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Radiomodifying action, 
pharmacokinetic and 
Biodistribution of Ethyl 3, 4, 
5-trihydroxybenzoate-Implication 
in development of radiomitigator
pranav K pandey1,2,3, B. Ahmed2*, J. prasad1, M. Bala4 & H. A. Khan5

Ethyl 3, 4, 5-trihydroxybenzoate (GAE) is a major bioactive constituent of Hippophae Rhamnoides L. 
leaves and extract prepared from H. rhamnoides leaves exhibited radioprotective and pharmacological 
activity. Radiomodifying properties of polyphenol compounds through free radical neutralizing have 
been reported earlier. However, to date pharmacokinetic (PK) and biodistribution of polyphenol 
compounds post 60Co-γ-irradiation (5 Gy) exposure have not been studied yet. The study aims 
to investigate the radio modifying and inflammatory action, PK and biodistribution of GAE at a 
radioprotective dose and changes, if any, induced after irradiation. Male C 57 BL/6 mice (28–30 g) 
were administered GAE (200 mg/kg b.wt) orally 15 minutes post to irradiation. Mice were sacrificed at 
15, 30 min, 1,2,4,8 and 24 h. PK and biodistribution of GAE in plasma and tissues were studied. The 
radiomodifying potential was assessed in terms of mitigating NF-kB activity and SGOT, SGPT, urea and 
creatinine levels in liver and kidney post irradiation. Our study suggested the potential use of GAE as 
radiomodifying agent inhibits NF-kB expression and maintains the SGOT 24.10 ± 2.4, SGPT 36.01 ± 6.1 
U/l, urea18.16 ± 0.003, and creatinine 1.05 ± 0.04 mg/dL upto 8 h in comparison to irradiated mice. 
Moreover, in biodistribution studies, showed that GAE crosses the blood-brain barrier and is found 
in brain tissue. Plasma level of GAE peaked at about 15 min, with Cmax 4390.85 ± 285.20 in GAE and 
in 3391.78 ± 78.13 ng/mL in radiation + GAE-treated animals, Biodistribution resulted in the highest 
concentration to be found in liver and kidney. These radiomodifying and pharmacokinetic result may 
be useful for study of the bioactive mechanism associated with radiation injury and to develop a potent 
formulation of GAE for clinical application.

Ionizing radiation is a form of energy released from atoms and comprising various wavelength such as x-rays 
or gamma rays. The living organism is exposed to radiation sources on a daily basis either from natural or 
man-made sources. Globally more than 3600 million medical diagnostic radiology examinations was performed, 
more than 37 million nuclear medicine procedures were carried out and almost above 7.5 million radiotherapies 
for cancer patient were given1. Exposure of radiation either directly or indirectly penetrates living cell or tissue 
which induces oxidative stress due to overproduction of several free radicals and disturbed enzymatic activity 
at the cellular level. These free radicals reactive oxygen and nitrogen species (ROS and RNS) such as superoxide 
anion (O2•

-), hydroxyl ion (OH-) and hydrogen ion (H+) attack nucleic acids, lipid membranes and proteins 
in the nucleus to produce secondary radicals and cause intracellular toxicity2. Radiation countermeasures have 
been divided into three classes radioprotector, radiomitigator and therapeutic. The countermeasure agents were 
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administered in accordance to their classification, in radioprotector agent should be administered prior to expo-
sure, in radiomitigator agent should be administered shortly after the exposure but before the onset of symptoms 
and in therapeutic agent should be administered after the injury and onset of physical symptoms3,4. Worldwide 
a great deal of time and money has been spent on the pre-clinical and clinical research with the aim of develop-
ing safe and efficacious radiomodifying agents; however, until this date none of them were found to be safe and 
nontoxic for human use5,6. After extensive screening of molecules and failure of most of these synthetic com-
pounds, researchers turned their attention toward phytochemical and plant extracts to investigate radioprotective 
efficacy7,8. Hippophae rhamnoides L. (Seabuckthorn) Elaegnaceae is valuable plant has recently gained attention 
worldwide due to its nutritional and medicinal properties. Sea buckthorn (Hippophae rhamnoides L.) is nitrogen 
fixing deciduous shrub of cold arid region native to Europe and Asia9. H. rhamnoides leaves aqueous extract (SBL-
1) showed radiation protection at a lethal dose of ionizing radiation10. Ethyl 3, 4, 5-trihydroxybenzoate (GAE) is 
commonly known as Gallic acid ethyl ester and one of the major bioactive constituent present in aqueous extract 
coded SBL-111.

GAE, C9H10O5 has molecular weight 198.17 g/mol (Fig. 1). It is a colorless or slightly yellow crystalline com-
pound possessing anti-inflammatory12, antibacterial13, and anticancer properties14. It is a polyphenol compound 
derivative of the shikimic acid pathway. The secondary metabolites of plants, are a very good source for the dis-
covery and development of lead molecule. GAE has been reported in extracts of some other plants also such as 
Terminalia chebula, which have shown neuroprotective effects15.

Changes in pharmacokinetic properties of polyphenols compounds induced by the exposure of the organism 
to ionizing radiation have been rarely studied. The present study aim is to investigate the radiomodifying action of 
GAE in pharmacokinetic and biodistribution studies and to observe changes in pharmacokinetics, and biodistri-
bution of GAE due to whole body 60Co-γ radiation. The alteration in the level of GAE post irradiation is identified 
by observing changes in pharmacokinetic parameters and biodistribution patterns and by investigating liver and 
kidney function as well measurement of NF-kB activity in order to assess the inflammation associated with radi-
ation exposure. The pharmacokinetic, biodistribution and radiomodifying study of GAE in animal model will 
help in understanding the GAE distribution mechanism as well further assist in achieving better application for 
the development of GAE as radiomodifying agents.

Results
Characterization of GAE isolated from Hippophae rhamnoides leaves. NMR Spectra. The 1H-
NMR spectrum of GAE isolated from Hippophae Rhamnoides leaves exhibited and displayed a triplet three pro-
tons 3 H,t, (J = 6.8,7.2hz) and 4.19,1 H,d, (J = 6.8hz, CH2 a), 4.22, 1 H,d,(J = 7.2hz, CH2 b), were displayed. 13C 
NMR spectrum of GAE displayed a peak 14.7 due to methyl group (CH3), 60.4 due to CH2 group other peaks at 
108.9 (C-1), 120.03 (C-2 and C-6), 138.7 (C-3 and C-5), 146.01 (C-4), were structurally indicative of the phenyl 
ring a sharp peak at 166.28 confirmed the presence of carbonyl group of the ethyl carboxylate group. Hence the 
structure of GAE isolated from the Hippophae Rhamnoides leaves was characterized with the help of the peaks 
and spectral data.

Fourier-transform infrared spectroscopic analysis. The IR spectra of GAE exhibited peaks at 3250 cm−1 due to a 
hydroxyl group, 1260 cm−1 due to C-O (phenolic group) on the aromatic ring. The peak at 2950 cm−1 due to the 
CH2 group was also found indicating the presence of the ethyl group. Another peak at 1700cm−1 was also present 
due to a carboxyl group. The NMR and IR data confirmed the presence and purity of GAE.

Method development. To achieve the best chromatographic condition, a short reversed- phase Kinetex 
biphenyl 100 Å column (150 × 4.6 mm, 2.6 µm particle size) was selected. To optimize the best chromatographic 
conditions GAE was injected into the HPLC-system and several mobile phases were investigated by using a stand-
ard flow rate (0.5 mL/min). An adequate chromatographic condition was achieved on mobile phase composed of 
ACN (A) and water with 0.1% OPA (pH 3.3), (20:80 v/v) provide better resolution and sharp peak with satisfac-
tory sensitivity.

Figure 1. Gallic acid ethyl ester, C9H10O5 Molecular Weight: 198.17, m/z: 198.05 (100.0%), 199.06 (10.0%), 
200.06 (1.5%) Elemental Analysis: C, 54.55; H, 5.09; O, 40.37.
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Selectivity. The endogenous interference was evaluated from the chromatograms derived from the blank 
samples, spiked samples, and samples after GAE administration. The chromatograms of GAE, plasma and tissue 
homogenates (liver, kidney, heart, spleen, and brain) spiked with IS and with different treatment group. Under the 
optimized chromatographic condition, the retention time of GAE was about 6.7 min, and no interference peak 
was detected at related times in blank plasma, tissues, and sample after GAE administration. No interfering peak 
was observed at the retention time of GAE and IS in all conditions.

Linearity and the Limit of Quantitation (LOQ). The linearity of the analytical method in the calibration 
range of 1–500 ng/mL demonstrated for GAE in plasma and tissue homogenates. The correlation coefficient of 
GAE is (r2) > 0.997 and the typical equation for the calibration curve was as follows, Y = 270.66x + 10872, where 
y represented the GAE concentration (ng/mL) and X represented the GAE peak area.

Under the experimental condition described, the LOQ of the GAE was 5.0 ng/mL in all mice matrices with 
acceptable precision (≤20%) and accuracy ± 20%. The LOD was established at 1.05 ng/mL in plasma and at 5 ng/
mL in tissue respectively. These limits are sufficient for the pharmacokinetic and tissue distribution study of GAE.

Accuracy and precision. The precision and accuracy were assessed by determining quality control sample 
(QC) sample (n = 5) at three levels of concentration and the results were presented in (Table 1). The intra-day 
and inter-day precision were 0.03–6.8 in plasma and 1.8–5.6% in the liver for GAE. These results suggest that 
the procedure described above for HPLC system were satisfactory and the method was accurate, reliable and 
reproducible.

Recovery and Stability. The recovery of GAE at three concentration was 79.3, 89.6 and 99.2% in plasma. 
The stability of GAE was found to be stable at room temperature for 24 h in plasma and tissue samples. GAE was 

Sample
Level 
(ng/mL)

Accuracy 
(RE%) n = 5

Precision (%RSD)

Recovery %

Stability %

Intraday Interday Short terma Long termb
Freeze 
thawc

Plasma

50 −7.5 1.91 6.8 120.5 ± 7.2 79.35 ± 1.37 70.32 ± 1.37 78.95 ± 2.25

250 1.7 0.79 2.8 91.26 ± 15.4 89.67 ± 1.58 87.55 ± 0.635 90.06 ± 0.93

500 0.006 0.039 4.0 99.22 ± 2.72 99.25 ± 0.120 92.01 ± 0.179 93.42 ± 0.37

Liver

50 −5.6 4.72 5.6 66.9 ± 22.2 66.9 ± 22.18 62.6 ± 24.5 64.8 ± 4.9

250 −4.06 2.77 3.0 86.8 ± 1.79 86.8 ± 1.7 79.26 ± 6.06 84.16 ± 2.5

500 1.4 1.85 1.90 103.5 ± 0.005 99.9 ± 0.47 95.13 ± 7.6 97.83 ± 4.9

Table 1. Accuracy, Precision and recovery of the method used for the determination of GAE in mice plasma 
and liver. GAE stability in plasma and liver was estimated at room temperature for 24 h Short term stability a, 
Long term stabilityb studied following 2 week of storage at −20 °C; Freeze thaw stability was evaluated at three 
consecutive freeze thaw cycles (−20 °C to room temperature). Pharmacokinetic parameter of GAE in mice 
plasma after oral administration of GAE (200 mg/kg body weight) (Table 2) and whole body exposure of 60Co-γ 
radiation at (5 Gy) + GAE (Table 3).

Parameters Value

Cmax (ng/mL) 4390.85 ± 285.20

Tmax (min) 15 ± 4.2

AUC0-t (min.ng/mL) 175228.24 ± 5224.7

AUC0-α (min.ng/mL) 175730.37 ± 5319.3

Kel 0.026 ± 0.003

T1/2 (min) 26.54 ± 3.2

Clearance (mL/min) 0.017 ± 0.0005

Table 2. Pharmacokinetic parameter of GAE treated group in mice plasma.

Parameters Value

Cmax (ng/mL) 3391.78 ± 78.13

Tmax (min) 15 ± 4.6

AUC0-t (min.ng/min) 64379.3 ± 3812.5

AUC0-α (min.ng/min) 64423.5 ± 7097.4

Kel 0.025 ± 0.02

T1/2 (min) 22.38 ± 3.6

Clearance (mL/min) 0.07 ± 0.01

Table 3. Pharmacokinetic parameter of R + GAE group in mice plasma.
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found to be stable at −20 °C for one month. Moreover; GAE was found to stable after freeze-thaw cycle with a 
reduction of less than 8%. The analyte were also shown to be stable in the plasma at room temperature for atleast 
8 h with a reduction of less than 12–15% (Table 1). Based on the result reliable, reproducible and robust method 
has been developed and validated.

pharmacokinetic and Biodistribution studies. The developed method was successfully employed 
to determine GAE concentration in mouse plasma and tissue samples after single oral administration of 
GAE at a single dose (200 mg/kg body weight) in GAE and Radiation + GAE (R + GAE) treated group. The 
non-compartmental models was found to be the best to fit the data. Pharmacokinetic parameter analysis is pre-
sented in (Table 2, Table 3). After oral administration of GAE at a dose of 200 mg/kg b.wt, the maximum con-
centration (Cmax) of GAE in GAE treated plasma was 4390.75 ± 285.20 and in R + GAE 3391.78 ± 78.13 ng/mL. 
The pharmacokinetic parameter area under the curve (AUC0-t) and (AUC0-α), Tmax, t1/2, and Kel in GAE-treated 
and R + GAE treated groups are listed in Table 3, indicating that the exposure of ionizing radiation reduces the 
maximum plasma GAE concentration of (Cmax) and increases the oral clearance (Cl/F) of GAE to 0.069 ± 0.01, in 
comparison to that of the GAE-treated group (0.017 ± 0.005).

The Biodistribution in mice at 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 24 h after GAE administration are presented 
in (Fig. 2A,B). The data show that GAE is distributed widely in many tissues including liver, kidney, heart, spleen, 
and brain. Moreover; no GAE peak was identified in untreated control and irradiated animals. In the GAE treated 
group the concentration of GAE is highest in the liver 3383.1 ± 137.79 ng/g at 1 h, 529.13 ± 102.8 ng/g in the kid-
ney at 2 h and 283.1 ± 20.60 ng/g in the brain at 1 h after GAE administration. In the R + GAE treated group the 
concentration of GAE was reduced at 1928.5 ± 39.63 ng/g, when compared to the GAE-treated group animals. 
The kidney concentration was also reduced 307.77 ± 7.80 ng/g in the R + GAE treated group. In R + GAE group 
the GAE concentration increased from 216 to 506 ± 39.4 ng/g in the heart and from 484 to 522 ± 73.20 ng/g in the 
spleen at 1 h when compared to GAE treated animals. In both the GAE treated and the R + GAE treated groups, 
the peak GAE concentration in liver was two fold higher than in other tissues. After 2 h of GAE administration its 
concentration decreased GAE was found in heart, spleen, and kidney up to 4 h, whereas in brain it found in low 
concentration up to 2 h. Notably, GAE was detected in the brain at appreciable concentration in both GAE and 
R + GAE-treated groups, and suggesting that GAE could cross the blood-brain barrier.

Effect of GAE on liver and kidney function markers SGOT, SGPT, Urea and creatinine. Whole 
body exposure of 60Co-γ radiation at a 5 Gy dose caused a significant change in markers of a liver injury such 
as SGOT, SGPT (Fig. 3A,B) as well as changes in kidney markers such as urea and creatinine (Fig. 4A,B). Oral 
administration of GAE at a dose rate 200 mg/kg b.wt post 15 min of irradiation showed a significant reduction 

Figure 2. (A) Bio distribution of GAE in liver, kidney, heart, spleen and brain after 15 min, 30 min, 1 h, 
2 h,4 h,8 h and 24 h following after oral administartion of GAE at a dose of 200 mg/kg b.wt. (B) Bio distribution 
of GAE after 60Co-γ radiation (5 Gy) + GAE (200 mg/kg b.wt) administration.

Figure 3. (A) Modifying action of GAE on SGOT level in liver of whole body 60Co-gamma irradiated mice. 
*P < 0.05, when compared with irradiated animals. (B) Modifying action of GAE on SGPT level in liver of 
whole body 60Co-gamma irradiated mice. *P < 0.05, when compared with irradiated animals.
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(*P < 0.05) of these markers in the serum for R + GAE and GAE-treated groups, when compared to animals 
irradiated but not receiving GAE.

Measurement and Quantification of Nuclear factor kB (NF-kB) in liver and kidney by using indi-
rect ELISA and immunohistochemistry. NF-kB is a key mediator pro-inflammatory cytokines play a 
significant role in inflammation induce after radiation exposure. The time-dependent study showed major expres-
sion of NF-kB in liver and kidney after irradiation. The GAE treated animal showed significant minimal expres-
sion (p < 0.05) in comparison to irradiated animals. A significant increase in the NF-kB level showed a positive 
correlation with inflammation. NF-kB levels were quantified by using indirect ELISA (Fig. 5A,B). NF-kB expres-
sion was also confirmed by means of immunofluorescence staining. NF-kB positive fluorescence was strongly 
expressed in the central vein, hepatocytes and sinusoidal gaps of liver sections in irradiated mice. Moreover, the 
NF-kB positive fluorescence expression was not strong in R + GAE group. Similarly, the NF-kB positive fluo-
rescence expression was expressed in tubules, glomeruli, Bowman capsules and proximal and distal tubules in 
the kidney section of irradiated mice. The expression was higher in the irradiated group in comparison to the 
R + GAE group (Fig. 6A,B).

Discussion
Although GAE has many pharmacological properties due to its polyphenol in nature its radiomodifying action 
has not been reported to date. GAE isolated from Hippophae rhamnoides leaves and further characterized with 
NMR spectra indicate the presence of the CH3 group confirmed the purity of GAE. To the best of our knowledge, 
this is the first study reporting the pharmacokinetic and biodistribution of GAE and the changes in biodistri-
bution and pharmacokinetics of GAE induced after whole-body exposure of 60Co-γ radiation at a dose (5 Gy). 
Previously several sulfhydryl and synthetic compounds were screened and tested in-vitro and preclinical models 
for developing potent radiation countermeasure but few of them has been showed better result in animal models 
but found toxic in clinical application16,17. Our study has demonstrated the anti-inflammatory and radiomodi-
fying effect of GAE after few minutes to hours of ionizing radiation exposure. NF-kB is one of the key regula-
tor responsible for the activation and transcription of proinflammatory cytokines which induce inflammation. 
NF-kB also play an important role and prompt the inflammatory disorders via mediating pro-inflammatory 
cytokines, chemokines, adhesion molecule etc18,19. Administration of GAE mitigates NF-kB expression in liver 
and kidney found in irradiated mice, as assessed by indirect ELISA. Moreover, GAE administered 15 min after 
whole body 60Co-γ radiation exposure (5 Gy) significantly inhibits NF-kB expression at cellular level upto 8 h. 
Immunofluorescence staining of liver and kidney sections were performed to check expression of NF-kB in the 
R + GAE group, which was not positive as compared to the irradiated group. A method for the quantitative 
estimation in plasma and tissue of GAE in mice was successfully developed by using a high-performance liquid 

Figure 4. (A) Modifying action of GAE on creatinine in kidney of whole body 60Co-gamma irradiated mice. 
*P < 0.05, when compared with irradiated animals. (B) Modifying action of GAE on urea level after whole body 
60Co-gamma irradiated mice. *P < 0.05, when compared with irradiated animals.

Figure 5. NF-kB level in liver (A) and kidney (B) of mice treated with GAE, R, R + GAE. The data was collected 
at different time point, dashed line represent value obtained from untreated animals. Each value represent 
mean + standard deviation (SD). *Represents significant difference with respect to untreated control at p < 0.05.
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chromatography (HPLC). This method has the advantage of being sensitive, specific and accurate, and it can be 
used for pharmacokinetic studies in rodent models. Prior to injecting the sample into the HPLC, the maximum 
wavelength for GAE was determined spectrophotometrically and the absorbance was recorded 270–285 nm. For 
standardizing the chromatographic conditions, different influencing factors such as different ratios and compo-
sition of the mobile phases, as well as different chromatographic columns were evaluated. Previous evidence sug-
gested that the use of ACN and water with 0.1% orthophosphoric acid (OPA), pH 3.3 (20:80 v/v) provide better 
resolution and sharp peak of GAE and IS with satisfactory sensitivity. A short reversed-phase Kinetex biphenyl 
C18 Phenomenex 100 Å column (150 × 4.6 mm, 2.6 µm particle size) showed better resolution with retention time 
6.7 min. One unknown metabolite was observed in all the samples at retention time 3.7 min. Prior to injecting 
the plasma and tissue homogenates, bio-samples pretreatment was determined to remove the exogenous and 
endogenous interferences in HPLC. Plasma and tissue homogenate protein precipitation was accomplished by 
the addition of organic solvent ACN. The use of plasma and ACN at 1:3, tissue homogenate and ACN at 1:2 give 
a better result. The sample was centrifuged at 4 °C, which precipitated the protein. In addition, the plasma and 
tissue sample was filtered and reconstituted with mobile phase and the supernatant was injected into the HPLC 
system with a standard flow rate of 0.5 mL/min.

Successful method validation allowed determination of the pharmacokinetic of GAE after an oral administra-
tion. Our research study indicates that administration of GAE in C 57 BL/6 mice prior and post radiation showed 
the major difference in Cmax as well as in biodistribution. The plasma AUC is fit to a non-compartmental model, 
and presents these differences. The absolute biodistribution of GAE after a 5 Gy dose of radiation significantly 
reduced the GAE concentration in the liver and kidney when compared to the corresponding volume in the 
GAE-treated group’s animal group. After oral administration of GAE its concentration decreased with time due 
to phase 2 metabolism, which also relates to its polyphenol nature, as well as its rapid hydroxylation, which occur 
during the stabilizing of free radicals induced by the radiation exposure. The Hydroxyl group on GAE donate 
their protons to a reactive oxygen species to quench and stabilize the radicals in the body after radiation exposure. 
The hydroxylation at a particular position on GAE also enhances its plasma protein binding affinity. Moreover, 
the esterification or presence of ethyl ester with Gallic acid increases its binding affinity to plasma proteins20,21. 
Cmax, AUC0-t of plasma in R + GAE mice was smaller as compared to the GAE treated group. The higher Cmax 
of GAE in the GAE-treated group showed better absorption whereas reduction of GAE Cmax in R + GAE group 
showed the decrease of absorption along with an increase in Cl/F. A concomitant increase in GAE clearance was 
observed in R + GAE groups, due to changes in pathophysiological states and damage in endothelial cells and 
gastrointestinal damage after radiation exposure. Moreover; the GAE was found in brain of mice in both groups 
which may indicate that it the crosses the blood brain barrier. Similarly the presence of GAE in Terminalia chebula 
extract showed neuroprotective properties15. In the R + GAE group GAE mitigate the damage induced by radia-
tion exposure at the cellular and tissue level. GAE significantly reduces the NF-kB level in liver and kidney when 
compared to irradiated mice not receiving GAE. The result shows that GAE is a promising potential inhibitor 
of the inflammatory mediator’s response, which is associated with chronic oxidative stress induced by radiation 

Figure 6. Representative Immunofluoroscent images of liver and kidney of mice treated with GAE, 
Radiation (R), R + GAE. NF-kB overexpressed in irradiated group present with positive green color. 
(A) Immunofluoroscent images of liver at 20X untreated control (UC), GAE, R and R + GAE. (B) 
Immunofuoroscent images of kidney at 20X UC, GAE, R and R + GAE.
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exposure. Moreover, GAE also showed the radiomodifying action by attenuating the increase in SGOT, SGPT, 
urea and creatinine level in R + GAE group that occur post radiation exposure. The SGOT and SGPT level at 
24 h in R + GAE was 63.11 ± 6.16, 62.15 ± 8.63 at 24 h, 24.10 ± 2.4, 36.01 ± 6.1 at 8 h and in radiation (R) group 
68.02 ± 8.6, 92.36 ± 3.70 at 24 h, 68.02 ± 1.2, 71.70 ± 6.1 U/L at 8 h. Moreover; the urea level in R + GAE was 
18.16 ± 0.003, and in radiation group was 94.01 ± 0.01 at 8 h whereas creatinine level in R + GAE was 1.05 ± 0.04 
and in radiation group 3.5 ± 0.01 mg/dL. Values were mostly similar in comparison to Radiation group in SGOT 
and SGPT at 24 h. The result showed that GAE showed radiomodifying action upto 8 h and beyond them its 
radiomodifying efficacy slowly reduced due to changes in their different metabolites or changes in structure post 
irradiation. The result showed that post irradiation GAE modify the biomarker of liver and kidney function of 
mice upto 8 h, moreover at 24 h the GAE radiomodifying efficacy was reduced. Our experimental study suggests 
the possibility of making changes to the GAE formulation to further improve GAE absorption and enhance 
pharmacokinetic characteristic achieve better efficacy post radiation exposure in medical applications or in of 
radiation threat situations.

Material and Methods
chemical and reagents. Propyl gallate (IS) Sigma, India, Methanol (HPLC grade) were purchased from 
Merck (Mumbai India), Ultra-pure water (HPLC grade 18 MV) purchased from Thermo scientific, Acetonitrile 
(HPLC grade), orthophosphoric acid (OPA), Hydrochloric acid (HCl) were purchased from Merck (Mumbai, 
India). Serum glutamate oxaloacetate transaminase (SGOT, S.L), serum glutamate pyruvate transaminase (SGPT, 
S.L), Urea U.V (S.L) and creatinine kits were purchased from agape Kerala, India. All other chemical and sol-
vent used of analytical grade. NF-kB enzyme-linked immunosorbent assay (ELISA) kit was purchased from BD 
Bioscience (USA), NF-kB primary antibody for Immunohistochemistry PAB699Mu01, Mus musculus (specific) 
was purchased from Cloud-Clone Corporation, USA. Formaldehyde, hematoxylin and eosin stains and other 
analytical grade chemical and reagents for HPLC and phytochemical analysis were purchased from Sigma Pvt., 
Ltd., India.

Isolation, Extraction, and Characterization. The aerial part of Hippophae rhamnoides leaves were pow-
dered finely and extracted with 95% ethyl alcohol, filtered and dried under reduced pressure in rotavapor. The 
dried extract was dissolved and filtered, the filtrate was treated with an aqueous solution of sodium carbonate. The 
residue of the filtrate was neutralized with an aqueous solution of HCl n/10 = (1n). After keeping for some time 
the precipitate obtained was filtered and washed with cold water to remove the traces of HCl. The solid residue 
obtained was recrystallized from the minimum quantity of boiling water, on cooling the crystal will appear and 
crystal was collected, dried and their melting point was recorded.

The isolated compound GAE was further characterized by using 1H NMR (400 MHZ) and 13C were obtained 
on Bruker DRX 400 spectrophotometer in Dimethyl sulfoxide (DMSO) using TMS as an internal standard refer-
ence, chemical shift in δ (ppm) and coupling constants (J values) is mention in Hertz. The FTIR spectra of GAE 
was recorded using a Nicolet 8700 spectrometer equipped with a DTGS-TEC detector and the data were analyzed 
on OMNIC software. The scan was collected at a resolution of 4 cm−1 and a data spacing of 1.928 cm−1 in order to 
achieve sufficient signal to noise ratio.

Experimental animals, GAE administration, irradiation, and sampling. Black C57BL/6 male mice 
weighing 28–30 g were maintained at the Institutional Animal Experimental Facility. Animals were fed accord-
ing to standard chow diet having free access to food and water ad libitum. The environmental condition was 
maintained at room temperature (22 ± 2 °C), relative humidity (45–60%) and 12 h dark/light cycle controlled 
facility. In this study, mice were randomly assigned to four different groups (n = 21) i.e untreated control (UC), 
GAE-treated (GAE), Radiation + GAE (R + GAE), Radiation group (R). Mice fasted overnight with free access 
to water before being dosed. Isolated GAE from leaves was dissolved with distilled water and ethanol in (7:3 v/v) 
and administered orally at a dose of 200 mg/kg body weight to GAE-treated and R + GAE treated groups only. 
The experiment was carried out in accordance to regulation and guideline of the, Committee for the purpose of 
control and supervision of Experiments on animals (CPCSEA), and study was approved by Institutional Animal 
Experimental Committee (IAEC), Institute of Nuclear Medicine & Allied Science, Delhi, India.

Group I untreated control (UC), Group II GAE-treated (GAE), Group III Radiation + GAE (R + GAE) and 
Group IV Radiation (R) exposed. The GAE was administered orally 15 min post irradiation. The whole-body radi-
ation (5 Gy) was carried out using Bhabahtron II, Telecobalt machine, Panacea medical technology, Bangalore. 
The mice exposed at a dose rate of 0.961 Gy/min at field 35 × 35 cm2 and the distance maintained from the source 
was 80 cm.

Blood and tissues samples of mice were collected at 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 24 h after GAE admin-
istration (3mice per time). Blood was obtained from retro orbital plexus of mice and collected in heparinized 
eppendorf tubes, followed by centrifugation at 2500 g for 15 min. The resulting plasma layer was separated and 
stored in tubes at −20 °C for further analysis. Tissue samples (brain, heart, liver, kidney, and spleen) were weighed 
and put into the normal saline solution to remove the blood by blotting on filter paper and were minced and 
homogenized with physiological saline solution (1:2 w/v) thoroughly in an ice bath. The homogenates were stored 
at −80 °C until the analysis.

Measurement of Serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic 
transaminase (SGPT), Urea and creatinine level. SGOT and SGPT are a biomarker of liver function 
test used to assess liver function and its damage; whereas, urea and creatinine were used to investigate kidney 
function and its damage. These biomarkers were analyzed in-vitro by the use of commercially available kits of 
agape, Kerala, India. The assay were performed according to standard procedure mention in the kit protocol. 
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In-vitro SGOT quantitative determination were based on the reaction of L-aspartate with alpha-ketoglutarate. 
According to the manufacturer protocol reagent were mix and incubated for 1 minute at 37 °C. The changes in 
absorbance were recorded per minute during 3 minutes. In-vitro kinetic determination of SGPT were based on 
the reaction of L-alanine with alpha-ketoglutarate. The reagent were mixed and incubated for 1 minute at 37 °C. 
the changes in absorbance was recorded per minute during 3 minutes at 340 nm. Urea is in-vitro quantitative 
determine by the method of Talke et al., 1965. Creatinine were in-vitro determined by kits and it can be meas-
ured by quionone pigment photometrically. Reagent were mixed and incubated for 5 minute at 37 °C. the sample 
absorbance and the standard against the reagent blank were measured at 546 nm.

Quantification of NF-kB activity by using Indirect ELISA. Enzyme-linked immunosorbent assay was 
used to estimate the nuclear factor k beta (NF-kB) in the liver and kidney of mice. Measurement of NF-kB activity 
was done in accordance to the manufacturer’s protocol purchased from BD-biosciences. 100 µl of primary anti-
body NF-kB coated on 96 well micro plates and incubated overnight at 4 °C. Plates was washed three time with 
wash buffer and were blocked with 200 µl blocking buffer per well and incubated for2h at room temperature. In 
each well tissue sample were added and incubated for 1 h at room temperature. After development of colour 50 µl 
of stop solution was added to the wells and absorbance was recorded at 490 nm. A standard curve was prepared 
from the data produced from the serial dilution of the pure NF-kB proteins with concentration on the x-axis (log 
scale) vs absorbance on the Y-axis (linear).

Immunohistochemistry of NF-kB expression. Immunofluorescent staining of nuclear factor –kB 
(NF-kB) was performed by using formalin fixed paraffin embedded tissue by using standard procedure and 
protocol. The liver section 5 µm were immunohistochemically stained. Primary polyclonal antibody mouse to 
Nuclear factor (NF)-kB (1:200) was used. After washing, the slides were counterstained with ethidium bromide 
(EtBr) and incubated for 1 h at room temperature. NF-kB activity was visualized under a fluorescent microscope 
Axioscope A1 make Carl Zeiss. The images was visualized and captured by the use of Axiovision software.

GAE extraction and sample preparations. Aliquot of plasma sample (100 µL) dispensed in standing 
vial deproteinized with ACN (200 µL) containing the IS (100 ng/mL) and centrifuged at 2500 g for 15 min at 4 °C. 
The supernatant was collected transferred to a clean glass tube, reconstituted with 200 µL mobile phase vortexed 
mixed for 2 min and centrifuged at 2500 g for 5 min. Following this, a 20 µL aliquot of supernatant was injected 
into the HPLC system for analysis.

For the extraction from tissue, each aliquot (300 µL) of homogenate (liver, kidney, brain, heart & spleen) 
was spiked with 20 µL of the IS working solution (100 ng/mL) during analysis; homogenate was dispensed in a 
standing vial containing 400 µL ACN to precipitate proteins. The biological samples were swirled for 3 min and 
were centrifuged at 12000 rpm for 10 min at 4 °C. The obtained supernatant was tubed and dried under a stream 
of nitrogen at 40 °C, the sample was reconstituted with mobile phase, then and 20 µL was injected into the HPLC 
system.

Method Validation. GAE was separated on the high-performance liquid chromatography (HPLC), SPD-
10A consisting of binary HPLC pump, ultraviolet detector, and a Rheodyne manual injector equipped with a 20 µl 
loop (Shimadzu, Japan). Separation was achieved on Kinetex Biphenyl RP 100 Å column (2.6 µm, 150 × 4.6 mm) 
(Phenomenex, Torrance) installed with phenyl cartridges (Phenomenex, Torrance). The system was controlled 
using class VP software (Shimadzu, Japan). The chromatographic separation of GAE was in approximately within 
10 min, at room temperature by using the isocratic mobile phase mixture of ACN and 1%OPA (30:70, v/v) with 
pH maintained at 3.3. 20 µL of the samples were injected at a flow rate of 0.5 mL/min and the wavelength 270 nm 
was used for detection.

Standard stock solutions of GAE at 1 mg/mL were prepared and dissolved in appropriate amounts of diluent 
stock, water, and methanol (8:2 v/v). GAE was adequately diluted with diluent stock to give an intermediate solu-
tion at 100 µg/mL for each analyte. GAE calibration standards were at concentration of 5, 10, 20, 30, 40, 50, 100, 
250, 500 ng/mL. Internal standard propyl gallate (PG) were prepared to spiked aliquots of blank mouse plasma 
(200 µL). Seven combined spiking solution at a final concentration of 5, 10, 20, 40, 50, 100, 250, 500 and 1000 ng/
mL were prepared and used to spike aliquots of blank tissue homogenates of Liver, kidney, heart, brain, and spleen 
(400 µL). The entire sample was stored at 4 °C. Quality control samples were prepared independently in the same 
biological matrices (plasma and tissue homogenate of liver) stored at −20 °C until use with each analytical run. 
Intra-day and inter-day precision were assessed by using six replicate QC samples at three levels of GAE included 
in each run to determine the accuracy and precision. The acceptance criterion for intra-day and inter-day pre-
cision did not exceeded 15%. The inter-day accuracy and precision were assessed by analyzing three batches on 
different days. The recoveries of GAE from plasma and tissue (liver) homogenate samples were done at three QC 
levels. The recovery of the analyte was calculated by comparing the analyte peaks of extracted QC samples against 
the equivalent aqueous solution.

The QC samples were kept at room temperature for 6 h and a freeze-thaw cycle (−80 °C) was repeated for 
three times. The QC sample was stored for 30days at −80 °C respectively. For all storage conditions, replica-
tion of three concentrations was analyzed after the operation and the experimental result was obtained through 
a chromatographic area and compared with the nominal values. On the basis of previous studies reported on 
pharmacokinetic and biodistribution22,23, we standardized and validated our study to further investigate the radi-
omodifying action of GAE.

Statistical analysis. The pharmacokinetic parameters of GAE were obtained with the help of a com-
puter designed program PK solver add-in macros programme in Microsoft Excel and other marker assay and 
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biodistribution were analyzed using one-way ANOVA with Bonferroni post-T-test comparison using GraphPad 
Prism software (5.01).
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