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Abstract

Meningiomas, derived from arachnoid cap cells, are the most common intracranial tumor.

High-grade meningiomas, as well as those located at the skull base or near venous sinuses,

frequently recur and are challenging to manage. Next-generation sequencing is identifying

novel pharmacologic targets in meningiomas to complement surgery and radiation. How-

ever, due to the lack of in vitro models, the importance and implications of these genetic vari-

ants in meningioma pathogenesis and therapy remain unclear. We performed whole exome

sequencing to assess single nucleotide variants and somatic copy number variants in four

human meningioma cell lines, including two benign lines (HBL-52 and Ben-Men-1) and two

malignant lines (IOMM-Lee and CH157-MN). The two malignant cell lines harbored an ele-

vated rate of mutations and copy number alterations compared to the benign lines, consis-

tent with the genetic profiles of high-grade meningiomas. In addition, these cell lines also

harbored known meningioma driver mutations in neurofibromin 2 (NF2) and TNF receptor-

associated factor 7 (TRAF7). These findings demonstrate the relevance of meningioma cell

lines as a model system, especially as tools to investigate the signaling pathways of, and

subsequent resistance to, therapeutics currently in clinical trials.

Introduction

Meningiomas, arising from the meninges surrounding the brain and spinal cord, account for

a third of all primary brain tumors [1]. The World Health Organization (WHO) classifies

meningiomas into three grades, with increasing grade corresponding to increasing proclivity

for invasion and recurrence. Grade I meningiomas are frequently curable with surgery. How-

ever, a subset located at the skull base, adjacent to major venous sinuses, or insinuated around

major neurovascular structures pose challenges to complete resection. Furthermore, meningi-

omas of higher grades frequently recur despite surgery and radiation, with no effective alterna-

tive pharmacologic treatments.
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Recently, an increasing understanding of the genomic basis underlying meningiomas have

opened potential therapeutic targets for recurrent or progressive tumors [2–6]. In addition to

mutation or loss of neurofibromin 2 (NF2), recurrent mutations in v-akt murine thymoma viral
oncogene homolog 1 (AKT1) and v-akt murine thymoma viral oncogene homolog 3 (AKT3),
phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), TNF receptor-associated factor
7 (TRAF7), smoothened (SMO), krupplelike factor 4 (KLF4), SWI/SNF related, matrix associated,

actin dependent regulator of chromatin, subfamily b, member 1 (SMARCB1), RNA polymerase II
subunit A (POLR2A), telomerase reverse transcriptase (TERT) promoter, BRCA1 Associated Pro-
tein 1 (BAP1), and homolog of suppressor of fused (SUFU) have been identified within subsets of

meningiomas [2–7]. Furthermore, the burden of chromosomal gains and losses, or copy num-

ber status, of atypical meningiomas has been associated with recurrence risk [8]. However, the

impact of these mutations and chromosomal instability on tumor initiation and progression

remain incompletely defined, in part due to a lack of effective in vitro models for meningioma.

Meningioma cell lines with canonical oncogenic mutations or genome disruption may

serve as effective model systems to interrogate the biological consequences of initiating geno-

mic alterations and their inhibition. Thus, we profiled the exomes of four common meningi-

oma cell lines to determine the representation of characteristic meningioma genomic features

suitable for targeted investigations.

Methods

Human meningioma cell line culture

We profiled four established human meningioma cell lines, including two benign lines (HBL-

52 and Ben-Men-1) and 2 malignant lines (IOMM-Lee and CH157-MN). The two benign

meningioma cell lines were purchased from CLS Cell Lines Service (Eppelheim, Germany)

and DSMZ (Braunschweig, Germany) respectively. CH157-MN was courtesy of Dr. Yancey

Gillespie (University of Alabama-Birmingham), and IOMM-Lee was courtesy of Dr. Randy

Jensen (University of Utah). All cell lines, except HBL-52, were cultured in growth media

including Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum, 2mM L-Glu-

tamine, 100 IU/mL of penicillin and 100 μg/mL of streptomycin (Life Technology, Grand

Island, NY). HBL-52 was cultured in McCoy’s 5A medium (Fisher scientific, Pittsburgh, PA)

supplemented with 2mM L-Glutamine, 10% fetal bovine serum, 100 IU/mL of penicillin and

100 μg/mL of streptomycin. Cultured cells were maintained at 37˚ in a 5% CO2 atmosphere.

DNA isolation

Human meningioma cells were cultured in T25 flask until confluence, washed with PBS, tryp-

sinized in 0.25% Trypsin/EDTA (Life Technology, Grand Island, NY), and suspended in PBS.

DNA was isolated using the QIAamp DNA mini kit (Qiagen, Valencia, CA) according to the

manufacturer’s protocol. The concentration of double-stranded DNA was quantified using an

Epoch Spectrophotometer (BioTek, Winooski, VT).

Next-generation sequencing

Whole exome sequencing (WES) was performed at the Broad Institute and the Center for Can-

cer Genome Discovery at the Dana-Farber Cancer Institute, as described previously [2, 9].

Briefly, to generate 250bp libraries, 250ng/ul of purified DNA was randomly fragmented by

Covaris sonication (Covaris, Woburn MA), followed by purification using Agencourt AMPure

XP beads (Beckman Coulter, Inc., Indianapolis, IN) and ligation to DNA barcoded adaptors

(Illumina TruSeq, Illumina Inc., San Diego, CA). Exome hybrid capture was performed with
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Agilent Sure Select All Exon v2.0 hybrid capture kit (Agilent Technologies, Santa Clara, CA).

The 250bp libraries were loaded for paired-end sequencing on Illumina GAIIx (Illumina Inc.,

San Diego, CA). Sample reads were de-multiplexed using Picard tools [10, 11] (http://picard.

sourceforge.net), read pairs were aligned to the hg19 reference sequence (NCBI 37) (ftp://

ftptrace.ncbi.nih.gov/1000genomes/ftp/technical/reference/) using the Burrows-Wheeler

Aligner [12]. Bias in base quality score assignments due to flow cell, lane, dinucleotide context,

and machine cycle were analyzed and recalibrated, and local realignment around insertions or

deletions (indels) was obtained using the Genome Analysis Toolkit (GATK) [13, 14], for gen-

eration of a single BAM file for each cell line for analysis of copy number alterations, muta-

tions, and large-scale structural rearrangements.

Genomic analysis

Single nucleotide variants were called and post-filtered using MuTect v1.1.4 [15], which were

then annotated to genes and compared to events in the Catalogue of Somatic Mutations in

Cancer using Oncotator. Indel calling was achieved using the GATK Somatic Indel Detector

tool. As described previously [10], somatic indels were called from locally realigned data based

on the fraction of supporting reads at a given locus in the tumor cell BAM file. Variants were

characterized as somatic using a CEPH cell line as the normal control. Variants were filtered

against SNP database as well as 1000 Genomes [16]. The resulting variants were input into the

variant effect predictor (VEP) (http://www.ensembl.org/info/docs/tools/vep/index.html) to

predict the consequences of the variants on the protein sequences.

Somatic copy-number alterations (SCNAs) were called using RecapSeg, which performs

local change-point analysis and subsequent merging of adjacent chromosomal segments with

similar copy numbers. The resulting segments were annotated using Oncotator, then visual-

ized using integrative genomics viewer (IGV, http://www.broadinstitute.org/igv/). The SCNAs

across the entire genome were then analyzed by GISTIC 2.0 [17, 18].

Rearrangement detection was performed using dRanger and BreakPointer algorithms [10,

19], and visualized using the Circos program (http://mkweb.bcgsc.ca/circos) [20]. However,

exome sequencing is limited in power to detect rearrangements and few were detected.

Targeted sequencing

Variants identified by WES, as well as selected regions of previously published genes impli-

cated in meningioma (NF2, AKT1, TRAF7, SMO, and KLF4), were analyzed by PCR and

Sanger sequencing. Mutant sites from NF2 (22), TRAF7 (5), AKT1 (1), SMO (2), KLF4 (1), and

TERT (2) were sequenced. DNA from the four meningioma cell lines and one normal human

cell line (293T) were amplified using PCR primers designed to target identified mutations (S1

Table). PCR products were separated by 1% agarose gel, visualized under UV light, extracted

using the Qiagen Gel Extraction Kit (Valencia, CA), and subject to Sanger sequencing (Macro-

gen, Boston, MA). Mutant variants identified by Sanger sequencing were verified by alignment

of sequenced results with sequences of normal human cell line 293T and human genomic

DNA reference (hg19). Furthermore, the TERT promoter region was focally sequenced across

cell lines to assess for presence of TERT mutations, given the important role it may play in

meningioma progression [7, 21].

Results

We performed whole exome sequencing on four human meningioma cell lines (Table 1),

including two from grade I meningiomas (HBL-52 and Ben-Men-1), one from an anaplastic

meningioma (IOMM-Lee), and one from a meningioma resected in 1977 with unclear
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classification (CH157-MN), to characterize copy number alterations, mutations, and indels

[22–25]. We also performed Sanger sequencing to validate identified mutations in known

meningioma driver genes, along with previously identified hotspot mutations in these genes.

Copy number variation in human meningioma cell lines

Arm-level chromosomal alterations are a hallmark of meningiomas, especially high-grade and

angiomatous subtypes. CH157-MN harbored the greatest number of arm-level SCNAs of all

four cell lines, consistent with the pattern observed in high-grade human meningiomas, while

the grade I meningioma cell line HBL-52 harbored no broad copy number alterations (Fig

1A). We identified a number of arm-level gains and losses, including gain of 3p, 3q, 5p, 5q, 9p,

and 13q, and loss of 4p, 4q, 8p, 8q, 15q, 18p,18q and 22q, across individual cell lines (Fig 1A).

These losses span region including important oncogenes and tumor suppressors, including

loss of cyclin dependent kinase inhibitor 2A (CDKN2A) on 9p21.3 in IOMM-Lee (Table 2).

We examined the copy number profile of specific genes within cardinal signaling pathways

implicated in meningioma formation, including the phosphoinositide 3-kinase (PI3K) / mech-

anistic target of rapamycin (mTOR)/AKT and Hedgehog pathways, as well as cysteine-rich

PAK1 inhibitor (CRIPAK) / p21 protein-activated kinase (PAK)/NF2 pathway (Fig 1B). We

found that the PI3K/mTOR/AKT and SMO pathways were activated in 75% of human menin-

gioma cell lines.

Loss of chromosome 22, which contains the known meningioma tumor suppressor NF2,

was observed in Ben-Men-1 and CH157-MN. One negative regulator of Merlin, the protein

product of NF2, is PAK1, which is in turn inhibited by CRIPAK [26, 27]. We observed loss of

CRIPAK in CH157-MN and IOMM-Lee and gain of its possible downstream effectors, PAK1/2
(Fig 1B). Western blot analyses of the meningioma cell lines corroborated high levels of protein

expression of PAK1 and phospho-PAK1 and absence of NF2 in CH157-MN (Fig 1C and 1D).

Mutation analysis in human meningioma cell lines

We identified a total of 2832 variants (mean 708) across the four cell lines, with a significantly

higher number of mutations and indels in the anaplastic cell line IOMM-Lee compared to the

other cell lines (Fig 2A). The most frequent variants were missense mutations and frameshift

indels types across all cell lines (Fig 2B). Recurrent mutations and indels in aquaporin 12B
(AQP12B), acetylserotonin O-methyltransferase-like (ASMTL), CRIPAK, and SCO-Spondin
(SSPO) were identified across the cell lines (Table 3). We also identified mutations in known

meningioma driver genes, including two mutations in NF2 and a TRAF7G536S missense muta-

tion, which were confirmed by Sanger sequencing (Fig 3). We also performed Sanger sequenc-

ing to check for the presence of mutations previously reported in meningioma driver genes,

including regions of NF2,AKT1, TRAF7,KLF4, SMO, and the TERT promoter. However,

apart from the initial three mutations identified via NGS, we did not observe additional

alterations, suggesting that our NGS coverage was sufficient for detection. TERT promoter

Table 1. Characteristics of the human meningioma cell lines.

Cell line WHO grade Location Gender/age (y) Reference

HBL-52 I Optic canal Female, 47 [25]

Ben-Men-1 I Parietal falx Female, 68 [24]

IOMM-Lee III Intraosseous Male, 61 [22]

CH157-MN unknown unknown Female, 41 [23]

WHO, World Health Organization.

https://doi.org/10.1371/journal.pone.0178322.t001
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mutation C228T (c.-124C>T), as assayed by focused sequencing, was observed in CH157-MN

and IOMM-Lee (Table 3).

Chromosome rearrangements in human meningioma cell lines

Although whole-exome sequencing is underpowered to detect chromosomal rearrangements,

we identified 14 rearrangements across the four cell lines (S2 Table). Of note, in CH157-MN

harbored an intrachromosome translocation of jumonji domain containing 1C (JMJD1C) on

Fig 1. Somatic copy-number alterations in human meningioma cell lines. (A) Heatmap of chromosomal gains (red) and losses (blue) across all 22

chromosomes (y-axis) for four meningioma cell lines (x-axis). (B) Focal gains (red) or losses (blue) across gene members of three distinct signaling pathways

(x-axis) for four meningioma cell lines (y-axis). (C) Western blot analysis of phosphorylated and un-phosphorylated PAK1 and NF2. (D) Quantification of

western blot protein expression, p-PAK1 and p-NF2 were normalized to PAK1 and NF2, respectively. PAK1 and NF2 were normalized to loading control β-

actin.

https://doi.org/10.1371/journal.pone.0178322.g001
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chromosome 10, resulting in deletion of this gene, and a fusion of leucine zipper like transcrip-
tion regulator 1 (LZTR1) and FLJ39582 on chromosome 22 (Fig 4).

Discussion

In vitro models have played important roles in furthering our understanding of cancer biology

and treatment paradigms across a range of tumor types. As our understanding has increased

of the impact that molecular classification has on patient response to treatment, it has become

crucial to determine whether model systems accurately recapitulate the disease of interest. We

performed the first whole-exome sequencing of meningioma cell lines to determine their

applicability to the study of meningioma biology.

Recent work has demonstrated that there exist two broad classes of meningiomas based on

their mutational profile: those driven by NF2 inactivation, and those with non-NF2 driver

gene alterations, such as mTOR and Hedgehog pathway alterations [2–5]. Such differences in

tumorigenesis may significantly impact the consequent signaling pathways. We show that two

commonly used cell lines, CH157-MN and Ben-Men-1, harbor deleterious NF2 mutations as

well as chromosome 22 loss. Furthermore, interrogation of signaling partners in the NF2 cas-

cade revealed high levels of PAK1, an upstream oncogene that inactivates NF2 in cancer cells

through phosphorylation [28]. These results suggest that CH157-MN and Ben-Men-1 could

be well suited to study NF2 signaling in meningioma formation. We identified a canonical

mutation in TRAF7 in an additional cell line, HBL-52, which may be more amenable to studies

examining the signaling pathways important in non-NF2 driven tumors.

Table 2. Copy number variations in human meningioma cell lines.

CELL LINE CYTO

BAND

CHROMOSOME TYPE OF CNV GENES AFFECTED

CH157-MN 1q42.11 Chr1:225142802–226187015 1044kb duplication DNAH14,ENAH,EPHX1,LBR,LEFTY1,LEFTY2,SRP9,TMEM63A,SDE2

CH157-MN 1q42.11 Chr1:224606120–224922410 316kb duplication CNIH3

CH157-MN 1q42.11 Chr1:226590082–226925161 335kb duplication PARP1,c1orf95, ITPKB

IOMM- Lee 5p15 Chr5:801281–825368 24kb duplication ZDHHC11

IOMM- Lee 9p21.3 Chr9:21971209–21974828 3.6kb deletion CDKN2A

CH157-MN 12q24.22 Chr12:118504499–118509274 4.7kb deletion VSIG10

https://doi.org/10.1371/journal.pone.0178322.t002

Fig 2. Mutations identified in human meningioma cell lines. (A) Number of mutations (y-axis) detected in each cell line (x-axis). (B) Distribution of coding

consequences from SNV and Indel variants observed in meningioma cell lines.

https://doi.org/10.1371/journal.pone.0178322.g002
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Table 3. Recurrent genetic variants in human meningioma cell lines.

SYMBOL CHROMOSOME VARIANT

CLASSIFICATION

CDNA

CHANGE

PROTEIN

CHANGE

CELL LINES

NBPF10 chr1:144220807 Missense_Mutation c.1793A>C p.D598A CH157-MN, Ben-Men-1

SPDYE6 chr7:101988983 Missense_Mutation c.890C>T p.P297L IOMM-Lee, HBL-52, Ben-Men-1

LOC399753 chr10:49218451 Missense_Mutation c.1688C>T p.T563I IOMM-Lee, Ben-Men-1

DDX11L11 chr12:92119 Missense_Mutation c.191A>G p.H64R CH157-MN, HBL-52

TBC1D3P2 chr17:60345508 Nonstop_Mutation c.760T>C p.*254Q CH157-MN, IOMM-Lee, HBL-52

SIGLEC16 chr19:50474960 Missense_Mutation c.14C>G p.A5G HBL-52, Ben-Men-1

KIR2DL2 chr19:35127 Missense_Mutation c.796C>T p.R266C CH157-MN, Ben-Men-1

KIR2DL2 chr19:39293 Missense_Mutation c.52C>A p.P18T CH157-MN, Ben-Men-1

KIR2DL2 chr19:118836 Missense_Mutation c.313A>C p.T105P HBL-52, Ben-Men-1

KIR2DL2 chr19:118856 Missense_Mutation c.333G>T p.L111F HBL-52, Ben-Men-1

AQP12B chr2:241621800–241621800 Frame_Shift_Del c.455delG p.S152fs IOMM-Lee, HBL-52

CRIPAK chr4:1388375–1388376 Frame_Shift_Ins c.76_77insCA p.S26fs CH157-MN, Ben-Men-1

SSPO chr7:149503917–149503920 Splice_Site c.8736_splice p.G2912_splice IOMM-Lee, CH157-MN, HBL-52

LOC399753 chr10:49218408–49218408 Frame_Shift_Del c.1731delC p.N577fs CH157-MN, HBL-52

ASMTL chrx:1522164–1522164 Frame_Shift_Del c.1864delT p.*622fs IOMM-Lee, CH157-MN, HBL-52

TERT chr5:1295228 Missense_Mutation c.-124C>T IOMM-Lee, CH157-MN

https://doi.org/10.1371/journal.pone.0178322.t003

Fig 3. Validation of mutation calls human meningioma cell lines. (A) Table of putative meningioma driver-gene alterations identified from whole-

exome sequencing. (B) Schematic demonstrating validation protocol for each mutation.

https://doi.org/10.1371/journal.pone.0178322.g003
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We detected no mutations in either AKT1, SMO, or PIK3CA in these four profiled cell lines.

These well-established driver alterations result in activation of pathways that are amenable to

pharmacologic inhibition [2–4], with clinical trials testing inhibitors against these drivers

underway. New in vitro models that replicate these oncogenic pathways are needed to better

understand the unique molecular pathways influenced by these non-NF2 mutations as well as

to investigate mechanisms for acquired resistance with application of targeted inhibitors.

Genomic instability is one of the key differentiators between grade I and grade II-III

meningiomas [29]. Loss of chromosome 22 is the most common arm-level alteration across all

Fig 4. Rearrangements detected in human meningioma cell lines. Circos plots showing intra-chromosomal (green) and inter-

chromosomal (purple) rearrangements between regions of the genome.

https://doi.org/10.1371/journal.pone.0178322.g004
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meningiomas (40–60% in grade I, 75% in grade II-III), along with recurrent loss of chromo-

somes 1p, 6q, 10q, 14q, and 18q, and gain of 1q, 9q, 12q, 15q, 17q and 20q in high-grade

tumors. We found a higher level of genomic disruption in the two cell lines, IOMM-Lee and

CH157-MN, consistent with the original meningioma being of a high-grade nature. Of note,

the pattern of copy number alterations in these cell lines differs from the most commonly

observed altered chromosomal losses and gains in human meningioma, which may reflect

genomic changes over time during in vitro passages or be specific to the original tumors from

which the lines were derived.

We observed a number of potentially oncogenic focal amplifications and deletions. Loss of

chromosome 9p21.3, which harbors the critical tumor suppressor CDKN2A, was observed in

IOMM-Lee, a cell line derived from an anaplastic meningioma. CH157-MN had gain of chro-

mosome 1q, along with a series of focal gene changes on 1q42.11. Chromosome 5 was ampli-

fied in both Ben-Men-1 and IOMM-Lee, with corresponding increase in copy number of

genes associated with vascular development and proliferation, such as platelet derived growth

factor subunit b (PDGFβ), fibroblast growth factor receptor 4 (FGFR4), and fibroblast growth

factor receptor 10 (FGF10). We also detected amplification of both enabled homolog (ENAH)
and poly [ADP-ribose] polymerase 1 (PARP1) in CH157-MN, although these genes have not

previously been implicated in meningiomas tumorigenesis [30, 31].

We previously demonstrated that meningiomas of all grades present with complex rear-

rangement profiles, including frequent observation of complex events such as chromothripsis

and chromoplexy [2]. While whole-exome sequencing is not powered to identify most rear-

rangements, we were able to detect a number of intrachromosomal rearrangements and one

interchromosomal rearrangement, involving genes that have previously been implicated in

tumorigenesis, including BRCA1 Associated RING Domain 1 (BARD1), JMJD1C [32], and

LZTR1. However, none were recurrently rearranged in our cohort, nor have they previously

been shown to be recurrently mutated in meningioma. Further investigation of whole-genome

sequenced meningioma will be necessary to identify oncogenic rearrangements.

In summary, this study identified the aberrance of chromosome structure, focal gene

changes, and somatic single nucleotide variants in human meningioma cell lines. The alter-

ations of these genes might be involved in meningioma progression by affecting cell motility,

cytokinesis, chromatin and epigenomic regulation, immune response, malignant transforma-

tion, or metabolism. Due to the limited meningioma cell lines currently available, much work

remains to complete the mutational catalog of meningiomas to connect recurrent genomic

alterations to altered pathways and acquired cellular vulnerabilities, and their correlation with

disease stratification and prognosis. Moreover, future insights into the molecular mechanisms

of these genetic drivers in meningioma development might inform our understanding of

genome influence on meningioma evolution and therapy.
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