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ABSTRACT: Fourier transform infrared (FT-IR) spectroscopy is
used throughout forensic laboratories for many applications. FT-IR
spectroscopy can be useful with ATR accessories in forensic
analysis for several reasons. It provides excellent data quality
combined with high reproducibility, with minimal user-induced
variations and no sample preparation. Spectra from heterogeneous
biological systems, including the integumentary system, can be
associated with hundreds or thousands of biomolecules. The nail
matrix of keratin possesses a complicated structure with captured
circulating metabolites whose presence may vary in space and time
depending on context and history. We developed a new approach
by using machine-learning (ML) tools to leverage the potential and
enhance the selectivity of the instrument, create classification models, and provide invaluable information saved in human nails with
statistical confidence. Here, we report chemometric analysis of ATR FT-IR spectra for the classification and prediction of long-term
alcohol consumption from nail clippings in 63 donors. A partial least squares discriminant analysis (PLS-DA) was used to create a
classification model that was validated against an independent data set which resulted in 91% correctly classified spectra. However,
when considering the prediction results at the donor level, 100% accuracy was achieved, and all donors were correctly classified. To
the best of our knowledge, this proof-of-concept study demonstrates for the first time the ability of ATR FT-IR spectroscopy to
discriminate donors who do not drink alcohol from those who drink alcohol on a regular basis.

F ingernail and toenail clippings are a capable and
alternative matrix in providing drug monitoring research.

The current literature has established the presence of drug
biomarkers because of the analysis of the chemical composition
of fingernails and toenails. The keratin structure of fingernails
and toenails allows for the long-term presence and
incorporation of drugs in nails.1 As the fingernail continues
to grow, the germinal matrix is consistently receiving and
incorporating any biomarkers to the overall chemical
composition of the fingernail.1 Thus, allowing for the detection
and identification of exposure. The accumulation of bio-
markers within the nail allows for the determination of long-
term consumption or exposure.

Current research has found long-term alcohol biomarkers
that result from the drug distribution over the entire
fingernail.2 In criminal justice and from a civilian perspective,
the fingernail analysis of drug or alcohol monitoring would play
an important role in probation, critical jobs, and at the
minimum to know the habits of an unknown offender.

The anatomy and physiology of fingernails make them an
excellent matrix for the retention of alcohol biomarkers
specifically. The fingernail’s keratin composition allows for a
variably strong yet porous surface that allows for the

incorporation of drugs or chemicals.3 Fingernails and toenails’
chemical composition remain unaffected when drugs or
chemicals are introduced into the nail as it continues to
grow.4,5 Thus, as alcohol consumption continues, the alcohol
biomarkers will accumulate in the keratin fibers for months
showing history of use.6

Research involving fingernail and toenail chemical analysis
includes disciplines from dermatology to criminal justice. The
microscopic physical striations of fingernails have also been
explored and compared as ridge patterns.7 A fingernail’s
appearance and physical composition may provide insight into
nail diseases, mineral or vitamin deficiencies, poor nutrition,
and recent trauma.3 Exposure and contaminants such as
poison, chlorine, and explosives have also been mentioned
within the literature.3,4,7−10 Particularly, alcohol biomarkers
found in the body after the consumption of alcohol may be
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present as aspartate aminotransferase (AST), gamma glutamyl
transferase (GGT), or carbohydrate deficient transferrin
(CDT) biomarkers, to name a few. However, the particular
alcohol biomarker of interest in monitoring alcohol abuse is
ethyl glucuronide (EtG), considering it is a resulting product
only when ethanol is being metabolized in the liver.1,11

Previous studies found that fingernail analysis was able to
identify acute and chronic drinking behavior.1,12 EtG
concentrations found in fingernails showed a correlation with
self-reported alcohol consumption.12 Especially in comparison
to alternate hair samples, fingernail EtG concentrations were
higher, concluding that fingernails provide a better alcohol
biomarker.12

Thus, finger- and toenail analysis is a great specimen in
analyzing alcohol markers especially for identifying long-term
alcohol abuse, providing 3 - 6 months of alcohol use history.
Using these specimens would benefit the monitoring of alcohol
consumption of drug users/dealers, postmortem toxicology,
drug-related crimes, and other forensic-related compliances,
testing, and detection.6

Alcohol biomarkers are one of many drug markers which
have been found in fingernail clippings, including parent drug
and or metabolites of tobacco, marijuana, THC, opiates and
opioids, nicotine, PCP, Zolpidem, Bromazepam, Benzodiaze-
pines, Amphetamine and Methamphetamine, Cocaine, and
Benzoylecgonine.1,3,6,13−19 Research pertaining to understand-
ing the incorporation of drugs or chemicals during nail
formation have explored various methods of ingestion,
including in utero drug exposure by analyzing infants’
fingernails.13,16,19

Thus, nail analysis may be performed for alcohol and drug
treatment to forensic toxicological analysis in drug-facilitated
sexual assaults and postmortem cases, where there may have
been a single distant exposure or unspecified drug use history
that may provide information on the cause or manner of
death.1

Other testing specimens are at the forefront of current
forensic toxicology methods regarding alcohol biomarkers,
including hair and bodily fluids such as urine.1 While these
testing specimens have become common practice, there are
limitations and biases that have pushed for an alternative
specimen.1,11 Limitations regarding detection of alcohol
biomarkers in other specimens are addressed with fingernail
testing.1 Studies comparing EtG concentrations of both
fingernails and hair have concluded that concentrations are
higher in nails.1,12 Research has attributed these results to the
fact that fingernails lack pigment, so concentrations are not
completely detected and or are degraded by cosmetic
treatments like bleaching and dyeing.1,6 In comparison to
other specimens like blood, urine, and saliva, fingernails exhibit
a longer window of detection, noninvasive sample collection,
lack of drug degradation, and require a smaller sample for
analysis.14,20

Techniques utilized for detection of substances in hair and
nails include gas chromatography (GC), mass spectrometry
(MS), nuclear activation, X-ray fluorescence and emission, and
atomic absorption and emission.4 Additionally, techniques
used to examine nail are as follows: laser-induced breakdown
spectroscopy; high-performance liquid chromatography (LC);
ultraperformance liquid chromatography−tandem mass spec-
trometry (LC−MS); micro-PIXR and micro-RBS; hard X-ray
micro-analysis; and synchrotron-based XFR.7,14 Following the
validation of a liquid chromatography tandem mass spectrom-

etry (LC−MS/MS) technique, studies on fingernail EtG
concentration testing have continued with this method of
detection.6 The evaluation of EtG detection regarding
sensitivity and specificity with the LC−MS/MS method is
yet to be assessed. However, current studies with an
inadequate number of samples have shown a correlation
between the detection of alcohol intake and EtG values.6

Drugs of abuse and pharmaceuticals in nails are present only
in low concentrations. Because of the complexity of the
keratinized matrix, analytical methods need to be more
sensitive, and sample preparation is essential.14 Fourier
transform infrared (FT-IR) spectroscopy has been utilized as
an analytical technique for numerous applications in the
forensic field. FT-IR spectroscopy has been applied to a wide
range of types of evidence, and it performed well in the
examination of questioned documents found at a crime
scene,21 paints,22 banknotes,23 fibers,24 hair,25,26 gunshot
residue analysis,27 and body fluid traces.28−31 The non-
destructive nature of this method enables us to utilize the
same portion of the sample for further examination. This
method is rapid, nondestructive, and quantitative, which are
ideal properties for forensic analysis. Moreover, this method
can be used in the field with a portable instrument.32 IR
spectroscopy belongs to analytical methods that are capable of
molecular confirmation based on Standard Practice for
Identification of Seized Drugs that guides forensic laboratories
in the identification of an unknown seized substance.33 FT-IR
spectroscopy was widely studied and has already been utilized
in forensic casework. Abusing ethanol can often lead to
negative consequences such as criminal prosecution or civil
lawsuits.34 Because this methodology has also proven itself in
the seized drug analysis for obtaining information on the
chemical composition of the sample,35−39 it would be highly
favorable to apply this technique in other fields of forensic
investigation, such as alcohol and its metabolite detection.

FT-IR was successfully used for human fingernail analysis by
Coopman et al. to study the concentration of glycated nail
proteins40 and whether the glycation reflects the average
glycemia over the last months. To the best of our knowledge,
the only study using FT-IR to study human nails for forensic
purposes is a study of Sharma et al. that used partial least
square discriminant analysis (PLS-DA) to classify sex by
chemometric analysis applied to the spectral data of ATR-FT-
IR spectroscopy of human fingernail clippings.5

In this study, we describe the development of a novel
method of ATR FT-IR spectroscopy coupled with PLS-DA.
PLS is a well-known dimension-reduction algorithm that is a
simple and efficient method because the information about a
class assignment is directly involved in the extraction of latent
variables (LVs). The PLS algorithm is a linear regression
method that can be used for three different scenarios: data
exploration, calibration, and classification. When the dummy
response array for categorical outcomes is used instead of the
usual continuous vector, the PLS model is called partial least
squares discriminant analysis (PLS-DA).41 The goal in our
research was to evaluate the applicability of human nail
samples for ATR FT-IR as an alternative to other techniques
for the monitoring of long-term alcohol consumption.
Specifically, we were interested in whether the method has
the potential to differentiate people who are drinking
(“Alcohol drinkers”) or not drinking alcohol (“Non-drinkers”)
based on their nail clippings.
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■ MATERIALS AND METHODS
Sample Generation and Preparation. Nail clippings

were collected from 63 volunteers (44 alcohol and 19
nonalcohol donors) of diverse races and ages. The eligibility
criteria for volunteers were healthy nails with no distinct
symptoms of skin or nail disease. Regarding the alcohol
drinking status, if they consume alcohol, they were required to
drink within the past six months before nail clipping collections
and at least 2 standard drink equivalents per week. This
ensured that alcohol consumption can be correctly detected in
nail clippings regardless of whether the specimens come from
fingernails or toenails. Samples consist of 1−10 donated nail
clippings from each volunteer, with the length at least 1 mm.
Each sample was cleaned with 70% isopropyl alcohol and
stored in zip-lock bags and coded. The study was approved by
the Institutional Review Board of Texas Tech University (No.
IRB2022-211).
FT-IR Spectroscopic Analysis. The spectra were recorded

on a Thermo Fisher Nicolet iS10 equipped with a diamond
ATR accessory. The acquisition of all spectra was carried out
by 32 scans per spectrum and in the range 4000−600 cm−1

with a resolution of 4 cm−1. The spectra were collected from
different spots of the sample to count for heterogeneity of the
nail matrix. A background spectrum was recorded before
collection of the spectrum of each new sample, and it is
subtracted from all subsequent spectra. Measurements were
controlled by OMNIC software (Thermo Nicolet Corporation,
Waltham, MA, USA). Between each sample analysis, the crystal
was cleaned using isopropanol and allowed to dry before
starting measurements. To ensure reproducible contact
between the sample and the crystal, a force is applied by
pressure gauge on the nail sample to provide good optical
contact with the crystal. The spectral ranges of 600−1800 and
2600−3800 cm−1 showed contribution from biochemical
composition of the samples and were used for further analysis.
Statistical Analysis. The OMNIC spectral (.SPC) files

were imported into other software for further processing and
statistical analysis. The PLS-DA modeling was performed using
the software MathWorks MATLAB R2020b version
9.9.0.1570001 (Natick, MA, USA) supported by the
Eigenvectors Research Inc. PLS Toolbox 9.0 (Manson, WA,
USA). The sparse PLS and ROC analysis was performed using
R software, the R package “mixOmics”,42 and package
“pROC”.43 The following pre-processing steps were applied:
transformation of the transmission to absorbance (log(1/T)),
second-order derivative with the second polynomial, and
normalization by the total area and mean centering. The
preprocessing steps were selected on a training data set.
Spectra in the test data set were preprocessed right before their
predictions.

PLS algorithm is responsible for reducing the dimension of
data (i.e., FT-IR spectrum) into a few LVs in a supervised
manner, and then, a threshold is applied to assign class labels
to a spectrum (Alcohol drinkers vs Non-drinkers). PLS
components are selected to maximize covariance between the
responses (class assignment) and a new linear combination of
the original predictors. Then, the final dimensionality is
determined by deciding how many of these new predictors to
include in a model.

The first step for PLS-DA multivariate analysis was the
selection of donors whose spectra will constitute the
calibration and test data sets. For comparison purposes, several

PLS-DA models were built with increasing numbers of spectra
in training and validation data. During each split, we always
kept the spectra from one donor either in the training or test
data set. Each model was built with the optimal number of
LVs. When the trained model showed lower variance during
the training process, that data split was selected. The samples
were split into the calibration data set (training) and the test
data set (external validation) corresponding approximately
with 80:20 split. The donors were assigned to the calibration
and test sets randomly; their final distribution was examined in
the LV projection hyperspace to ensure that datasets are
representative samples (e.g., random sample) of the original
dataset (Figure 1). The training data set consists of 669 spectra
from 51 donors and validation data set consists of 162 spectra
from 12 donors.

Subsequently, cross-validation was applied to the selected
training data set for tuning PLS-DA parameters; thus, there
was no standalone validation set. The only parameter to be
optimized is the number of LVs that should be included in the
model. The selection of the final model complexity e.g.,
number of LVs as well as an estimate of the classification error
rate of the PLS-DA model were obtained using a single 10-fold
venetian blind cross-validation on the training data set.44 Ten-
fold CV is a good compromise in terms of the bias-variance
trade-off.45 In the PLS-DA context, in each step, 1/10th of the
training data set was left out and the remaining spectra were
used to train a PLS-DA model. This model was used to predict
the class label, e.g., Alcohol drinker or Non-drinker on the left-
out spectra. This process was repeated with the next 1/10th till
all spectra were predicted. All spectra were left out for
prediction only once. The number of LVs that yielded the
lowest classification error rate during the CV was selected to be
used for the final PLS-DA model.46

In the next step, prediction was performed on the samples of
the test data set to externally validate our model. The
evaluation of the prediction ability of the models was assessed
while using two evaluation parameters: the classification
accuracy, with its corresponding sensitivity and specificity
and the Area Under the curve of the Receiver Operating
Characteristic (AUROC). Accuracy and AUROC are suitable
parameters to assess the quality of PLS-DA models that
discriminate between two classes.47

Sparse PLS (sPLS) variable selection was used to select
relevant spectral regions for differentiation of the two classes.

Figure 1. Calibration set and test set are both random samples of
donors to prevent any biases in the dataset retained in the samples.
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For the case of multiple highly correlated variables in the data
set, such as FT-IR spectra, extension of a sparse PLS
exploratory approach was proposed and used here to perform
variable selection in a classification framework since this
method proved itself that it is competitive to other methods in
terms of interpretability and computational time.48 sPLS-DA
performs variable selection and classification in a one-step
procedure; specifically, sPLS forces sparsity of the loading
vectors by imposing L1 penalty with a tunable sparsity
parameter, thereby the subsequent LVs depend only on a
subgroup of the original group of predictors.48 This step was
performed primarily to understand what FT-IR bands
contribute the most to the final model.

■ RESULTS AND DISCUSSION
The purpose of this study was to apply ATR FT-IR
spectroscopy as a nondestructive method for differentiating
Alcohol drinkers and Non-drinkers based on human nail
clippings. The experimental design was chosen based on the
literature and preliminary results. The nail clippings make an
excellent specimen. They make a reservoir matrix made up of a
tight connection of keratin fibers: nails are also porous and
thus are an excellent matrix for trapping and catching alcohol
biomarkers. To collect nail specimens is a simple and
noninvasive process, and they are easy to store at room
temperature.

The average ATR FT-IR spectra of human nails obtained
from two different groups of volunteers are shown in Figure 2.

The ATR FT-IR spectra of the two groups are very similar,
showing the same bands of similar intensities. A differentiation
based on visual inspection would be impossible; hence, the
advanced multivariate statistical analysis was required for our
goal. The spectral signature of human nails shows vibrational
frequencies of different biomolecules and provides information
about these key components present in human nails. Nails
consist mostly of fibrous proteins generally called keratin.
Keratins are long chains of amino acids linked together with
amide bonds.52 In the nail IR spectra, major regions can be
identified; in addition to proteins, nail spectra show
contribution from nucleic acids (1000−1250 cm−1), lipids
(2800−3000 cm−1), and carbohydrates (1000−800 cm−1).49,53

Table 1 shows the peak assignment of molecular vibrations
that were available from the literature.

The PLS-DA method was applied to develop a robust model
for the identification of Alcohol drinkers with respect to the
spectral signature approach. That means, rather than looking
for the differences in the intensities of individual peaks, we seek
for regularities in spectral signatures of known labeled
examples, train a system to identify learned features and
patterns, and make subsequent predictions on unknown data.
The donors forming the calibration and the test data set
matrixes were categorized as “Non-alcohol” (19 donors) and
“Alcohol” drinkers (44 donors), as explained in the definition
provided above. The dataset of 669 “labeled” spectra was used
to develop a PLS-DA model, which was cross-validated using
10-fold Venetian blind to determine the optimal number of
LVs. Twelve LVs were determined during CV, when subsets of
spectra were set aside and predicted, and subsequently, all
predictions were averaged. We achieved the sensitivity of 97%
and a specificity of 98% to differentiate Alcohol drinkers from
Non-drinkers. After we established a PLS-DA model with
twelve LVs for differentiation of the two groups of donors of
nail specimens, we predicted on the test set, which we did not
use for training the model. This allowed us to determine the
out-of-sample error for the model. Figure 3 shows the class
prediction for each spectrum together with the classification
threshold (the red dashed line). The results from the training
process are shown on the left (spectrum 1−669) and results
from the external validation are shown on the right of the
figure (spectrum 670−831). Any spectrum located above the
threshold is predicted as “Non-alcohol”, and any spectrum
below the classification threshold is assigned as the “Alcohol”
spectrum.

The external validation on the test data set resulted in
sensitivity of 90% and a specificity of 92% to detect long-term
alcohol consumption prior to nail collection. The PLS-DA
model showed an accuracy of 100% for differentiating the two
groups based on the donor level when standard 50% threshold
is used, which means that no donor was misclassified. The
classification model performance was also visualized by the
plot of ROC curve that shows how the sensitivity changes with
specificity while the threshold is varied. The obtained AUROC
value is 0.97 (95% confidence interval [CI], 0.95−0.99),

Figure 2. Averaged raw spectra of nail clipping for the group of
Alcohol drinkers (blue line) and Non-drinkers (red line). Spectral
ranges 3800−2600 and 1800−600 cm−1, depicted in figure, were used
for further statistical analysis.

Table 1. IR Spectral Peaks in Human Nails and Their
Assignments

wavenumber (cm−1)
component
identification band assignment ref.

3278 amide A N−H stretching 49
3067 amide A N−H stretching 5
2961 lipids and

proteins
C−H asymmetric stretching of
CH3

50

2920 lipids and
proteins

C−H symmetric stretching of
CH3

50

2850 lipids and
proteins

C−H symmetric stretching in
CH2

50

1637 amide I C�O stretching 50
1533 amide II C�O stretching coupled with

C−N stretching and bending
deformation of N−H

50

1452 lipids and
proteins

CH2, CH3 asymmetric bending
modes

5,50

1396 amino acids symmetric mode of CH3 51
1296 amide III N−H bending 5
1239 amide III,

nucleic
Acid

C−N stretching, asymmetric
stretching mode of PO2

−
5,50

1080 nucleic Acid symmetric stretching of PO2
− 50
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indicating that Alcohol drinkers and Non-drinkers groups are
well separated with our PLS-DA classification model (Figure S-
1).

Supervised PLS algorithm usually performs well in terms of
classification test errors than competing methods; however,
they do not always produce a sparse model involving a small
number of features that perform better, and additionally, the
highly correlated features may be a great deal of redundancy in
the selected features.45 Regions selected by sPLS correspond
with wavenumbers with high contribution for the PLS model.
The sPLS was able to reduce the number of variables, but still
more than 1500 variables were left in the model, specifically
1562 variables. Such results suggest a complex relationship
among nail-metabolic fingerprinting and environmental/
behavioral factors as targeted in this project. Figure 4 shows

the most informative spectral regions for our goal and within
the most frequently selected regions, the CH2 and CH3 groups
of lipids and protein, Amide I, Amide II, Amide III bands are
contributing the most to the model. Additionally, to these
bands, the most wavenumbers of the spectral range between
950 and 1180 cm−1 were selected, and it should be mentioned

that these parts of the IR spectrum of nails have been studied
in connection with diabetes.40,54

The sPLS-DA model using only variables selected by the
feature selection was cross-validated, and seven LVs were
determined during CV. Both sensitivity and specificity
achieved 90% determined to differentiate Alcohol drinkers
from Non-drinkers. The external validation on the test data set
resulted in a sensitivity of 83% and a specificity of 90% to
detect long-term alcohol consumption prior to nail collection
based on the sPLS-DA model (Figure S-2). The AUROC
analysis showed a value of 0.96 (95% confidence interval [CI],
0.95−0.97) during CV and 0.93 (95% confidence interval
[CI], 0.90−0.97) for external validation on the test data set
(Figure S-1). Thus, when using the reduced subset of features
for classification, the results from external validation decreased
only slightly; however, a much more significant deterioration
occurred during CV after the sparsity had been applied to the
model. The relevance of features does not always imply
optimality in the sense of the maximal accuracy produced by
the classifier.55

The testing data set was used to assess the performance of
the sPLS-DA model and also ensure that it can generalize well
to new, unseen spectra. At this time of the process, we can
compare the testing accuracy against the validation, or better
against the training accuracy to ensure that the model was not
overfitted.56 The statistics for the training process showed the
same sensitivity and specificity of 90% as during the CV. Both,
training and CV accuracy do not significantly outperform
testing accuracy, which means that the corresponding
predictions from training, cross-validation and external
validation set predictions are comparable, indicating that the
model has not been overfitted.

To the best of our knowledge, this proof-of-concept study
demonstrates for the first time the ability of ATR FT-IR
spectroscopy to discriminate donors who do not drink alcohol
from those who drink alcohol on a regular basis, and that is
already at the level of drinking of two standard drinks a week.
Nails grow at a slower rate compared to the similar matrix, hair
(3 mm/month for fingernails and 1 mm/month for toenails);
as a result, different alcohol markers, such as EtG, can better

Figure 3. Calibration and external validation prediction results for the Alcohol drinkers and Non-drinkers based on human nail samples. Each point
represents individual ATR FT-IR spectrum. The red dots denote the non-alcohol group, the blue dots represent the alcohol group, and the red
dotted line denotes the classification threshold.

Figure 4. Average raw ATR FT-IR spectrum of human nail clipping
with highlighted spectral regions selected by the sPLS method.
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accumulate in the nail matrix and can enable taking advantage
of the long diagnostic time window.14

Our proposed methodology can have implications for legal
or clinical decision-making. There are several markers that can
be used for screening of alcohol abuse in the long term. Each
has some specific characteristics, making them suitable for
different situations and methodology. Unfortunately, in
general, alcohol markers in human nails are not well studied.
EtG, mentioned above, is a direct marker of prolonged alcohol
consumption in nails and also of overall drinking amounts.
Until now, only two markers were established into practice for
alcohol abuse detection in hair (an alternative matrix to the
nail sample) and in the nail. In addition to the aforementioned
EtG, another marker that had been studied in hair samples are
fatty acid ethyl esters (FAEE). Both FAEE and EtG are direct
alcohol markers because they still contain the ethyl group of
consumed ethanol.57 However, one of the significant
advantages of this methodology, i.e., the ATR FT-IR
spectrosopy combined with the ML approach as a diagnostic
tool is that the spectra generated from human nails or any
other biological matrix encompass not only the known and
described markers. ML introduces here an automated
spectroscopic data analysis of the entire vibrational fingerprints
that are inherently complex and heterogeneous, but ML is
capable to learn the pattern that is different between people
who drink alcohol from those who do not drink alcohol. The
patterns include also changes in spectral bands, which are not
yet explained and well-studied in terms of biochemical
components. However, our methodology makes it possible to
measure all simultaneous changes in spectral profiles and thus
provide high fidelity redundant multiple biomarkers of
different specificity recognition at once.

■ CONCLUSIONS
There is a continuing need to explore and develop new
technologies and ensure that the best and most accurate
outcomes in both medical diagnostics and forensic science can
be achieved. Human nail clippings are among the most
practical specimens, because of their stability and rapid
sampling. Additionally, the nail clippings do not suffer surface
interference as do other trace evidence such as body fluids and
latent fingerprints.

The major advantage of ATR FT-IR is a specific spectral
signature for different sample groups based on their
biochemical composition. The infrared spectrum displays
unique vibrational characteristics of a sample based on the
different absorption frequencies of the individual functional
groups.26 MLs are capable of elucidating multiplex spectral
information, including spectral composition and the small
differences caused by donor alcohol consumption status. The
PLS-DA models could clearly differentiate the Alcohol
drinkers’ and Non-drinkers’ nail clipping samples. Both PLS-
DA and sPLS-DA models have shown excellent AUROC of
0.97 and 0.93, respectively, to discriminate between the two
groups. Thus, our proposed method represents the develop-
ment of a rapid analysis of nail specimens for forensic or
medical purposes based on an ML approach applied on ATR
FT-IR spectral data. Further analytical applications for other
personal characteristics are feasible and, together with
interferences of cosmetic treatments, are under investigation
in our laboratory.
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M.; Tardaguila, J. Development and Validation of a New Method-
ology to Assess the Vineyard Water Status by On-the-Go Near
Infrared Spectroscopy. Front. Plant Sci. 2018, 9, 59.
(45) Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of
Statistical Learning: Data Mining, Inference, and Prediction; Springer:
2009; 764.
(46) Rubingh, C. M.; Bijlsma, S.; Derks, E. P. P. A.; Bobeldijk, I.;

Verheij, E. R.; Kochhar, S.; Smilde, A. K. Assessing the Performance

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02579
ACS Omega 2023, 8, 22203−22210

22209

https://doi.org/10.4103/ijdvl.IJDVL_1050_16
https://doi.org/10.4103/ijdvl.IJDVL_1050_16
https://doi.org/10.1007/s12024-020-00313-5
https://doi.org/10.1007/s12024-020-00313-5
https://doi.org/10.1007/s12024-020-00313-5
https://doi.org/10.1007/s00414-021-02519-w
https://doi.org/10.1007/s00414-021-02519-w
https://doi.org/10.1002/jrs.2096
https://doi.org/10.1002/jrs.2096
https://doi.org/10.1111/add.12402
https://doi.org/10.1111/add.12402
https://doi.org/10.1093/jat/bkv067
https://doi.org/10.1093/jat/bkv067
https://doi.org/10.1016/j.forsciint.2008.06.001
https://doi.org/10.1016/j.forsciint.2008.06.001
https://doi.org/10.1007/s11419-014-0258-1
https://doi.org/10.1007/s11419-014-0258-1
https://doi.org/10.1093/jat/bkaa164
https://doi.org/10.1093/jat/bkaa164
https://doi.org/10.18332/tid/143209
https://doi.org/10.18332/tid/143209
https://doi.org/10.18332/tid/143209
https://doi.org/10.1093/jat/26.7.489
https://doi.org/10.1093/jat/26.7.489
https://doi.org/10.1520/JFS14344J
https://doi.org/10.1520/JFS14344J
https://doi.org/10.1002/dta.2774
https://doi.org/10.1002/dta.2774
https://doi.org/10.1016/j.forsciint.2005.04.044
https://doi.org/10.1016/j.forsciint.2005.04.044
https://doi.org/10.1016/j.forsciint.2005.04.044
https://doi.org/10.1016/j.molstruc.2008.11.048
https://doi.org/10.1016/j.molstruc.2008.11.048
https://doi.org/10.1016/j.saa.2013.09.115
https://doi.org/10.1016/j.saa.2013.09.115
https://doi.org/10.1177/0003702816652321
https://doi.org/10.1177/0003702816652321
https://doi.org/10.1021/ac4011843?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac4011843?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac4011843?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c01914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.forc.2019.100176
https://doi.org/10.1016/j.forc.2019.100176
https://doi.org/10.1016/j.forc.2019.100176
https://doi.org/10.1016/j.forc.2019.100176
https://doi.org/10.1021/acs.analchem.9b01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42004-020-00424-8
https://doi.org/10.1038/s42004-020-00424-8
https://doi.org/10.1038/s42004-020-00424-8
https://doi.org/10.1021/acs.analchem.2c05094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.2c05094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.saa.2020.118665
https://doi.org/10.1016/j.saa.2020.118665
https://doi.org/10.1016/j.saa.2020.118665
https://doi.org/10.1016/j.saa.2020.118665
https://doi.org/10.1016/j.forc.2021.100346
https://doi.org/10.1016/j.forc.2021.100346
https://doi.org/10.1016/j.forc.2021.100346
https://doi.org/10.21577/0103-5053.20200205
https://doi.org/10.21577/0103-5053.20200205
https://doi.org/10.21577/0103-5053.20200205
https://doi.org/10.3389/fchem.2020.00624
https://doi.org/10.3389/fchem.2020.00624
https://doi.org/10.3389/fchem.2020.00624
https://doi.org/10.1016/j.clinbiochem.2016.09.001
https://doi.org/10.1016/j.clinbiochem.2016.09.001
https://doi.org/10.1016/j.clinbiochem.2016.09.001
https://doi.org/10.3390/app10186544
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3389/fpls.2018.00059
https://doi.org/10.3389/fpls.2018.00059
https://doi.org/10.3389/fpls.2018.00059
https://doi.org/10.1007/s11306-006-0022-6
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of Statistical Validation Tools for Megavariate Metabolomics Data.
Metabolomics 2006, 2, 53−61.
(47) Fawcett, T. An introduction to ROC analysis. Pattern Recognit.
Lett. 2006, 27, 861−874.
(48) Le ̂ Cao, K.-A.; Boitard, S.; Besse, P. Sparse PLS discriminant

analysis: biologically relevant feature selection and graphical displays
for multiclass problems. BMC Bioinformatics 2011, 12, 253.
(49) Selvam, J. P.; Gunasekaran, S. Biological analysis of Fingernails

of Healthy and Thyroid disordered subjects by FTIR-ATR
spectroscopic technique. Int. J. PharmTech Res. 2018, 11, 242−252.
(50) Sundaram, K.; Gunasekaran, S.; Sailatha, E.; Marthandam, P.;

Kuppuraj, P. FTIR-ATR Spectroscopic Technique on Human Single
Intact Hair Fibre -A Case Study of Thyroid Patients. Int. J. Adv. Sci.
Technol. Eng. Manag. Sci. 2016, 2, 2454−2356.
(51) Bantignies, J. L.; Fuchs, G.; Carr, G. L.; Williams, G. P.; Lutz,

D.; Marull, S. Organic reagent interaction with hair spatially
characterized by infrared microspectroscopy using synchrotron
radiation. Int. J. Cosmet. Sci. 1998, 20, 381−394.
(52) Lehtinen, J. Spectroscopic Studies of Human Hair, Nail, and

Saliva Samples Using a Cantilever-Based Photoacoustic Detection. Int.
J. Thermophys. 2013, 34, 1559−1568.
(53) Olsztyn ́ska-Janus, S.; Szymborska-Małek, K.; Gąsior-

Głogowska, M.; Walski, T.; Komorowska, M.; Witkiewicz, W.;
Pezowicz, C.; Kobielarz, M.; Szotek, S. Spectroscopic techniques in
the study of human tissues and their components. Part I: IR
spectroscopy. Acta Bioeng. Biomech. 2012, 14, 101−115.
(54) Scott, D. A.; Renaud, D. E.; Krishnasamy, S.; Meriç, P.;
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