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 Abstract 
 Obesity per se is a recognized risk factor for cardiovascular disease exerting independent ad-
verse effects on the cardiovascular system. Despite this well documented link, the mecha-
nisms by which obesity modulates cardiovascular risk are not well understood. Obesity is 
linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end stage 
systolic heart failure. In addition, obesity causes changes in cardiac metabolism that make ATP 
production and utilization less efficient producing functional consequences that are linked to 
the increased rate of heart failure in this population. This review focuses on the cardiovascu-
lar structural and metabolic remodelling that occurs in obesity with and without co-morbid-
ities and the potential links to increased mortality in this population.  

 © 2014 S. Karger GmbH, Freiburg 

 Introduction  

 Obesity is associated with an increased cardiovascular mortality rate, and even greater 
risk is associated when the BMI exceeds 35 kg/m 2   [1] . Structural and functional changes to 
the cardiovascular system in obesity include ventricular hypertrophy, diastolic dysfunction 
and aortic stiffness  [2, 3] . Whilst left ventricular hypertrophy  [4, 5]  and diastolic dysfunction 
 [6]  are associated with all-cause mortality, impaired aortic elastic function is associated with 
cardiovascular events in healthy and diseased populations  [7] . It is therefore likely that 
adverse cardiovascular outcomes in obesity occur, at least in part, as a result of the long-term 
cardiovascular sequelae of increased body weight. 

 Received: August 12, 2013 
 Accepted: November 8, 2013 
 Published online: October 23, 2014 

 Dr. Oliver J Rider 
 University of Oxford Centre for Clinical Magnetic Resonance Research 
 Level 0, John Radcliffe Hospital 
 Oxford OX3 9DU (UK) 
 oliver.rider   @   googlemail.com 

www.karger.com/ofa

 DOI: 10.1159/000368429 

This is an Open Access article licensed under the terms of the Creative Commons Attribution-
NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to 
the online version of the article only. Distribution permitted for non-commercial purposes only.

http://dx.doi.org/10.1159%2F000368429


330Obes Facts 2014;7:329–338

 DOI: 10.1159/000368429 

 Rider et al.: Structural and Metabolic Effects of Obesity on the Myocardium and the 
Aorta 

www.karger.com/ofa
© 2014 S. Karger GmbH, Freiburg

  This review will focus on the adverse effects of obesity and excess adiposity on the cardio-
vascular system  [2, 8] . These include a spectrum of changes ranging from a hyperdynamic 
circulation and subclinical changes in cardiac structure  [9]  to overt heart failure  [10] . 

  Left Ventricular Geometric Remodelling in Obesity 

 Both cardiac output and total blood volume are elevated in obesity, leading to chronic 
volume overload. Although early studies reported an association with eccentric left ventricular 
(LV) remodelling  [2, 8] , it is now evident that both LV cavity size and wall thickness are 
increased in obesity. In the traditional model, the hypertrophic response of the ventricle is 
secondary to increased wall stress from cavity dilatation and elevated filling pressures  [11, 
12] . Although this accounts for the eccentric hypertrophic pattern, recent studies have 
reported concentric hypertrophy in obesity without co-morbidities  [13, 14] , contradicting 
earlier studies. Advances in the understanding of the cardiovascular effects of adipokines 
have suggested an alternative scenario, whereby the hypertrophic response occurs independ-
ently from the dilatory response. 

  The disproportionate degree of concentric LV remodelling in obesity  [15, 16]  may relate 
to elevated leptin levels  [17] . Leptin receptor isoforms are expressed in the myocardium  [18] , 
and leptin induces hypertrophy in cardiomyocyte culture  [19–21] . This effect occurs even in 
the absence of wall stress, suggesting a direct molecular mechanism  [22] . The hypertrophic 
effects of leptin involve several signalling cascades including JAK/STAT, MAPK, protein kinase 
C and Rho/ROCK-dependent kinases  [23–25]  whilst hyperleptinaemia has also been linked 
to LV hypertrophy in severe obesity in humans  [26] . Hyperinsulinaemia, as a result of insulin 
resistance, is another potential candidate for the ventricular hypertrophic response seen in 
the obese population, and hyperinsulinaemia itself has been linked to ventricular hyper-
trophy in obesity directly via the binding of insulin to myocardial insulin-like growth factor 
1 receptors which are found in abundance in the myocardium  [27] . 

  One explanation for the different patterns of reported LV hypertrophy may be that 
multiple imaging modalities have been used. Most early studies used 2D echocardiography, 
in which image quality in obesity may be limited by poor acoustic windows. Echocardiog-
raphy is also limited by the need for geometric assumptions to infer 3D parameters (i.e. LV 
mass and LV end-diastolic volume) from a 2D dataset. These limitations are overcome by 
cardiovascular magnetic resonance (CMR) imaging  [15, 16] . All CMR studies in obesity to date 
report both a concentric and eccentric element of hypertrophy in line with a mixed haemo-
dynamic (chronic volume overload) and metabolic (adipokine) mediated response. 

  Gender-Specific Effects of Obesity on LV Remodelling  
 Obesity-related cardiovascular mortality in females is elevated to a lesser degree than in 

males, even when adjusted for confounding factors  [28, 29] . This implies an apparent paradox, 
as obese males have less fat mass than obese females and yet have higher mortality  [30] , 
suggesting that gender-specific cardiac adaptations predispose males to excess cardiovas-
cular risk. One explanation may be that, in the absence of traditional cardiovascular risk 
factors, obese males exhibit a greater concentric hypertrophic response than do females, 
where a mixed eccentric and hypertrophic response occurs  [31] . Concentric hypertrophy is 
more strongly predictive of cardiovascular mortality than eccentric hypertrophy  [32–34] , 
providing a possible explanation for gender-specific mortality differences in obesity.
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  Left Ventricular Function 

 Systolic Function  
 Although there is a clear relationship between obesity and heart failure on a population 

level  [10] , the majority of smaller cohort studies report that obesity has little or no effect on 
global measures of systolic function such as LV ejection fraction  [35] . This suggests that 
although some individuals are susceptible to developing obesity cardiomyopathy and heart 
failure, it is not a universal phenomenon. Whilst obesity-related cardiac changes, such as LV 
hypertrophy, left atrial (LA) enlargement  [36]  and subclinical impairment of LV systolic and 
diastolic function  [37] , may precede the development of overt systolic failure, human studies, 
which have relied on cross-sectional data and not longitudinal follow-up studies, have not 
established a causal link. However, it is generally accepted that a longer duration of obesity 
is linked to the development of manifest LV systolic dysfunction  [38] .

  The Obesity Paradox 
 Although a major risk factor for the development of congestive heart failure, obesity is 

associated with better survival in patients with established cardiac failure  [39, 40] . The mech-
anisms for this phenomenon, termed the obesity paradox, are not well understood. However, 
there is now some evidence that subjects with congestive cardiac failure have reduced 
epicardial fat mass when compared to normal BMI-matched controls  [41] , and as obesity is 
linked to increased epicardial fat mass, there may be some ‘protective’ adaptations that occur 
in obesity to explain the paradox. 

  Diastolic Function  
 Asymptomatic diastolic dysfunction is associated with the development of heart failure 

 [42, 43] . Obesity, both with and without additional co-morbidities, has been linked to diastolic 
dysfunction using a wide range of non-invasive imaging modalities  [44–46] . Despite this, the 
mechanisms behind diastolic dysfunction in obesity are only partially understood  [47] . 
Myocardial relaxation is determined by a combination of both active processes (including 
calcium homeostasis and myocardial energetics)  [48]  and passive processes related to the 
physical properties of the left ventricle (intrinsic mechanical stiffness as determined by wall 
thickness and chamber geometry)  [49] . It is likely that diastolic dysfunction in obesity is a 
result of both passive and active mechanisms including LV hypertrophy and impairment in 
myocardial high-phosphate energetics  [50–53] . The association between reduced myocardial 
energetics and diastolic dysfunction has been shown in multiple studies  [48, 54] . This is 
consistent with the concept that an impairment in high-energy phosphate metabolism initially 
affects the ability of the sarcoplasmic reticular Ca 2+  ATPase (SERCA), the energetically most 
demanding of all enzymes involved in contractile function  [55] , to lower cytosolic Ca 2+  and 
thus impairs diastolic function.

  The most likely mechanism for impaired energetics at rest in obesity is depletion of the 
total creatine pool, in proportion to the loss of phosphocreatine, as occurs in many other 
forms of hypertrophy  [56] . Elevated free fatty acid levels increase mitochondrial uncoupling 
via promotion of myocardial uncoupling protein 3 (UCP3) expression  [57] . This suggests that 
reduced high-energy phosphate levels, caused by increased mitochondrial uncoupling as a 
result of elevated free fatty acid levels, may lead to diastolic dysfunction. 
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  Cardiac Energy Metabolism in Obesity 

 ATP is the heart’s only immediate source of energy for mechanical function and, as both 
systole and diastole are active processes  [58, 59] , cardiac ATP demand is very high. In order 
to sustain this demand for continuous and efficient contraction and relaxation, the heart 
needs to produce around 20 times its own weight in ATP per day  [56] . Any detraction in ATP 
production, transfer or utilization can impair cardiac function  [60] . Cardiac metabolism and 
ATP production are abnormal in obesity and are candidate mechanisms to explain the 
increased incidence in heart failure in this population  [10] . 

  Altered Myocardial Substrate Selection in Obesity 

 Cardiac substrate selection is a fundamental step in myocardial metabolism. In the 
normal heart in the resting, fasted state, the majority (60–90%)  [61]  of acetyl CoA that enters 
the Krebs cycle is derived from β-oxidation of free fatty acids  [62] , with the remaining 10–40% 
of acetyl CoA coming from the oxidation of pyruvate, in turn derived from either glycolysis or 
lactate oxidation  [63] . The heart is highly flexible in its choice of substrate depending on the 
prevailing metabolic conditions  [64, 65] . 

  The heart is an extremely efficient scavenger of circulating non-esterified free fatty acids 
(up to 40% extraction fraction)  [66] , and the rate of uptake of fatty acids by the heart is 
primarily determined by their plasma concentration  [67] . Obesity is associated with high 
circulating free fatty acid levels  [68] , and both human  [69]  and animal studies  [51, 70]  have 
shown increased oxidation of free fatty acids and a shift in substrate utilization towards free 
fatty acid metabolism. 

  The importance of the increase in fatty acid metabolism is that mitochondrial redox state, 
and therefore the free energy of hydrolysis of ATP, is affected by the substrate oxidized. 
Although fatty acid oxidation has high potential energy, this does not translate to greater 
mitochondrial redox power. The reasons for this lie in the architecture of fatty acid metab-
olism by β-oxidation, and the changes in mitochondrial membrane uncoupling proteins in 
response to persistently elevated free fatty acids. Only 50% of the reducing equivalents 
produced in the process of β-oxidation are able to donate electrons at complex I of the electron 
transport chain, whereas the remaining half are donated by FADH 2  at the flavoprotein site 
further ‘downstream’ at complex II  [71] . This results in a reduced ATP yield and a loss of mito-
chondrial efficiency. The redox span of the respiratory chain is diminished during fat metab-
olism as the Q couple is reduced. This decreases the potential difference between matrix and 
inter-mitochondrial membrane space and therefore  ∆ G’ ATP . 

  Elevated free fatty acids also increase the expression of uncoupling proteins  [72] , which 
decrease mitochondrial efficiency  [73]  by allowing the passage of protons into the matrix via 
non-ATP-generating pathways. Within the perfused heart, higher concentrations of free fatty 
acids increase the oxygen cost for the same work output by between 25% and 48% when 
compared to glucose and insulin infusion  [74] . This loss of myocardial efficiency has been 
attributed to reductions in mitochondrial electron transport chain coupling and the increased 
stoichiometric oxygen requirement to oxidise fat  [75] . As such, deleterious substrate selection 
may be a feature of obesity-related cardiomyopathy as it is in other myocardial diseases, inti-
mately linking energetic performance and mortality  [56, 75] .
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  The Role of Lipases in Lipotoxicity 

 Lipases appear to have many potential roles in the development of myocardial steatosis. 
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of 
several cardiomyopathies. Under physiological conditions, lipoprotein lipase(LpL)-mediated 
lipolysis of triglyceride-rich particles represents a key route of fatty acid substrate delivery 
to the heart, and cardiomyocyte-restricted deletion of LpL results in impaired cardiac 
contractile function and perivascular fibrosis despite a compensatory increase in glucose 
oxidation  [76] . In contrast, germline deletion of adipose tissue triglyceride lipase (a model 
with decreased myocardial lipid pool turnover, rather than uptake) resulted in dramatic 
cardiac lipid accumulation, contractile dysfunction and premature death  [77] . Taken together, 
these studies support the hypothesis that increased myocardial lipid delivery, uptake or 
decreased turnover may impair cardiac contractile function and alter cardiac metabolism.

  Mitochondrial Metabolism and Lipotoxicity in Obesity  

 Cardiac mitochondria contain a DNA genome that encodes some of the proteins required 
for electron transport complexes I, III, IV, and V  [78] . In obesity, changes in both nuclear and 
mitochondrial transcription occur and are linked to changes in cardiac metabolism  [50] . The 
peroxisome proliferator-activated receptors (PPARs) are key regulators of nuclear gene tran-
scription for myocardial mitochondrial fatty acid oxidation.  [79]  PPARα is expressed in the 
myocardium  [80]  and is the primary transcriptional regulator of fat metabolism in tissues 
with the highest rates of fatty acid oxidation  [81] . Cardiac PPARα activation increases the 
expression of several genes involved in fatty acid metabolism, including i) cardiac myocel-
lular fatty acid uptake (FATP, FAT/CD36, FABP, ACS  [82–84] ) ii) mitochondrial fatty acid 
uptake via CPT I  [85]  and iii) mitochondrial and peroxisomal fatty acid β-oxidation via MCAD, 
LCAD, VLCAD and ACO  [85] . 

  In obesity and in insulin resistance, the heart initially adapts to increases in circulating 
fatty acid levels by increasing PPARα, resulting in a compensatory increase in myocardial 
fatty acid uptake and β-oxidation  [86] , which limits ectopic cardiac lipid accumulation. 
However, despite these initial adaptive/protective mechanisms, obesity is associated with 
cardiac lipotoxicity  [87] . Fatty acid inhibition of myocardial glucose metabolism appears to 
be one important contributing factor  [88, 89] . Exposure of the heart to high levels of fatty 
acids can cause accumulation of lipids within cardiomyocytes, which increases the intracel-
lular pool of long-chain fatty acyl-CoA. This provides a fatty acid substrate for non-oxidative 
processes, including synthesis of triacylglycerol, diacylglycerol and ceramide, which in turn 
lead to cellular dysfunction, insulin resistance and apoptosis. The link between lipid accumu-
lation and cardiomyopathy has been further established through transgenic mouse models in 
which either the rate of lipid uptake or esterification of fatty acids by the heart was increased 
or the mitochondrial capacity for oxidation of fatty acids was reduced  [87, 90] . 

  Although lipid accumulation can cause cardiac dysfunction, triglyceride accumulation 
may not be entirely maladaptive. There is now evidence to suggest that cardiac triglyceride 
accumulation limits ceramide and diacylglycerol synthesis, providing a protective mech-
anism against lipotoxicity  [91] . Regardless of whether ectopic lipid deposition is a maladaptive 
or a protective process, there is strong evidence that myocardial steatosis promotes the 
development of insulin resistance, cardiac hypertrophy, impaired cardiac function, fatty acid-
induced apoptosis and interstitial fibrosis  [92] .
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  Obesity and the Aorta 

 In the absence of traditional cardiovascular risk factors, obesity is associated with 
increased aortic pulse wave velocity  [93] , which is a non-invasive clinical measure of aortic 
stiffness and independently predicts cardiovascular mortality. Obesity is associated with a 
predominantly distal pattern of aortic stiffness. The reasons for this are not known but 
changes in aortic distensibility in obesity have been attributed to factors that are not present 
in hypertension, including hyperleptinaemia  [94] , external physical compression from 
adipose tissue  [95] , elevated circulatory inflammatory cytokines  [96]  and increased free fatty 
acid levels  [97, 98] . Obese individuals have excess abdominal visceral fat, which is a better 
predictor of cardiovascular and metabolic risk than total body fat alone and is also linked to 
altered vascular function  [3] .

  The Effects of Weight Loss 

 Obesity is associated with mortality although a growing body of evidence suggests that 
weight loss reduces this risk  [99] . There is, however, very little information on the cardiovas-
cular effects of weight loss in obese individuals who have no other identifiable cardiovascular 
risk factors.

  In principle there are two main methods of weight loss: dietary intervention and bariatric 
surgery. Weight loss induced by surgery leads to more effective weight management than 
dietary weight loss  [100] , and reduces long-term mortality  [99] . The global utilization of 
bariatric surgery is rapidly increasing. 

  Irrespective of the method, weight loss has beneficial effects on cardiac geometry, with 
reduced ventricular mass and cavity size as early as 3 months following bariatric surgery  [46, 
101] . Multiple studies have shown improvements in diastolic function in adult and elderly 
populations  [102–104] . Furthermore, weight loss improves aortic elastic function  [93, 105]  
and high-energy phosphate metabolism  [106] .

  Conclusion 

 Obesity per se ,  in the absence of traditional risk factors, is associated with circulatory, 
hormonal and sub-acute inflammatory changes which together produce a sequence of changes 
in the cardiovascular system manifesting as ventricular hypertrophy, cavity dilatation, 
diastolic dysfunction, reduced aortic elastic function, altered myocardial metabolism and 
reduced myocardial energetics, all of which are independent predictors of future cardiovas-
cular events and mortality. Significant weight loss, irrespective of mode, is associated with 
partial resolution of these adaptive changes. It is likely that the structural and functional 
changes in the cardiovascular system are at least partially responsible for the reduced 
mortality seen with weight loss.   
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