% FPL, the “<200% FPL income probability”
for each patient is used as the observation weight. Thus,

(5 patients � 0.40) + (5 patients � 0.80), or 6 patients would be

estimated to have incomes of <200% FPL. By extension,

(5 patients � 0.60) + (5 patients � 0.20), or 4 patients would be

estimated to have incomes of 200%+ FPL.

Note that in weighting by IP, no patients are explicitly excluded

from a specific income category of interest as in the conventional

approach. Rather, a patient's contribution to an income category sub-

population is modulated by the act of weighting by the IP. In the pre-

vious example, patients hailing from the poorer census tract were

assigned an income probability of 0.80, which was closer to the maxi-

mum value of 1. Since these patients were highly likely to have an

individual-level income of interest (<200% FPL) based on their census

tract of residence, they contributed maximally to the estimated sub-

population comprised of individuals with incomes <200% FPL. Con-

versely, patients hailing from the wealthier community were assigned

an income probability of 0.40, which was closer to the minimum value

of 0. Thus, they contributed comparatively less to the estimated sub-

population comprised of individuals with incomes <200% FPL.

Figure 1 provides a conceptual summary of conventional versus IP

based approaches.

The weighting by IP approach can be extended to classify patients

into multiple investigator-specified income categories. For example, an

investigator interested in classifying patients into incomes of 0%–100%,

101%–200%, and 201%+ FPL would first calculate IP for each of the

three income categories (“IP0%–100%,” “IP101%–200%,” and “IP201%+”) for
all of the census tracts in the study area. Then, applying IP0%–100%,

IP101%–200%, and IP201%+ to the patient data creates three synthetic data-

sets containing those with an estimated individual-level income of

0%–100%, 101%–200%, and 201%+ FPL, respectively. Note that the IP

for a given census tract always sum to 1 (e.g., IP0%–100% + IP101%–200% +

IP201%+ = 1, for a given census tract), a key feature of this approach. This

feature ensures that the total counts across the income-specific
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F IGURE 1 Conceptual summary of conventional versus the weighting by income probabilities approach to individual-level income
approximation. FPL, federal poverty level; IP, income probabilities [Color figure can be viewed at wileyonlinelibrary.com]
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subpopulations generated by weighting by income probability equal the

original, unweighted count of patients.

2.2 | Community-level income data from the US
Census

The ACS program of the US Census is an authoritative source of

community-level income estimates. The ACS asks more detailed ques-

tions on social, economic, housing, and demographic characteristics

than the decennial census; additionally, sampling for the ACS occurs

on a rolling basis (with 3.5 million Americans surveyed annually).13

Thus, among the publicly available data from the US Census, the ACS

provides the most detailed and timely statistics of community-level

income. Since the ACS samples a smaller population annually than the

decennial census, multiple years of data are aggregated to improve

the reliability of estimates.13 For example, “2017 ACS 5-year” esti-

mates combine the data collected from 2013 to 2017.

The publicly available data from the ACS generally come pre-

tabulated (in aggregate). Income in these pre-tabulated tables is either

reported in relative (adjusting for family size and reported as income

as a ratio of the FPL) or absolute terms (reported in inflation-adjusted

dollars). Furthermore, within communities, income can be reported at

the units of “households” (all persons living in a housing unit), “fami-

lies” (all persons living in a housing unit headed by someone who is

part of a family), or “individuals.”14 Finally, the ACS reports income

statistics in counts, proportions, means, and medians. Not all combina-

tions of these forms of income data are available from the ACS, and

the availability also varies by the geographic unit.15

We preferred relative measures of income (i.e., FPL) since they are

often more policy-relevant than absolute measures. FPL is calculated at

the family unit (a family's total income in dollars is divided by the num-

ber of family members, which is then compared with established pov-

erty thresholds), but can be attributed to individuals (all individuals from

a family get assigned the same FPL value). We also preferred FPL data

reported individuals (vs. families), since these data were more likely to

be representative of the entire community (for example, the median

family FPL in a community with many large, wealthy families would

belie the number of wealthy individuals in a community). Most FPL data

in the census are reported as counts (e.g., the number of individuals in a

specific FPL category for each community).

When proxying individual-level income using community-level

income, a granular geographic unit is preferable since aggregated data

of smaller communities are more likely to be representative of the

individual residents.3 Commonly used geographic units are counties,

zip codes, census tracts, and block groups (these units generally

descend in size).14 The evidence suggests that proxied values using

census tract- or block group-level data are generally more reliable

than those proxied from zip code-level data.11,16–19 We opted to use

census tract-level income data over block group-level data; while

block groups represent a more granular geographic unit, the census

tract-level estimates generally have smaller margins of error (higher

statistical reliability). Additionally, the publicly available block group-

level data often report categorical income variables more coarsely

than analogous census tract-level data because of this issue of statisti-

cal reliability and the additional concern of respondent confidentiality.

2.3 | Individual-level income approximation
methods evaluated

We sought to classify patients into two sets of income categories

using both traditional and IP based approaches. The first set of

income categories we specified was called the “class-relevant
income grouping” and consisted of the following income categories:

0%–149%, 150%–299%, 300%–499%, and 500%+ FPL. These

income categories generally correspond to the constructs of lower,

lower-middle, middle, upper-middle/upper-class, though exact defi-

nitions vary widely.20 The second set of income categories we speci-

fied was called the “policy-relevant income grouping” and consisted

of the following income categories: 0%–138%, 139%–249%,

250%–399%, and 400%+ FPL. These income categories correspond

to different income-based eligibility thresholds associated with the

Affordable Care Act.21

“Approach 1” represented the conventional income approxima-

tion method. It used “2017 ACS 5-year Table B17024,” which

reports counts of individuals in pre-defined income categories

(in FPL), stratified by 10 age groups, for census tracts. The pre-

defined age categories in the table were <6, 6–11, 12–17, 18–24,

25–34, 35–44, 45–54, 55–64, 65–74, and 75+ years. The pre-

defined income categories in the table were <50%, 50%–74%,

75%–99%, 100%–124%, 125%–149%, 150%–174%, 175%–184%,

185%–199%, 200%–299%, 300%–399%, 400%–499%, and 500%+

FPL. Using the count data across all age groups, the FPL category

containing the 50th percentile observation was identified. The

identified FPL category was the proxied individual income of

patients. Of note, the categories of the policy-relevant income

grouping do not fully correspond to the native FPL categories of

the ACS. Therefore, some modest manipulation of “2017 ACS

5-year Table B17024” was needed before patients were assigned

to the income categories of the policy-relevant income grouping.

Specifically, the counts for the 125%–149% FPL and 200%–299%

FPL income categories in “2017 ACS 5-year Table B17024” were

split between 125%–138%/139%–149% FPL and 200%–

249%/250%–399% FPL, respectively. The counts for these new

income categories were allocated using linear interpolation, a rea-

sonable approach given population-level income distribution pat-

terns (see S1 for further detail). These new FPL income categories

allow for patients to be assigned to all the income categories of

the policy-relevant income grouping.

Approaches 2 and 3 were weighting by IP approaches. Approach

2 is the simplest implementation of weighting by IP, using the same

census tract-level ACS table as Approach 1 (“2017 ACS 5-year

Table B17024”). Using these data, IP for each of the four income cate-

gories of the class-relevant income and policy-relevant income group-

ings were calculated for each census tract.

Approach 3 was a slightly more sophisticated implementation. In

Approaches 1 and 2, the 10 age strata of “2017 ACS 5-year
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Table B17024” were consolidated into a single age group (all ages).

Conversely, in Approach 3, the age-stratified income data of “2017
ACS 5-year Table B17024” were used to calculate age-specific IP for

each of the four income categories of the class-relevant income and

policy-relevant income groupings. Thus, the IP assigned to the obser-

vations in the patient dataset were age-dependent, accounting for the

age-dependency of income. We strategically consolidated the 10 age

strata in “2017 ACS 5-year Table B17024” to six (<18, 18–34, 35–44,

45–54, 55–64, 65+), reducing the overall complexity of Approach

3 and improving the statistical precision of the age-specific IP (see S2

for further detail).

S3 summarizes the conventional (Approach 1) and IP based

(Approaches 2 and 3) methods evaluated in this study. S4 includes

reproductions of “ACS Table B17024,” along with the derived values

needed for Approaches 1–3.

2.4 | Assessment of income estimation approaches
using patient data from the OCISS and reference data
from the ACS Public Use Microdata Sample

We assessed Approaches 1–3 to understand the relative performance

of each approach across sex and race and ethnicity groups, the

income distribution (with particular attention to the lowest income

categories), and different income categorizations (i.e., class-relevant

vs. policy-relevant income grouping).

The patient data for which we wanted to estimate income came

from the OCISS, Ohio's population-based cancer registry. All incident

cases of cancer diagnosed or treated in the state must be reported to

the OCISS.22 Thus, the OCISS theoretically represents a complete,

unbiased dataset of cancer patients in Ohio. The OCISS follows North

American Association of Central Cancer Registries (NAACCR) data

standards and contains detailed demographic information (including

patient address at diagnosis), in addition to disease and treatment

information. Our patient data included all those in the OCISS diag-

nosed with malignant cancer in 2017.

After applying Approaches 1–3 to the patient data from the OCISS,

we compared the distribution of the resulting income estimates at the

aggregate (state-wide) level against those from a reference population

derived from the ACS Public Use Microdata Sample (PUMS) for Ohio.

The PUMS differs from other ACS data because it is at the individual

(un-tabulated) level. To maintain confidentiality, individuals are geo-

graphically identifiable only to “Public Use Microdata Areas,” relatively

large proprietary geographic areas consisting of approximately 100,000

people.23 Furthermore, the PUMS contains a limited set of variables

(but includes sex, race, ethnicity, age, and individual income in % FPL).

Our measure of relative performance was “average percent dif-

ference.” To calculate this measure, we first noted the absolute

percentage point difference between the expected distribution

(from the ACS PUMS reference data) and estimated distribution

(using Approaches 1–3) of each of the income categories of the

class-relevant and policy-relevant income groupings. The absolute

percentage point differences were then averaged, weighted by

the proportions of individuals in each income category in the refer-

ence population. Average percent difference is summarized by the

following formula (with c = 1, 2, 3, 4 corresponding to the catego-

ries of 0%–149%, 150%–299%, 300%–499%, and 500%+ FPL for

the class-relevant income grouping and 0%–138%, 139%–249%,

250%–399%, and 400%+ FPL for the policy-relevant income

grouping, respectively):

The average percent difference was calculated by sex (male,

female) and race and ethnicity (non-Hispanic White, non-Hispanic

Black; race and ethnicity crosswalks between the OCISS and PUMS

are provided in S5). Differences in age structure between the OCISS

patient data and the ACS PUMS reference dataset were accounted

for by directly age-adjusting both to the 2000 US Standard Popula-

tion. When controlling for sex, race, ethnicity, and age structure, and

when including all cancer types in the OCISS, we hypothesized that

the best income estimation approach would closely recapitulate the

expected income distributions established by the reference popula-

tion. Thus, the best performing income estimation approach would be

noted by the smallest average percent difference. The assessment

procedure is summarized in Figure 2.

3 | RESULTS

The patient data from the OCISS included 65,759 individuals, of

which 50.2% were female, 86.2% were non-Hispanic White, and

10.1% were non-Hispanic Black. The ACS PUMS reference population

revealed that 26.5%, 26.9%, 24.9%, and 21.9% of female Ohioans had

incomes of 0–149%, 150%–299%, 300%–499%, and 500%+ FPL,

respectively; the distribution for men was 22.3%, 26.6%, 26.9%, and

24.3%, respectively. The income distribution for sex and race and eth-

nicity strata are provided in Figure 3 for the class-relevant income

grouping, and analogous data for the policy-relevant income grouping

are provided in Figure 4.

Average Percent Difference of Approach1,2,or 3¼
Xc¼4

c¼1

%income category c fromACSPUMS
100%

� j% income categoryc fromACSPUMS

�Estimated% income category c fromOCISS using specified approach j
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F IGURE 2 Overview of assessment methodology for evaluating income estimation approaches
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F IGURE 3 Assessment results for income estimation approaches for the class-relevant income grouping. FPL, federal poverty level [Color
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 4 Assessment results for income estimation approaches for the policy-relevant income grouping. FPL, federal poverty level [Color
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 Operationalizing weighting by income probabilities using common statistical software. FPL, federal poverty level [Color figure can
be viewed at wileyonlinelibrary.com]
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Using the conventional approach of income estimation (Approach

1), the average percent difference in the class-relevant income grouping

was 16.7% for women and 15.4% for men. This compared with 2.1%

and 0.7% for women and men using Approach 2 (weighting by IP), and

1.7% and 1.2% for women and men using Approach 3 (age-specific

weighting by IP). Thus, the best performing IP based method repre-

sented a 15.0 percentage point (nearly 10-fold) improvement in income

estimation in women, and a 14.7 percentage point (22-fold) improve-

ment in income estimation in men. In non-Hispanic Black patients, the

best performing IP based approach represented a 11.8 percentage

point improvement in females and a 14.2 percentage point improve-

ment in males. In non-Hispanic White patients, the best performing IP

based approach represented a 16.0 percentage point improvement in

females, and a 14.4 percentage point improvement in males. These

findings are summarized in Figure 3.

In the class-relevant income grouping, the average percent differ-

ence was generally slightly higher for females than for males, although

this relationship varied by race and ethnicity strata (e.g., Approaches

2 and 3 had higher average percent differences for non-Hispanic

White males). Across all sex and race and ethnicity strata, Approach

1 consistently underestimated the numbers of patients in the lowest

(0%–149% FPL) and the highest (500%+ FPL) income categories,

while overestimating the numbers of patients in the middle-income

categories (150%–299% and 300%–499% FPL) compared with

Approaches 2 and 3. For example, against the reference of 26.5% of

women having incomes 0%–149% FPL, Approach 1 estimated 7.1%

(95% confidence interval [CI]: 6.1–8.5), while Approach 2 estimated

22.8% (95% CI: 20.9–25.1), and Approach 3 estimated 23.8% (95% CI:

21.3–26.6) of women to have that income.

Findings in the policy-relevant income grouping (Figure 4) were simi-

lar to those noted for class-relevant income grouping. With some excep-

tions, Approach 1 had a slightly smaller average percent difference in the

policy-relevant income grouping compared with the class-relevant

income grouping, while the converse was true for Approaches 2 and 3.

4 | DISCUSSION

Here we described weighting by IP as a method of approximating

individual-level income using community-level income data from the

census. In weighting by IP, the probability of community residents

having a certain, investigator-defined categorical income value is cal-

culated. Then, these probabilities were used as observation weights

for individual patients, leading to synthetic datasets that were strati-

fied into different investigator-defined income categories. The results

from our assessment suggest that IP based approaches outperform

the conventional approach of proxying individual-level income using

median community-level income.

IP based methods likely outperform conventional methods

because the accuracy of conventional methods is highly dependent on

the underlying distribution of community-level income data. IP based

methods use community-level count income data (rather than central

tendency measures, such as median income), and thus account for the

actual distribution of community-level income. Indeed, our assess-

ment shows that IP based methods are especially superior to the con-

ventional approach in the low and high end of the income spectrum.

This is of relevance in studies of health disparities because they often

focus on patients on the income extremes. Furthermore, weighting by

IP can likely be applied to a broad range of patient datasets. Our

assessment demonstrated that IP based approaches uniformly outper-

formed the conventional approach across different sex and race and

ethnicity strata, suggesting that IP based approaches should perform

well in other datasets with significantly different profiles of sex and

race and ethnicity compared with the OCISS.

The average percentage difference for IP based approaches

between the class-relevant income and policy-relevant income group-

ings were generally comparable. This suggests that the weighting by

IP method is flexible to different investigator-defined income catego-

rizations, within reason. The choice of investigator-defined income

categorizations is limited somewhat by the prespecified income cate-

gorizations of the community-level income data that the US Census

provides. For example, investigators interested in identifying patients

beyond the top-coded income category of the ACS (500%+ FPL) will

need additional statistical processing of the census data (such as

mean-constrained integration over brackets24) before calculating IP.

The primary weakness of weighting by IP is that it is not suitable in

analyses where patients need to be assigned a specific categorical

income (as observations are weighted by the IP), or in the relatively rare

instances where analysis of income as a continuous variable is desired.

It should also be noted that weighting by IP is incrementally more diffi-

cult to implement compared with traditional approaches. However, in

studies where individual-level income is a key variable of interest, the

balance between methodological complexity and accurate income

approximation will likely favor using this approach. Finally, income (and

socioeconomic position, construed more broadly) can have meaningful

impacts on health outcomes at multiple levels.7,25,26 IP are used only to

approximate individual-level income, and thus do not obviate the need

for neighborhood- or area-level measures of socioeconomic position.

Our assessment could have been improved if we had a validation

dataset that was relatively large, complete (i.e., contain an unbiased

set of patients for a particular disease state), and contain accurate

income information. The OCISS satisfies the first two criteria, but

does not contain income information, necessitating a separate refer-

ence dataset for income (the ACS PUMS dataset). Indeed, biomedical

datasets rarely contain accurate individual-level income information,

which motivated both this study and the tradition of indirectly esti-

mating patient income using US Census data. Thus, we could not

identify datasets that we could reasonably acquire that would provide

a more superior assessment of weighting by IP than the ones utilized

in this study.

Community-level income data from the US Census has long been

used to impute or approximate missing individual-level variables in

patient data (“indirect estimation”). While the prevailing approach has

been to simply use central tendency measures from the US Census to

approximate these missing measures, more recent approaches have

challenged this paradigm. A notable example is the Bayesian
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imputation of race/ethnicity using surname information and census

block group of residence.27,28 Weighting by IP complements these

efforts to create more rich and complete patient-level datasets by

leveraging census data. Weighting by IP is distinguished from other

indirect estimation efforts with census data by its focus on income

and its high accuracy payoff relative to its methodological simplicity.

We emphasize that a key strength of weighting by IP is that it is

generalizable to different statistical techniques. Note that IP are

assigned to patients as observation weights, so statistical tools and

models (e.g., weighted regression) designed to analyze weighted

(often survey) data can be directly utilized within income strata. Thus,

once IP have been calculated and assigned to the patients, the analy-

sis of the data is no more difficult than analyzing weighted data.

Figure 5 illustrates how weighting by IP (in this case, age-specific IP as

in Approach 3) can be operationalized using common statistical soft-

ware to conduct key analyses, including regression. We include R

code to calculate IP for all census tracts in any state in S6.

Future investigations of weighting by IP could be focused on miti-

gating its weaknesses and expanding its applications. Our assessment

suggests that most variance in indirect estimation of individual-level

income using census data is captured in the community of residence

(census tract) because the age-specific weighting by IP (Approach 3) is at

most associated with modest, incremental improvements in the average

percent difference compared with generalized weighting by IP

(Approach 2). Thus, including additional variables beyond age to calculate

IP will likely lead to marginal improvements at best, while increasing the

complexity of the approach. As a practical matter, the US Census does

not publicly provide highly dimensional cross-tabulated income data for

census tracts, so implementing such an approachwould likely not be pos-

sible with the currently available data. Possible expansions of IP based

approaches include applying it to variables beyond income, adapting IP

to assign patients a specific categorical income, utilizing IP to impute

other missing variables (as inmultiple imputation), or incorporating the IP

intomodels other than using them as observationweights.

In conclusion, weighting by IP represents a substantial methodo-

logical improvement in approximating individual-level income using

community-level income data from the US Census compared with tra-

ditional methods. It is an approach that is robust across a variety of

demographic populations, and thus can likely be applied to a broad

range of patient data sets. Accurate approaches to individual-level

income approximation such as weighting by IP can advance disparities

studies and better inform policy interventions.
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