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Abstract

Background: High-throughput sequencing has made it theoretically possible to obtain high-quality de novo
assembled genome sequences but in practice DNA extracts are often contaminated with sequences from other
organisms. Currently, there are few existing methods for rigorously decontaminating eukaryotic assemblies. Those
that do exist filter sequences based on nucleotide similarity to contaminants and risk eliminating sequences from the
target organism.

Results: We introduce a novel application of an established machine learning method, a decision tree, that can
rigorously classify sequences. The major strength of the decision tree is that it can take any measured feature as input
and does not require a priori identification of significant descriptors. We use the decision tree to classify de novo
assembled sequences and compare the method to published protocols.

Conclusions: A decision tree performs better than existing methods when classifying sequences in eukaryotic de
novo assemblies. It is efficient, readily implemented, and accurately identifies target and contaminant sequences.
Importantly, a decision tree can be used to classify sequences according to measured descriptors and has potentially
many uses in distilling biological datasets.
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Background
Low-costDNAsequencing, computing power and sophisti-
cated assembly algorithms have made it possible to readily
assemble genome sequences. However, most organisms
do not live in sterile environments and extracted DNA
may be contaminated with foreign DNA from associ-
ated microbiota [1–3] and endosymbionts [4]. Laboratory
reagents and procedures can also introduce foreign DNA
[5–7] and eliminating these sequences remains a chal-
lenge [8]. Contaminants end up sequenced and assembled
along with the DNA of the target organism and, if not
eliminated, will become part of the assembled genome
sequence.
Contamination errors are frequent in public databases

[9–11]. For example, Merchant et al. [10] identifiedmicro-
bial contamination in genome sequences of the cattle
Bos taurus and an additional 50% of the publicly avail-
able genomes they analyzed. Contamination has also been
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reported in human [7, 12] and microbiome [6] sequences.
Crisp et al. [11] analyzed horizontal gene transfer (HGT)
in 40 metazoan genomes but excluded 9 from HGT anal-
yses due to extensive contamination.
Contamination canmislead scientific studies. For exam-

ple, contaminant sequences may be mistaken for HGT or
complicate efforts to analyze HGT. In the Crisp study dis-
cussed above [11] genes initially classified as the result
of HGT but later marked as probable contaminants
had common characteristics. Sixty-nine of the nematode
Caenorhabditis japonica HGT-derived genes were not
physically linked to metazoan genes, lacked introns and
were likely contaminants. A separate study [9] reported
that several genes in the nematode C. angaria genome
sequence were thought to be HGT-derived but analyses
revealed 14% of the assembled genome was contributed
by bacterial contaminants. Analyses of the sea anemone
Nematostella vectensis genome [13] indicated a shikimic
acid pathway not previously found in metazoans [14] but
a later study found these genes were from proteobacte-
ria ‘consorts’ and not the result of HGT [4]. The tardi-
grade Hypsibius dujardini genome was reported as 17%
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HGT-derived [15] but later analyses indicated large scale
[16–18] contamination and an actual HGT-derived con-
tent of 1-2% [3].
Current decontamination methods eliminate known or

well-characterized contaminants. For example, the soft-
ware package DeconSeq filters sequences based on a
contaminant database [19]. However, contaminants in
de novo assembly projects are often not known. In this
situation filtering methods must eliminate sequences
based on nucleotide similarity to possible contaminants
[20] or select target sequences based on similarity to
known sequences in public databases [21]. Both of these
approaches risk eliminating DNA from the target organ-
ism. For example, for eukaryotic genomes possible con-
taminants include large segments of bacteria, plants,
fungi, viruses and archaea. The sheer number of pos-
sible sequences leaves filtering methods prone to ‘over-
fitting’ a model of contaminant identity as sequences
from the target organism may resemble contaminants
due to random chance. This is especially problematic
when working with sequences from non-model organ-
isms as there may be few representatives in public
databases.
Conversely, sequences from the target organism may

resemble contaminants because they result from true
HGT. Aggressively eliminating these sequences can
remove true HGT. For example, pre-assembly filter-
ing for possible contaminants removed horizontally-
transferred Wolbachia sequences from the first version
of the Drosophila ananassae genome sequence [22]. Sub-
sequent analysis and re-assembly revealed that > 1 Mb
of the Wolbachia genome had been transferred into
D. ananassae [22, 23].
Here, we introduce a novel application of a supervised

machine learning method, a decision tree, for identify-
ing target and contaminant DNA in de novo genome
assembly projects. Supervised machine learning works by
constructing a model from a set of training data and using
this model to predict classification responses. Decision
trees do not require data transformations or normaliza-
tions and produce simple, easily interpretable relation-
ships. Their simplicity means they are well-suited for
classifying data with straightforward but nonlinear rela-
tionships to predictors. Decision trees are well-established
in machine learning but not commonly used in biology or
bioinformatics.
The majority of sequence filtering approaches have

been developed for metagenomic datasets and an impor-
tant question is whether methods developed for ‘binning’
microbial species can be co-opted for decontaminating
eukaryotic genome sequences. For example, the frequency
of short DNA ‘words’ of length k or k-mers can be used
to classify microbes in metagenomic datasets [24–27].
Unsupervised classification methods bin samples based

on sequence feature analysis (for example, [28, 29]) or
combine sequence analysis with information on DNA
sequencing coverage [30], taxonomy [31], and sequence
composition [32]. Additionally, there are methods that
employ both unsupervised and supervised methods to bin
samples (for example, [33, 34]). Here, we evaluate the per-
formance of our decision tree methods compared to the
metagenomic classification software packages Anvi’o [32]
(with CONCOCT [30] binning), Busybee [34] and Kraken
[20] and the sequence filtering method Blobology [21]
(Fig. 1).
We found that the decision tree accurately classified

target and contaminant sequences based on measured
descriptors. Importantly, the decision tree did not require
a priori identification of significant descriptors and identi-
fied informative measures in constructing the model. Cur-
rent decontamination methods can be time-consuming

Fig. 1 The workflow from raw DNA sequence reads to assembled
genome sequence for Anvi’o with CONCOCT binning, Busybee,
Blobology, Kraken, and the decision tree. Both Blobology and Kraken
required pre-assembly, filtering for target and contaminant reads, and
final assembly. The decision tree, Anvi’o and Busybee filtered for
target and contaminant scaffolds by constructing models and
classifying contiguous sequences after assembly
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and require multiple manual steps that reduce repro-
ducibility. In contrast, decision tree decontamination is
readily implemented. The generality of the method means
there are potentially many uses in biology.

Results
Genome sequences
We implemented our decision tree on three empirical
datasets and twenty simulated datasets. The ‘real’ organ-
isms included two nematodes from laboratory cultures,
C. remanei and C. latens, that were found to be con-
taminated with microbes and one rotifer, Adineta vaga.
The bdelloid rotifer A. vaga is both ameiotic and asex-
ual and 8% of its genes are of non-metazoan origin [35].
We included A. vaga to determine if a decision tree could
accurately separate foreign DNA from horizontally trans-
ferred DNA in an organism with high levels of confirmed
HGT [35–37]. In order to test the methods on a range
of genome-contaminant data structures we also simulated
genomic and transcriptomic libraries from the published
gene sequences of the plant Arabidopsis thaliana, the
nematode C. elegans, the fruitfly D. melanogaster, and the
pufferfish Takifugu rubripes. We contaminated each of
these with a single microbe, the yeast Candida albicans,
a low coverage mix of the microbial species listed above,
an archaeon from the microbial dark matter project [38]
and a mix of Homo sapiens and the common microbial
contaminant Bradyrhizobium sp. [5, 6].

Prokaryotic contaminants in empirical genome sequences
The C. remanei genome sequence was estimated to be
131 Mb (Table 1) by flow-cytometry [39, 40] and ini-
tial analyses with Basic Local Alignment Search Tool
(BLAST) [41] indicated that the assembly contained
excess sequence due to microbial contaminants. The
most prevalent taxonomic origin in the entire assem-
bled genome set was C. remanei (Fig. 2) and the second
most prevalent origin was the microbial contaminant E.
coli. The third most prevalent organism was an unnamed
Chryseobacterium species, also a microbial contaminant.
409 scaffolds could not be assigned taxonomic origin with
BLAST.
For C. latens the most prevalent taxonomic origin was

a microbial contaminant, Stenotrophomonas maltophilia,
that was also found in the C. remanei assembled sequence
(Fig. 2). The second most prevalent taxonomic origin
was C. remanei. This is likely because C. latens is a
recently described species (previously C. species 23 [42])
and there are few C. latens sequences in public databases.
C. remanei and C. latens are closely related and partially
interfertile [43]. We were not able to identify a taxonomic
origin for 429 of the assembled scaffolds.
For the A. vaga dataset there were non-metazoan

BLAST alignments as expected under a model of high

Table 1 Estimated genome sizes and published assembly sizes
for organisms used in this study

Organism Estimated size (Mb) Assembled sequence (Mb)

C. remanei 131 [39, 40] 118.36 [52]

C. latens 131 122.22

A. vaga 244 [63] 218.07 [35]

A. thaliana 125 [64] 135.67 [65]

C. elegans 100 [66] 103.02 [67]

D. melanogaster 175 [68] 142.57 [69]

T. rubripes 390 [70] 393.31 [50]

A. radiobacter 7.27 7.27 [71]

C. albicans 14.86 14.85 [72]

E. coli 4.64 4.64 [73]

P. aeruginosa 6.27 6.27 [49]

Ralstonia sp. 5.25 5.25

Empirical study organisms are listed in the upper portion, simulated target
organisms are listed in the center portion and simulated contaminants are listed in
the lower portion of the table. There is no published estimate of genome size for C.
latens and we used the genome size of the closely related [42] C. remanei as an
estimated C. latens genome size

HGT. BLAST could not identify a taxonomic origin for
34,264 A. vaga scaffolds (Fig. 2) which was likely due to
the low number of rotifer sequences in public databases.
In order to identify probable contaminants we focused on
an unusual pattern of 989 BLAST alignments to a single
strain of E. coli (K-12 strain C3026), 206 BLAST align-
ments to a single strain of the human pathogen Shigella
flexneri (4c), and 26 BLAST alignments to the microbe
Variovorax paradoxus.

Identifying contaminants with predictor variables
We removed the target species genome sequences from
the NCBI nucleotide (nt/nr) database and used BLAST
to assign taxonomic origin. We aligned DNA and RNA
sequence reads to each genome and calculated 8 predictor
variables for scaffolds: (1) length, (2) GC content, (3) mean
DNA sequencing coverage, (4) mean RNA sequencing
coverage, (5) percent of scaffold covered in DNA align-
ment, (6) percent of scaffold covered in RNA alignment,
(7) GC content of aligned DNA reads, and (8) GC content
of aligned RNA reads.
We selected a portion of the scaffolds with BLAST-

assigned taxonomy as a training set and used the remain-
der of scaffolds with BLAST-assigned taxonomy as a test
dataset. We used the training set to construct a decision
tree and used this tree to classify each of the test scaffolds
as either target or contaminant. We varied the portion of
the dataset used in training from 1-99% and calculated
the mean and standard deviation of accuracy, sensitivity,
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Fig. 2 The top 20 organisms identified in BLAST analysis of the
empirical genome sequences for (a) C. remanei (b) C. latens (c) A. vaga.
For C. remanei the most common BLAST hit was C. remanei, followed
by two likely contaminants and scaffolds that could not be assigned
origin with BLAST. For C. latens the most common BLAST hit was the
microbial contaminant S. matophilia followed by C. remanei, a second
contaminant P. protegens, and scaffolds that could not be assigned
origin. For A. vaga the majority of scaffolds could not be assigned
origin with BLAST, likely due to the low number of rotifer sequences
in public databases

and specificity across 100 replicates (results forC. remanei
Fig. 3a). Here, model error was the percent of scaffolds
in the test dataset that had a BLAST-assigned origin and

were mis-classified. Accuracy was measured as 1-error.
Sensitivity was calculated as TP/(TP+FN) where TP was
the number of true positives and FN was the number of
false negatives. Specificity was calculated as TN/(TN +
FP) where TN was the number of true negatives and FP
was the number of false positives. True positives were
correctly identified target organism sequences and true
negatives were correctly identified contaminants. Accu-
racy, sensitivity, and specificity plateaued with >40% of the
data used for training (Figs. 3 and 4) and we used 50% of
the dataset for decision tree training.
Decision trees are susceptible to bias and variance due

to variation in the training dataset (Fig. 3a). In order
to construct more accurate models we used a variation
of a bootstrap procedure, bootstrap aggregation or ‘bag-
ging’, that reduces the variance of the decision tree model
(Fig. 3b). We also estimated the performance of random
forest models (Fig. 4a) and boosted decision tree mod-
els (Fig. 4b). Accuracy, sensitivity and specificity were
>99.5% for each of these models but the random forest
and boosted models did not show monotonic responses
to the proportion of data used in training and we used
bagged decision tree models for the remainder of the
analyses. Sensitivity exceeded specificity for all models
(Figs. 4 and 5).
For C. remanei the bagging model predicted 19.38 Mb

contained in 2470 scaffolds did not have a Caenorhabdi-
tis origin (Table 2; Fig. 5a-b). The contaminant sequences
predominantly had low sequencing coverage (on aver-
age less than 10x; Fig. 5b) and GC content ranging from
35–70% or moderate sequencing coverage (on average,
similar to that for scaffolds of Caenorhabditis origin)
with high GC content (greater than 60%) although >50
scaffolds had GC/coverage profiles that deviated from
this pattern. Of the 409 scaffolds without taxonomic ori-
gin the bagged decision tree model predicted 213 were
contaminants.
For C. latens 17.06 Mb contained in 2896 scaffolds

were of non-Caenorhaditis origin (Table 2; Fig. 5c-d).
The model predicted that 28 of the 429 scaffolds without
BLAST-identified origin were contaminants. The contam-
inant scaffolds had moderate-to-high sequencing cover-
age that actually exceeded the sequencing coverage of the
C. latens scaffolds for roughly 1/3 of the contaminant
scaffolds. The GC content of contaminant scaffolds was
55-70% while the GC content of the C. latens scaffolds
was 30-50%.
The decision tree predicted 0.62 Mb contained in 2887

scaffolds were contaminants in the A. vaga genome
sequence (Table 2; Fig. 5e-f). The model predicted 1593
of the 34,262 scaffolds without BLAST-identified taxon-
omy were contaminants. The contaminant scaffolds were
small sequences with a median size of 59 bp and a mean
size of 169 bp. In contrast, the true Adineta scaffolds had
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Fig. 3 Accuracy, sensitivity and specificity for (a) decision tree and (b) bagging decision tree models. Decision tree models achieved high accuracy,
sensitivity and specificity but were influenced by variation in the training dataset. The bagging decision tree model achieves high accuracy,
sensitivity and specificity with lower variance between models constructed with different training datasets. For the decision tree models accuracy,
sensitivity and specificity plateau with >25% of the data used in training while the performance of the bagging model plateaus with >40% of the
data used in training

a median size of 408 bp and a mean size of 1080 bp.
Contaminant scaffolds had GC content >40% while the
Adineta scaffolds had GC content <45%.

Predictor variables
For each dataset we randomly selected 50% of the scaffolds
with BLAST-assigned taxonomy as a training dataset and
constructed bagged decision tree models for 2-8 variables.
We repeated this procedure 1000 times and calculated
the mean and standard deviation of accuracy, sensitivity,
and specificity for each of these predictor combinations.
Here, we focus on results for C. remanei (Fig. 6a). Mean
DNA sequencing coverage and mean RNA sequencing
coverage had the highest Gini importances and a model
constructed solely with these predictors was able to cor-
rectly classify >97% of the C. remanei dataset. When a
third predictor, the percent of the scaffold covered in
RNA alignment, was added the model correctly classi-
fied >98% of the dataset. Model accuracy and sensitivity

plateaued above 99.5%when a fourth variable, scaffold GC
content, was included but specificity increased slightly as
successive predictors were added to the model.

Software comparisons
We compared the decision tree bagging model results
against those produced by Anvi’o [32] with CONCOCT
binning [30], Busybee [34], Kraken [20] and Blobology
[21]. Processing our sequencing files with Anvi’o was
time-intensive and because of that we chose to proceed
with the default setting and analyzed the 2304 scaffolds
>2500 bp. We calculated accuracy, sensitivity and speci-
ficity based on this smaller scaffold set. Anvi’o [32] sep-
arated the contaminated C. remanei genome sequences
into 18 bins however 3 of these contained only 1 scaffold.
Seven bins contained primarily C. remanei sequences.
Specificity was high (Fig. 6b) and Anvi’o misclassified just
2 Chryseobacterium scaffolds as Caenorhabditis. How-
ever, the overall Anvi’o accuracy rate was lower at 98.1%
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Fig. 4 Accuracy, sensitivity and specificity for (a) random forest and (b) boosted decision tree models. Both random forest and boosted decision tree
models resulted in high accuracy, sensitivity and specificity but showed non-monotonic responses to the training datasets
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Fig. 5 GC content and the average per-base sequencing coverage for individual scaffolds in the empirical datasets (a) C. remanei training; (b) C.
remanei full dataset; (c) C. latens training; (d) C. latens full dataset; (e) A. vaga training; and (f) A. vaga full dataset. Training datasets with
BLAST-identified origins are shown on the left and decision tree bagging model predictions for full datasets are shown on the right with model error
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Table 2 Assembled genome size and number of scaffolds before and after bagging decision tree decontamination for the empirical
genome sequences

Organism Contaminated assembly size
(Mb)

Number of scaffolds Decontaminated assembly size
(Mb)

Number
of scaffolds

C. remanei 137.74 4,566 118.36 2,096

C. latens 139.27 4,559 122.22 1,664

A. vaga 218.07 38,875 217.44 35,988

with 5 misclassified scaffolds and 38 scaffolds that were
entirely unclassified. Of these, 21 were Caenorhabditis
sequences and sensitivity was 98.5%.
Busybee [34] separated the contaminated C. remanei

genome sequences into 5 bins. Busybee had a sensitivity
rate of 99.89% (Fig. 6b) and placed just 2 Caenorhabditis
scaffolds in microbial bins but the 2 Caenorhabditis bins
(Fig. 7) contained 166 microbial scaffolds. Busybee bin 4
contained the majority of the C. remanei scaffolds with
few microbial scaffolds (Fig. 7a) but Busybee bin 3 was
a heterogeneous mix of scaffolds from C. remanei and
Rhodococcus species (Fig. 7b).
Pre-assembly filtering methods can not be evaluated

with accuracy, sensitivity and specificity and instead we
measured the resulting genome size and genic com-
pleteness with BUSCO [44] and CEGMA [45]. BUSCO
searches for a set of 982 orthologous genes thought to
exist in single-copy in metazoans and CEGMA searches
for a set of 248 ultra-conserved eukaryotic ortholo-
gous genes. For C. remanei the Blobology protocol
[21] resulted in a genome sequence 0.75 Mb smaller
than the decision tree genome sequence. We repeated
the Blobology protocol focusing on a single contami-
nant order, Xanthomonadales, and assembled a complete
genome sequence for the microbe S. maltophilia [46].
Using Kraken [20] for pre-assembly filtering resulted in
a genome sequence 9.3 Mb shorter than the decision
tree sequence. The decision tree assembled sequence

contained a greater proportion of the BUSCO and
CEGMA gene sets when compared with Blobology and
Kraken (Table 3).

Identifying contaminant sequences in simulated genomes
We assembled the simulated libraries with low
coverage microbial sequences, archaeons, and H.
sapiens/Bradyrhizobium contaminants but BLAST failed
to identify any scaffolds with these taxonomic origins in
the resulting genome sequences. Accordingly, we focused
on the simulated libraries with microbial and fungal
contaminants for decision tree decontamination.
The simulated libraries with microbial contaminants

were disentangled with decision tree models constructed
solely on the scaffold GC content and the average per-
base DNA sequencing coverage (Fig. 8). The simulated
microbial contaminants had scaffold GC contents of 50-
69% while the target organisms had scaffold GC con-
tents of 24-72%. The GC content of the assembled C.
albicans scaffolds ranged from 23-53% and was similar to
the target organisms which had GC contents of 24-72%
(Fig. 9). Accordingly, the C. albicans-contaminated simu-
lated libraries showed poor discrimination with a decision
tree model constructed with scaffold GC content and
average per-base sequencing coverage (error rates >10%).
For each simulated library contaminated with C. albicans
we constructed a model with the full eight variables to
increase prediction accuracy > 99% (Fig. 9).
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Fig. 6 Accuracy, sensitivity and specificity for (a) the decision tree bagging model constructed with 2-8 predictors and (b) Anvi’o with CONCOCT
binning and Busybee. Acccuracy and sensitivity for the decision tree bagging model plateau with 4 predictors but small increases in specificity
resulted from additional predictors. Anvi’o had the highest specificity compared to the decision tree bagging model or Busybee while Busybee had
the highest sensitivity
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Fig. 7 Busybee bin 4 (a) contained primarily scaffolds of Caenorhabditis or unknown origin with few microbial contaminants while Busybee bin 3
(b) was a hetereogeneous mix of sequences with different origins. The scaffolds in Busybee bin 3 separated by taxonomic origin when visualized by
scaffold GC content and sequencing coverage

Discussion
We have developed a novel implementation of a decision
tree, an established machine learning method, for dis-
tilling and decontaminating de novo assembled genome
sequences. Our method filters based on any measurable
characteristic. Here, we have focused on eight predictors
and constructed decision tree models for empirical and
simulated datasets. These models accurately predicted
target or contaminant status for >99% of the scaffolds
for which we could assign taxonomic origin with BLAST
[41]. Importantly, we were able to classify scaffolds as tar-
get or contaminant in the absence of BLAST information
based on predictor variables. Decision tree decontamina-
tion works on measurable sequence characteristics and
is particularly useful for non-model organisms and those
with low representation in public databases. Addition-
ally, the influence of existing contamination in public
databases can be limited by reducing training dataset size
and manually curating training data.

Decontamination and dataset GC structure
In our model runs the complexity of the decision tree
was influenced by the GC structure of the target and
contaminant genome sequences. For example, the simu-
lated datasets with bacterial contaminants were accurately
decontaminated with a simple model based on scaffold
GC content and average per-base sequencing coverage.
Although genomic GC content varies broadly, metazoan
genomes skew towards an enrichment of AT nucleotides

Table 3 Percentage of orthologous genes found by BUSCO and
CEGMA in the C. remanei genome sequences

Protocol BUSCO CEGMA complete form CEGMA partial form

Decision tree 99.59% 94.35% 98.79%

Blobology 98.98% 94.35% 97.18%

Kraken 89.82% 84.68% 88.31%

There were 982 genes in the BUSCO nematode set and 248 ultra-conserved
eukaryotic genes in the CEGMA set

while theGCcontentof bacterial genomes ranges from <15%
to >75% [47]. In the simulated libraries these differences,
coupled with discrete differences in the average per-base
sequencing coverage, were large enough to accurately
discriminate between target and contaminant sequences.
These results indicate that discriminating between target
and contaminant sequences in empirical datasets may be
straightforward if the target and contaminant genomes
have very different GC structures. For example, an eas-
ily discriminated case may be identifying sequences from
a single high-GC contaminant in an invertebrate genome
assembly.
The simulated libraries were created from high-quality

genome sequences assembled with high certainty. Despite
this, there was large variability in the estimated sequenc-
ing coverage (for example, Fig. 8). The ART [48] simula-
tion software we used produces sequence reads according
to a model based on real Illumina datasets and includes
coverage variability and substitution, insertion and dele-
tion errors. However, very large coverage values like
the maximum sequencing coverage estimates we have
reported here result in part from difficulties that arise
in aligning relatively short 150 bp sequence reads to
long repeats and other complex structures in metazoan
genome sequences. Even in these ‘ideal’ simulated situa-
tions, the average per-base sequencing coverage did not
reliably separate target and contaminant DNA sequences.

Includingmultiple predictor variables.
For our empirical datasets we were able to classify targets
and contaminant sequences with relatively high accu-
racy (>90%) with decision tree models constructed solely
on GC content and DNA sequencing coverage. How-
ever, achieving >99% accuracy, sensitivity and specificity
required decision tree models constructed with at least 4
predictor variables. This was also true for the simulated
datasets contaminated with the yeast C. albicans (Fig. 9).
The eight predictor variables we chose reflected differ-

ent aspects of the assembly process and the biological
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Fig. 8 GC content and average per-base sequencing coverage for the simulated datasets contaminated with microbial DNA. Training datasets are
shown on the left and bagging decision tree predictions are shown on the right for a-b) A. thaliana; c-d) C. elegans; e-f) D. melanogaster; and g-h) T.
rubripes. The microbial genomes were GC-rich relative to the target organisms and a simple decision tree based on GC content and sequencing
coverage predicted scaffold origin with low error for each dataset
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Fig. 9 GC content and average per-base sequencing coverage for the simulated datasets contaminated with C. albicans DNA. Training datasets and
bagging decision tree predictions are shown for a-b) A. thaliana; c-d) C. elegans; e-f) D. melanogaster; and g-h) T. rubripes. C. albicans and the target
organisms had similar GC contents and the bagging decision tree predictions were based on a complex relationship that included multiple
predictors and mRNA data
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basis of the sequences. For example, scaffold length is
a measure of how reliably that segment of DNA assem-
bled and depends on the sequencing coverage in the total
sequence read library and the complexity of the sequence.
In contrast, the percent of the scaffold covered in aligning
RNA reads to the assembled scaffold measures gene den-
sity which varies by taxonomic origin. For example, the
microbial P. aeruginosa genome is 89.4% coding sequence
[49] while the genome of the vertebrate T. rubripes is
22.23% coding sequence [50]. Each of these descriptors
had different Gini importances for the decision tree mod-
els constructed in this study and the minimal sets of
predictor variables would likely differ for different target-
contaminant combinations.

Software comparisons
We compared the C. remanei assembled sequences pro-
duced by our decision tree model with those produced by
Anvi’o with CONCOCT binning [30, 32], Busybee [34],
Blobology [21] and Kraken [20]. Both Anvi’o with CON-
COCT binning and Busybee were developed for disen-
tangling metagenomic datasets and microbial sequences.
Anvi’o excelled at identifying microbial sequences but the
decision tree model had higher accuracy and sensitivity
than Anvi’o when constructed with >3 predictor vari-
ables. Busybee had an extremely high sensitivity but lower
accuracy and specificity relative to both the decision tree
models and Anvi’o. Metagenomic tools that are tuned for
success with microbial sequences may not be capable of
achieving the same levels of success in decontaminating
eukaryotic datasets.
Anvi’o was time-intensive in pre-processing and analyz-

ing sequences and could not accurately classify scaffolds
< 2500 bp. In comparison, Busybee [34] was readily avail-
able through a web portal and accurately classified >95%
of the complete C. remanei scaffold set in less than 10
minutes. The time-limiting step in decision tree decon-
tamination is aligning the DNA and RNA reads to the
assembled genome. Once this is complete model con-
struction and scaffold selection can be completed within
minutes.
Kraken overfit a model of contaminant identity and

the assembled C. remanei sequence was shorter and had
the smallest complement of orthologous genes [44] when
compared with either the decision tree or Blobology
sequences. Blobology resulted in an assembled sequence
that was 99% of the length of the decision tree assem-
bled sequence. The decision tree sequence had a greater
percentage of orthologous genes [44, 45] when compared
with both the Blobology and Kraken sequence. These
results indicate that decontaminating and producing a
complete assembled genome may require tools that are
specifically tuned for certain scenarios. For example, the
C. remanei sequence contained at least one full bacterial

genome [46]. The raw ALLPATHS-LG [51] assembly
contained many partial bacterial sequences but Blobol-
ogy’s targeted filtering and re-assembly produced a high-
quality sequence for the contaminant Stenotrophomonas
maltophilia.

Classification errors
We began this study motivated by the goal of decontam-
inating assembled genome sequences without removing
HGT. Under this conceptual framework we might expect
that classification errors relate to horizontally transferred
sequences but we did not find this. Each method pro-
duced a small number of errors and we were able to
investigate these individually. For example, 2 scaffolds in
the C. remanei dataset were predicted as contaminants
by the decision tree model but were identified as related
to the nematode Parastronglyoides by BLAST. Although
Parastronglyoides is a nematode, the full list of BLAST
hits for these sequences included multiple microbes and
no other nematodes. One scaffold was binned with E.
coli sequences by both Anvi’o [32] and Busybee [34] and
although BLAST identified it as related to the nematode
C. elegans, the full list of BLAST hits for this sequence
included multiple microbes as well. The BLAST-assigned
taxonomic identity for some of these errors may reflect
contamination in public databases.
Other mis-classifications did not reflect contamination

errors. Anvi’o [32] failed to classify two scaffolds that did
not express mRNA but that BLAST identified as closely
related to C. elegans. These scaffolds contained gene
sequences encoding srh-266, a serpentine or chemore-
ceptor, and a glycosyltransferase with conserved single
copy homologs across Caenorhabditis, Drosophila and
Danio rerio. Busybee [34] binned several megabases of
Rhodococcus sequence and a Rhodococcus plasmid with
Caenorhabditis sequences including a 137,654 bp scaf-
fold that expressed mRNA and contained a gene sequence
encoding a homolog to C. elegans fibrillin-1, an extracel-
lular matrix protein with a human homolog that results in
Marfans syndrome when mutated.
These sequences did not have any readily observable

patterns and were likely binned together because of simi-
larities in k-mer frequencies. We do not understand how
mutation and functional convergence influence the evolu-
tion of genome sequences. Complete knowledge of super-
vised and unsupervised sequence analysis methods will
require a deeper understanding of the rules that govern
change at a genomic level.

Conclusions
Here, we have presented a novel implementation of a deci-
sion tree model for decontaminating de novo sequence
assemblies. Our method is readily implemented, repro-
ducible and fast. We have shown that it can rigorously
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decontaminate sequences and is useful for non-model
organisms. Machine learning methods are established in
other disciplines but not yet common in biology. We hope
that this example demonstrates the utility of machine
learning methods for distilling meaning in biological
datasets.

Methods
Empirical genome sequences
Genomic DNA was isolated from C. remanei and C.
latens nematode worms (for detailed experimental meth-
ods, see [52]). We sequenced one overlapping paired-end
genomic library with an average fragment size of 180bp
(as required by the assembly software ALLPATHS-LG
[51]) for each nematode. We sequenced three mate pair
genomic libraries with average fragment sizes of 0.7-2, 2-4,
and 4-7 kb for C. remanei and three mate pair libraries
with average fragment sizes of 4-6 kb, 6-9 kb and 9-12 kb
for C. latens. Libraries were sequenced as 2 x 101nt reads
with an Illumina HiSeq. We sequenced these libraries
at high depth and in order to avoid biased errors we
used the k-mer filter protocol in the software package
Stacks [53] to pre-filter the overlapping paired end frag-
ments by k-mer frequency spectra. We used k=15 and
removed reads with greater than 12 rare k-mers (single
occurrences) and greater than 51 abundant k-mers (here,
defined as 20,000 or more occurrences). We used the
ALLPATHS-LG (version 52488) [51] genome assembly
software package which performs k-mer spectra correc-
tion of sequencing errors (with k=25), builds contiguous
sequences with a de Bruijn graph from the 180bp reads,
and constructs scaffolds with mate pair libraries.
We isolated total RNA from mixed-stage populations

of C. remanei and C. latens, purified mRNA, synthesized
cDNA libraries and sequenced these libraries as 2 x 101nt
reads with an Illumina HiSeq. We used the MAKER2 soft-
ware package [54] to annotate protein-coding genes (for
detailed methods see [52]).
The A. vaga sequence read libraries were obtained from

the Sequence Read Archive [55] and assembled genome
sequences were obtained from the National Center for
Biotechnology Information (NCBI) [56]. For details on
DNA and RNA isolation, sequencing, assembly and anno-
tation see [35].
Sequencing the C. remanei paired-end genomic library

produced 367,673,013 overlapping pairs (statistics for C.
remanei libraries are given in Additional file 1: Table S2). We
removed 75,850,115 sequence reads with rare k-mers and
22,433,210 sequence reads with abundant k-mers
resulting in 637,062,701 retained reads. Sequencing
the C. latens paired-end library produced 171,027,578
overlapping pairs (C. latens library statistics are given in
Additional file 1: Table S3). We removed 46,491,040 reads
with rare k-mers and 11,359,209 reads with abundant

k-mers resulting in 284,204,907 retained sequence reads.
We filtered the sequenced mRNA libraries for adapter
contamination and retained 26,170,962 C. remanei reads
and 32,459,744 C. latens reads for transcript assembly.
Statistics for the A. vaga libraries used in this study are
given in Additional file 1: Table S4 and statistics for the
simulated genomic and transcriptomic libraries are given
in Additional file 1: Tables S5 and S6.

Simulated genome sequences
We simulated DNA sequence reads for A. thaliana, C.
elegans, D. melanogaster and T. rubripes and contami-
nated these libraries with sequences from Agrobacterium
radiobacter, Pseudomonas aeruginosa, Escherichia coli,
Ralstonia sp. 5_7_47FAA [6], C. albicans, microbial dark
matter archaea [38], Homo sapiens and the common
microbial contaminant B. sp. BTAi1 [5, 6]. Due to the large
size of the human genome [57] we simulated sequences
from theH. sapiensmitochondrial chromosome and chro-
mosome X, Y, IV, XII, and XX. GenBank accessions for
genome sequences are listed in Additional file 1: Table S1.
We simulated Illumina sequence read datasets with the

software package ART (version ART-MountRainier-2016-
06-05) [48]. We generated two genomic DNA libraries for
each target organism, one a 150 bp paired-end library with
a 270 bp fragment, standard deviation of 30 bp (resulting
in, on average, 10% overlap between the paired reads) and
average per-base sequencing coverage of 100x and one a
150 bp mate pair library with a 2500 bp fragment, stan-
dard deviation of 50 bp and average per-base sequencing
coverage of 33x. We also generated two genomic DNA
libraries for each contaminant organism with the param-
eters listed above but lower average per-base sequencing
coverage. For the work reported here, the contaminant
paired-end sequencing coverage was 20x and the mate
pair sequencing coverage was 10x. We combined target
and contaminant to create contaminated libraries and
assembled genome sequences with ALLPATHS-LG [51].
We also simulated RNA libraries with the software pack-

age ART [48]. For each target organism we simulated a
100bp paired-end library with a 400bp fragment, stan-
dard deviation of 50 bp and an average sequence coverage
of 30x. For each contaminant organism we simulated
a library with the parameters listed above but a lower
sequencing coverage of 10x.

Assigning taxonomic identity to scaffolds
We used the Basic Local Alignment Search Tool (BLAST
2.3.1+) to identify the single best BLASTn [41] match
(expect threshold=10; word size=28; match/ mismatch
scores=1,-2, gap costs=linear) for each assembled scaffold.
We used the NCBI nt database and for each target organ-
ism we removed that species genome sequences from the
database. For the C. remanei and C. latens datasets we
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filtered these by genus and assigned each scaffold a taxo-
nomic identity of ‘Caenorhabditis’, not ‘Caenorhabditis’ or
‘No BLAST hit.’ Note that some of the scaffolds identified
in this way may actually be matching residual contamina-
tion in other Caenorhabditis assemblies (for example, the
suspected contaminants in C. angaria [9] and C. japonica
[11]). This may contribute to error in our datasets but we
chose to maintain consistency with published results.
BLAST could not assign taxonomic identity for 34,264

A. vaga scaffolds (88% of the total scaffolds; 35.5 Mb of
assembled sequence; 16.3% of the genome) as expected for
a non-model organism. We assigned the 34,264 unidenti-
fiable scaffolds a taxonomic identity ‘No BLAST hit,’ the
E. coli K-12 strain C3026, S. flexneri 4c and V. paradoxus
scaffolds a taxonomic identity of ‘Not Adineta’ and the
remaining scaffolds a taxonomic identity of ‘Adineta.’
We classified the simulated assembled scaffolds by

genus with BLAST with the exception of the T. rubripes
datasets. Each of these contained scaffolds that BLAST
could not assign taxonomic identity to and scaffolds that
aligned to other metazoans. In order to focus on con-
taminants we assigned each scaffold a taxonomic identity
of ‘No BLAST hit,’ ‘Other Animalia,’ ‘Takifugu,’ or the
identified contaminant.

Calculating descriptors for training scaffolds
We used the program GMAP-GSNAP (version 2017-
03-17) [58] to align DNA and RNA sequence reads to
each assembled genome sequence. Reads were mapped as
paired, correct orientation was required and we selected
the single highest scoring location (no multimapping
was allowed). Mate pair libraries may contain chimeric
sequences and other artifacts that would align incor-
rectly and we eliminated these from coverage calculations.
We used the BBMap/BBTools software package (version
37.32) [59] to calculate the length and GC content of
each assembled scaffold. We also calculated the average
sequencing fold coverage across each scaffold, the per-
cent of scaffold covered in aligning reads to the assembled
sequence and the GC content of the reads aligned to the
assembled sequence for both DNA and RNA libraries.

The decision tree algorithm
The decision tree framework measured the informa-
tion gain contributed by each variable according to the
entropy H(S) = −�x∈Xpxlog2px where H(S) was the
entropy of dataset S, X were the classes in S and p(x)
was the probability of x or the proportion of x in the
dataset. Information gain was computed as IG(A, S) =
H(S) − �t∈Tp(t)H(t) where IG(A, S) was the difference
in entropy from splitting on the variable or attribute A,
T were subsets of S and p(t) was the proportion of t.
Importantly, the decision tree framework did not require
assumptions regarding which variables were significant

and could classify data based on any measurable
feature.
Data were classed according to Gini’s diversity index

where G = �
nc
i pi(1 − pi). Here, nc was the number of

classes and and p(i) was the observed fraction of class i
observations in the set. Training data was used to iden-
tify useful descriptors and construct a binary decision tree
according to ŷ = argmin

y=1,...,K
�K

k=1P̂(k|x)C(y|k). Here, ŷ was

predicted classification, K the number of classes, P̂(k|x)
posterior probabilities, C(y|k) the cost of misclassifica-
tion and argmin the input that minimized the value of the
function.
We constructed bootstrapped aggregated or ‘bagged’

decision tree models by generating B different boot-
strapped training datasets and averaging the predictions
to obtain f̂bag(x) = 1

B
∑B

b=1 f̂ ∗b(x) where f̂ ∗b(x) is the set
of predictions obtained from the bth bootstrap training
set. We measured the Gini importance of each variable in
the model as I = Gparent −Gnode1 −Gnode2 , where G is the
diversity index defined above.We also implemented a ran-
dom forest model by bootstrapping training datasets and
constructing decision trees from a random sample m of
the p predictor variables. Here, m=4 and we constructed
5000 trees per model run. A random forest model is an
extension of a bagging model and the two are equivalent
when m=p. We implemented a boosted model by fitting
decision trees to the residuals of a shallow tree and sum-
ming across these trees. Here, we allowed 2 splits in each
tree, used a shrinkage parameter of 0.01 and fit 10 trees
per model run.

Implementing Anvi’o with CONCOCT binning
We used the assembled genome sequence to create an
Anvi’o (v2.4.0 “Pyrenees”) contig database with k-mer fre-
quency (computed at k=4), GC content, open reading
frames and predicted bacterial single-copy core genes for
each scaffold [32]. We processed scaffolds > 2500 bp with
anvi’o to estimate sequencing coverage profiles (mean,
standard deviation and average coverage for inner quar-
tiles) and characterize single-nucleotide variants for our
DNA and RNA sequences. We used CONCOCT (v0.4.0)
[30] for binning within Anvi’o. Briefly, CONCOCT bins
metagenomic samples by analyzing both k-mer frequency
and sequencing coverage across assembled scaffolds.

Implementing Busybee
We uploaded the assembled genome sequence as a
.fasta to the Busybee (version 2017-01-09) [34] web por-
tal (https://ccb-microbe.cs.uni-saarland.de/busybee). We
enabled both taxonomic and functional annotation and
uploaded our set of 8 predictor variables as a custom
annotation file. We set the minimum contig length at
1000 bp, the minimum contig length for border points

https://ccb-microbe.cs.uni-saarland.de/busybee
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at 1000, the minimum contig length for cluster points
at 2000, the k-mer length at 5, the probability at 0.0,
the minimum points in neighbourhood at 30, and the
transformation at standard.

Implementing Blobology
We implemented the Blobology protocol [21] to compare
with decision tree decontamination. Briefly, a prelimi-
nary assembly was performed using ABySS-PE (version
1.9.0) [60]. For the C. latens and C. remanei datasets,
only the standard paired-end data was assembled. The
source FASTQs were aligned back to this new assembly
using GMAP-GSNAP [58], and the assembly was classi-
fied using NCBI BLAST [41]. The BLAST results, assem-
bly, and alignment were analyzed with blobtools (v0.9.19)
[21]. The resulting TAGC plot was used to determine fil-
tering conditions based on the GC content and average
per-base sequencing coverage of each assembled con-
tiguous sequence (GC<0.45 and coverage>2 for A.vaga,
GC<0.45 for C. latens, and three passes for C. remanei
[GC<0.65,GC<0.6&&coverage>11,GC<0.5&&coverage >5]).
A list of contiguous sequences which met these condi-
tions was generated, and paired-end and mate pair reads
matching these contiguous sequences were selected using
custom scripts alongside standard GNU tools and sam-
tools [61]. The post-filtering reads were assembled with
ABySS-PE [60] or ALLPATHS-LG [51]. Assemblies were
evaluated using QUAST (version 4.5) [62].

Implementing Kraken
We also filtered our empirical assemblies with Kraken
(version 0.10.5-beta)[20] to compare with the Decision
Tree. Briefly, a preliminary assembly was performed using
ABySS [60], and the source FASTQs were aligned to
this assembly using GMAP-GSNAP [58]. Each sequence
in this assembly was classified using Kraken [20]. Con-
tiguous sequences successfully classified by Kraken were
assumed to be contaminants due to the content of
Kraken’s standard database (generated from NCBI FTP
on April 4, 2016). This list was used to generate a
list of contiguous sequences to keep from the data,
and reads matching those contiguous sequences were
selected using custom scripts alongside standard GNU
tools and samtools [61]. The post-filtering reads were
assembled with ABySS [60] or ALLPATHS-LG [51]. We
used QUAST (version 4.5) [62], BUSCO (v2.0) with the
nematodea_odb9 database [44] and CEGMA (version 2.4)
[45] to assess the completeness of the decision tree,
Blobology, and Kraken assemblies.

Additional file

Additional file 1: Supplement: Fierst and Murdock, Decontaminating
eukaryotic genome assemblies with machine learning. (PDF 9713 kb)
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