
cancers

Review

Advances in Anti-Cancer Immunotherapy: Car-T Cell,
Checkpoint Inhibitors, Dendritic Cell Vaccines,
and Oncolytic Viruses, and Emerging Cellular
and Molecular Targets

Emilie Alard 1,† , Aura-Bianca Butnariu 1,†, Marta Grillo 1,†, Charlotte Kirkham 1,†,
Dmitry Aleksandrovich Zinovkin 2 , Louise Newnham 1, Jenna Macciochi 1 and
Md Zahidul Islam Pranjol 1,*,†

1 School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; e.alard@sussex.ac.uk (E.A.);
ab923@sussex.ac.uk (A.-B.B.); mg473@sussex.ac.uk (M.G.); clk29@sussex.ac.uk (C.K.);
l.j.newnham@sussex.ac.uk (L.N.); j.macciochi@sussex.ac.uk (J.M.)

2 Department of Pathology, Gomel State Medical University, 246000 Gomel Region, Belarus;
zinovkin2012@gmail.com

* Correspondence: z.pranjol@sussex.ac.uk
† These authors contributed equally to this work.

Received: 26 May 2020; Accepted: 23 June 2020; Published: 7 July 2020
����������
�������

Abstract: Unlike traditional cancer therapies, such as surgery, radiation and chemotherapy that are
typically non-specific, cancer immunotherapy harnesses the high specificity of a patient’s own immune
system to selectively kill cancer cells. The immune system is the body’s main cancer surveillance
system, but cancers may evade destruction thanks to various immune-suppressing mechanisms.
We therefore need to deploy various immunotherapy-based strategies to help bolster the anti-tumour
immune responses. These include engineering T cells to express chimeric antigen receptors (CARs)
to specifically recognise tumour neoantigens, inactivating immune checkpoints, oncolytic viruses
and dendritic cell (DC) vaccines, which have all shown clinical benefit in certain cancers. However,
treatment efficacy remains poor due to drug-induced adverse events and immunosuppressive
tendencies of the tumour microenvironment. Recent preclinical studies have unveiled novel therapies
such as anti-cathepsin antibodies, galectin-1 blockade and anti-OX40 agonistic antibodies, which may
be utilised as adjuvant therapies to modulate the tumour microenvironment and permit more ferocious
anti-tumour immune response.

Keywords: CAR-T cell; checkpoint inhibitor; dendritic cell vaccines; oncolytic viruses; tumour-
induced immune evasion; immunosuppression; drug resistance; galectin-1; cathepsin D; OX40

1. Introduction

Cancer remains a main global challenge due to the lack of early diagnosis, the inherent biological
complexity of the tumour microenvironment (TME) and the unavailability of highly efficacious
treatment strategies. In year 2015 to 2017, there were 367,167 new cases of cancers, with 165,000 deaths in
the UK alone [1], indicating an urgent need for new effective treatment plans in place. Novel approaches
developed to reduce tumour resistance to chemo- and radiotherapy and a combination of these have
certainly improved treatment efficacy, however, overall clinical outcome still remains poor due to drug
resistance and adverse events [2]. Thus, in recent years, utilising a host’s immunity to control and
eliminate cancer has been developed which underpins the principles of anti-cancer immunotherapy.
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The concept of immunotherapy shifts the focus of “targeting” from tumour itself to a more
personalised approach, where the host’s immune system is programmed to directly or indirectly attack
cancer cells. Several of these therapeutic strategies have been developed and approved for clinics,
however, due to low treatment efficacy, drug resistance and tumour-induced immunosuppression,
investigations are ongoing in the development of new adjuvant treatments and optimisation of existing
immunotherapies, reviewed elsewhere [3,4]. Although promising outcomes have been observed
in patients with haematological malignancies, there are numerous obstacles within the TME of
solid tumours which pose many challenges in achieving clinical benefits, especially in patients with
advanced stage cancers (discussed below). Therefore, in this review, we provide an overview of the latest
developments of selected immunotherapy strategies such as chimeric antigen receptor (CAR) T cell,
checkpoint inhibition, dendritic cell (DC) vaccines, and oncolytic viruses (OV) in both haematological
cancers and solid tumours. We also explore recent advancements of newly discovered pro-tumourigenic
and immunosuppressive candidates and their potential targeting in anti-cancer immunotherapies.

2. The Chimeric Antigen Receptor (CAR) T Cell

The adoptive transfer of CAR T cells is an emerging area of cancer immunotherapy. T lymphocytes
from cancer patients are engineered to express synthetic CARs, redirecting them to detect and eliminate
cancer cells which express the CAR-targeted ligand [5]. These CARs consist of four components:
an intracellular signalling domain, a transmembrane domain, a hinge region and an antibody-binding
domain [6]. After poor outcomes in clinical trials using the first generation CAR structure, where the
intracellular CD3-ζ signal was insufficient to elicit a T cell response in vivo, costimulatory signals
were found to be imperative [7–10]. This modular second-generation CAR design incorporates the
initiator of T cell signalling, CD3-ζ, at the intracellular domain with a costimulatory signal from CD28
or CD137 (4-1BB). Third generation CARs consist of two or more costimulatory domains. The antigen
binding domain provides the CAR specificity, with the most successful CAR T cells targeting the
B-cell antigen CD19, which have shown promise in the treatment of B-cell malignancies [11,12].
Traditionally, the antigen-binding domain is composed of the variable heavy and light chains of
monoclonal antibodies (mAbs) which are connected by a flexible linker to form a single chain variable
fragment (scFv). These scFv domains target extracellular antigens of cell-surface proteins which are
expressed by cancer cells, eliminating the need for antigen presentation by major histocompatibility
complex (MHC) [13] (Figure 1).
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Figure 1. Chimeric antigen receptor structure. CARs follow a generic design of four components.
First generation CARs are composed of an extracellular antigen binding domain synthesised from the
variable heavy and light chains of mAbs (scFv), a transmembrane domain and a CD3ζ intracellular
signalling domain. Second generation CARs have an additional co-stimulatory domain, typically CD28
or 4-1BB, and third generation CARs will have two of these costimulatory domains.
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2.1. Development and Recent Advances CAR T Cell Therapy

2.1.1. Haematological Cancers

CAR T cell therapy utilises T cells harvested from cancer patients (apheresis) which are
subsequently antibody activated and transduced with either a lentivirus or retrovirus vector.
Cells expressing the synthetic CAR are expanded ex vivo before being reinfused back into the
patient after lymphodepleting chemotherapy [14]. Upon antigen recognition by the CAR, targeted cell
death is initiated by the activated T cell which undergoes rapid expansion and persists in the patient.
The use of CAR T cells for anti-cancer therapy showed poor efficacy in the first clinical trials. Using the
first-generation CAR design, these clinical trials targeting ovarian cancer, renal cell carcinoma and
non-Hodgkin lymphoma, showed poor patient outcomes and suboptimal T cell expansion in vivo,
eliciting poor response and in some situations extreme adverse toxicities [8–10].

Second-generation CAR models were then designed to incorporate a CD137 (4-1BB) costimulatory
domain which has been shown to increase clonal expansion and long-term endurance of the CAR T
cells, a limitation of previous clinical trials [14,15]. To date, the greatest success in using CAR T cells to
target cancer cells has been achieved with targeting CD19+ B-cells in B-cell malignancies such as B-cell
non-Hodgkin lymphoma (NHL), Acute Lymphoblastic Leukaemia (ALL) and Chronic Lymphocytic
Leukaemia (CLL) [12]. Clinical trial results showed complete remission in 90% of B-ALL patients
treated with CD19 CAR T cell, even when previous stem cell transplants were unsuccessful [14].
After great success of CD19-targeted CAR T cells in clinical trials, this therapy is now FDA-approved
as routine therapy for children and adults with relapsed or refractory B-ALL or Diffuse Large B-cell
Lymphoma (DLBCL) [16].

While CD19-targeted CAR T cells are successful in treating B cell malignancies, recent studies are
expanding this immunotherapy to the treatment of multiple myeloma (MM). Clinical trials into targeting
different myeloma antigens, such as B cell maturation antigen (BCMA), CD138, immunoglobulin light
chains and CS1 glycoprotein antigen (SLAMF7) are ongoing. The most widely targeted antigen, BCMA,
has shown promise in treating relapsed/refractory MM (RRMM) in phase I/II clinical trials. In the first
early clinical trial using a BCMA-targeted CAR design, among the 12 patients in the trial, three patients
entered partial remission, three patients had a stable disease and one patient achieved complete
remission (NCT02215967). Further developments of the CAR design, still targeting BCMA but with the
addition of the 4-1BB costimulatory domain, which is shown to increase T cell persistence, were then
trialled and showed that clinical response was dose dependent and a 100% complete response was
recorded with the higher dose of 450 × 106 CAR T cells [17]. Several CAR constructs targeting BCMA
are in clinical trial, with the hope that soon they will be approved for clinical therapy, improving the
outcome for MM patients.

Although CD19-targeted CAR T cell therapy shows promising results in patients with
haematological malignancies, it does not come without toxicities. The best characterised toxicities
have been seen in clinical trials of patients treated with CD19-targeted CAR T cells. With CD19 being
expressed on all B-cells and its precursors, it is expected that B-cell aplasia occurs as a result of
CD19-targeted cell killing which can persist for longer than a year post treatment depending on the
follow-up time available [18]. The most prominent toxicity seen in the early CD19-directed CAR
T cell therapy trials was Cytokine Release Syndrome (CRS) [14]. This is the increase in cytokine
release, notably IFN-γ and TNF-α as a result of T cell activation and expansion upon interaction of
T cell CARs with the target antigen. These cytokine signals activate monocytes and macrophages
to release pro-inflammatory cytokines IL-1, IL-6 and IL-10. This cytokine storm leads to the clinical
features of high fever, fatigue, myalgia, nausea. Severe CRS is characterised by organ dysfunction
with hypertension and hypoxia [19]. More recently, a study reported CD19-targeted CAR T cell
therapy induced glial cell injury in approximately 40% of patients due to CRS [20]. In addition to close
monitoring of symptoms, treatment of CRS with the IL-6 blockade, Tocilizumab, has been successful in
the management of CRS with only a few cases showing resistance to Tocilizumab [21].
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Immune-cell associated neurotoxicity syndrome (ICANS) is the second most common toxicity and
is characterised by symptoms of confusion and delirium and occasionally cerebral oedema. ICANS
manifests as a result of cytokines in the brain, supported by high serum levels of IL-6 in patients
showing neurotoxicity after CAR T cell treatment [21]. Similar to CRS management, monitoring
symptoms closely and administering corticosteroids is recommended for the treatment of ICANS.

Limitations of CAR T Cell Therapy for Haematological Cancers

One limitation of using CD19-directed CAR T cells in the treatment of B-cell malignancies is the
relapse that occurs of CD19- B-cells which escape the first treatment. As more patients are treated
with CD19 CAR T cells and more follow-up data becomes available, it is understood that 39% of
patients relapse with a CD19- disease [22]. Fousek et al. has studied the use of bi-directional and
tri-directional CARs which as well as CD19, target CD20 and CD22, two other B-lineage markers [23].
After promising in vitro studies which showed success in targeting CD19− escape B-ALL cells, in vivo
mouse models were used to investigate the efficacy of CD19/20/22 CAR T cell therapy on targeting
CD19+ and CD19− escape malignancies. Treatments of CD19/20/22 CAR T cells showed significant
anti-tumour response in both mouse models with CD19+ B-ALL as well as the CD19− escape B-ALL
which CD19 CAR T cells was ineffective at treating alone [24]. This method presents an exciting branch
of CAR T cell therapy for haematological B cell malignancies which do not express CD19.

Other approaches have targeted tyrosine-protein kinase transmembrane receptor 1 (ROR1),
a glycosylated type 1 membrane protein expressed on the surface of malignant cells, including ALL
and CLL cells, but not on normal B-cells [25,26]. Targeting ROR1 may reduce ‘on-target, off-tumour’
toxicities compared to CARs targeting CD19/20/22, however, it has been found that ROR1 is expressed
on pancreatic and lung tissue suggesting potential for other toxicities [27]. Phase I clinical trials have
begun using ROR1-CAR T cells although results are yet to be obtained (NCT02194374).

The use of CAR T-cells as treatment for haematological cancers is a costly and complex process,
as T-cells are derived from individual patients and engineered to ensure HLA matches. Liu et al.,
2020, has investigated the use of natural killer (NK) cells which omit the need for this autologous
method as HLA matching is not necessary. This phase I and phase II study of 11 patients with CD19-
positive haematological cancers utilised a retroviral vector that expressed anti-CD19 CAR with IL-15
and Caspase 9 to engineered NK cells. Patients were treated with lymphodepleting chemotherapy
with Fludarabine and cyclophosphamide, followed by single infusions of CAR-NKs at one of three
increasing concentrations. Early data shows that CAR-NK cells had better anti-tumour activity and
persistence than non-transduced NK cells, with seven of 11 patients (64%) showing a complete response
after a mean follow-up of 13.8 months. NK cells persisted in the patients for at least 12 months,
potentially a result of the inclusion of IL-15 in the retroviral vector. This study presented a new method
of treating haematological cancers without leading to the toxicities associated with CAR T-cell therapy,
such as CRS and neurological ICANS [28].

A lack of CAR T cell persistence is an issue in both haematological cancers and solid tumours.
The persistence of CAR T-cells within the patient is influenced by several factors including starting
T-cell population, T cell exhaustion, host immunogenicity but is also influenced by the CAR design,
a target for aiming to improve CAR T cell persistence. Incorporating structures into the CAR design,
such as 4-1BB, has shown to increase T-cell proliferation and persistence. Human CAR constructs
are also preferred in updated CAR designs which reduce immune-mediated rejection of the CAR,
allowing the T-cell to persist [29]. While CAR-NK cells can overcome the issue of T-cell persistence
patients, adapting the CAR construct can also increase the efficacy of CAR T-cell treatment for both
haematological and solid cancers.

2.1.2. Solid Tumours—Challenges and Developments

While CAR T cell therapy has been greatly successful in the treatment of B-cell malignancies,
barriers arise when translating this therapy to solid tumours, reviewed elsewhere [30]. There are three
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main factors hindering the use of CAR T cells for the treatment of solid cancers; firstly, the desmoplastic
nature of the solid TME creates a physical barrier for T cells to enter [31]. This creates trafficking
issues hindering the activity of the CAR T cells targeting the solid tumour. Secondly, the antigens
expressed on tumour cells are heterogeneous and are expressed broadly but in low levels across normal
tissue, limiting the number of potential targets which do not elicit severe toxicity. Thirdly, the TME of
advanced cancers is often immunosuppressive and leads to T cell exhaustion and anergy [32]. It is
these barriers which prevent translating the use of CAR T cell therapy to solid tumours but have
focused research in understanding ways to overcome these barriers.

Due to the physical barrier and suppressive nature of the TME, the mode of application of the
CAR T cells is important to ensure optimal penetrance into the tumour tissue and thus increased
anti-tumour activity. With this in mind, studies are focusing on three areas: the CAR design, the
host response and the T cell subset, aiming to increase T cell trafficking, penetrance and persistence.
To overcome the physical barrier of the TME and enhance T cell trafficking into the TME, one method
has taken CAR T cells and engineered them to express IL-8 receptors CXCR1 or CXCR2 [33]. Tumours
can overexpress IL-8 naturally but ionising radiation also increases the production of IL-8, and cells
expressing the receptor for IL-8 follow a chemotaxis gradient towards the IL-8 secreting cells. In this
study, CD70-directed CAR T cells were engineered to express IL-8 receptors which aims to enhance
intratumour chemotaxis of the T cells when IL-8 is present [33]. These 8R70CAR T cells showed
significant anti-tumour responses in glioblastoma, ovarian and pancreatic cancer in vivo mice models,
leading to complete regression of larger and late-stage tumours as well as prolonged long-term
protection [33]. Additionally, these 8R70CAR T cells have shown further successes in anti-tumour
properties by reducing the level of the pro-cancer chemokine in the process of T cell trafficking.
The success of this strategy is progressing onto human phase I clinical trials. Similar efforts have
also been studied in upregulating the expression of IL-23 receptors in CAR T cells [34]. In another
recent study, switchable CAR T cells have been used to target receptors expressed across several
cancers but also across normal tissue. These CAR T cells are directed towards the HER2 receptor but
are engineered to target an antibody based switch which acts as a bridge between the CAR T cell
and the HER2 on the target cell [35,36]. Preclinical trials of switchable CAR treatment have been
successful in mouse xenograft models of breast, ovarian and pancreatic cancers where a significant
reduction in tumour volumes was observed [37]. Survival of the engineered CAR T cells within the
tumour microenvironment is essential for an anti-tumour response. Adachi et al. (2018), showed how
engineering the CAR design to express IL-7 and CCL19, both essential for the maintenance of T cell
zones in lymphoid organs, increases the infiltration of dendritic cells and T cells into the tumour tissue.
This led to an increased regression of solid tumours without recurrence, where the anti-tumour effect
of these 7 × 19 CAR T cells proved to be more efficient than conventional CAR T cells [38].

One approach to overcome the heterogeneity of solid tumours is to target antigens present
across malignant and normal cells, but which are either mutated or differentially expressed in the
tumour setting. An example of this is targeting MUC1, a highly glycosylated transmembrane mucin
protein. In a tumour setting, aberrant glycosylation of MUC1, seen in 90% of breast cancers, exposes
epitopes that would not normally be accessible for recognition in normal tissue [39]. Developing
MUC1-directed CAR T cells, Zhou et al. investigated the efficacy of this treatment on mice models
orthotopically injected with HCC70 breast cancer cells [39]. The results of this in vivo study showed
that the MUC1-directed CAR T cells resulted in significantly reduced tumour size which persisted
throughout the study length. Long term efficacy was also recorded after treatment with MUC1-directed
CAR T cells [39]. With MUC1 being aberrantly expressed in a variety of cancers, such as Pancreatic
Ductal Adenocarcinoma, its translation to other cancer is being explored.

Targeting two or more antigens is also a promising method for the treatment of solid tumours.
The use of bispecific CAR T cells has been investigated in glioblastoma, targeting HER2 and IL-13Rα2
in a combinational design [40]. The co-expression of HER2 and IL-13Rα2 means that the tumour cell
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must express both for the T cell to become activated to kill the cancer cell and promising results have
been found in vitro and in vivo studies.

The TME consists of myeloid derived suppressor cells (MDSC), tumour associated macrophages
(TAM) and regulatory T cells (Tregs) which function to supress the action of T cells in eliminating
tumour cells [41]. This is an issue when it comes to using T cells to target cancer cells and so using
armoured CAR T cells has proven effective in overcoming the immunosuppressive nature of the
TME [42]. These Muc16-directed T cells are engineered to secrete IL-12 upon antigen stimulation.
This aims to enhance the cytotoxic capability of CD8+ cells as well as reduce antigen escape in CAR
T cell treatment by recruiting macrophages to the TME. This method has successfully gone to phase I
clinical trial (NCT02498912) after reporting that treatment lead to complete and persistent response in
mouse models of ovarian peritoneal carcinomas (Table 1).

Table 1. Current clinical trials for CAR T cells targeting solid tumours.

Target CAR Construct Malignancy Phase Reference
Clinicaltrials.gov

CD70 CD3ζ, CD28 Pancreatic, renal cell, breast,
melanoma and ovarian I and II NCT02830724

Mesothelin CD3ζ, 4-1BB Pancreatic, ovarian and
mesothelioma I NCT02159716

Muc16 (CA125) CD3ζ, CD28 Armoured
with IL-12 secretion Ovarian I NCT02498912

HER2 CD3ζ, CD28 Glioblastoma I NCT02442297
Glypican-3 CD3ζ, CD28 and 4-1BB Hepatocellular carcinoma I NCT02395250

CEA CD3ζ, CD28
Peritoneal carcinomatosis,

colorectal, gastric, breast and
pancreatic cancer

I NCT03682744

EGRFvIII CD3ζ, 4-1BB Glioblastoma I NCT03726515
PSMA CD3ζ, CD28 Prostate Cancer I NCT01140373

Abbreviations: HER2, Human Epidermal growth factor Receptor 2; CEA, Carcinoembryonic Antigen; EGFRvIII,
Epidermal Growth Factor Receptor variant III; PSMA, Prostate Specific Membrane Antigen.

These recent advances in CAR T cell therapy directed towards solid tumours show the committed
length research is taking to overcome these translational barriers, and it is the modular design of synthetic
CARs which allow for adaptations to be tested. While there are several areas of immunotherapies
which show increasing success in the treatment of solid tumours, it may be the combination of these
immunotherapies which show the most promising results.

2.1.3. Combination Treatment with CAR- T Cell Therapy

T cell exhaustion after reinfusion of the CAR T cells into the patient still presents as the biggest
limitation facing CAR T cell therapy. Methods to overcome this have investigated the use of immune
checkpoint inhibitors in combination with the CAR T cell therapy in ways of either co-administration or
engineering the CAR T cells to secrete the monoclonal checkpoint blockade antibody. The first method
of co-infusion of CAR T cells with checkpoint blockade Abs is being investigated in glioblastoma
patients, where patients will be treated with a second generation epidermal growth factor receptor
variant III (EGFRvIII)-directed CAR T cells with the co-administration of Pembrolizumab, a PD-1
monoclonal antibody checkpoint inhibitor (NCT03726515). While results of this phase I clinical trial are
yet to be obtained, previous phase I clinical trials have shown success in the use of EGFRvIII-directed
CAR T cell therapy alone and preclinical studies combining these therapies have been successful
in vivo mouse models, showing increased tumour killing activity with specific immune checkpoint
blockades [43].

A second phase I/II clinical trial is investigating combining CAR T cell therapy with immune
checkpoint blockade by engineering EGFRvIII-directed CAR T cells to express anti- CTLA-4 and PD-1
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Abs (NCT03182816). Previous studies have investigated engineering CAR T cells in this way, which was
successful in improving the persistence and activity of T cells in its cancer killing capacity [44].

The combination of CAR T cell therapy with more conventional chemotherapies and radiotherapy
has been investigated in several clinical trials. Alone, CAR T cell therapy and chemotherapy are not
sufficient to eliminate solid tumours, without any recurrence but together, it has been shown that
chemotherapy agents are successful in improving the efficacy of CAR T cells. Certain chemotherapies,
such as cyclophosphamide, gemcitabine and doxorubicin, can inhibit the suppressive immune cells
which prevent CAR T cell function. Inhibition of Treg cells enhanced the efficacy of anti-tumour
immunotherapy as the CAR T cells are able to persist in the TME for prolonged times [45]. The addition
of radiotherapy has also been shown to amplify the efficacy of CAR T cell therapy, enhancing T cell
trafficking and penetrance into the tumour microenvironment [46]. A recent phase I clinical trial of
patients with either glioblastoma or gliosarcoma has studied the use of EGFRvIII CAR T cells prior to
standard radiotherapy (NCT02664363), with the aim that the combination increases complete response
compared to CAR T cell or radiotherapy alone [47].

These early stage clinical trials show the promise that combining CAR T cell therapy with
other immunotherapies, chemotherapies or radiotherapies has on the treatment of solid tumours,
which previously faced several barriers.

3. Immune Checkpoint Inhibitors

Immune checkpoint inhibitors are therapeutic Abs that work by inhibiting the interaction between
negative immunologic regulators and their binding partners. Immune checkpoints refer to the inhibitory
pathways crucial for the maintenance of self-tolerance and of the immune responses [48]. In normal
physiological conditions, their main role is to act as a natural break to the normal host immune response,
acting as a negative regulator of the amplitude and quality of T cell activation to prevent an aggressive
immune reaction and minimize damage to healthy cells in the body [49].

T cells, to be fully activated, require multiple steps which involve clonal selection of antigen-specific
cells, activation and proliferation in lymphoid tissues to then execute their effector functions at the
target tissue [50]. Each of these steps is regulated by immune checkpoint proteins [51], of which,
two candidate proteins that have been more extensively and actively studied are the programmed cell
death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). These are inhibitory
receptors induced on the surface of T cells after the initial steps of T-cell activation in the lymph nodes
(CTLA-4) or reduce T-cell activity in the target tissue (PD-1) [52].

However, it has been demonstrated that tumour cells or non-transformed cells in the TME also
overexpress these inhibitory immune checkpoint proteins which prevent T cells from destroying the
target cancer cells [53]. For this reason, these immune checkpoints can be blocked using specific
and selective antibodies (Abs) that target either the receptor or their ligands to increase antitumor
T-cell activity [48]. Interestingly, immune checkpoint inhibitors are not restricted to T cells. In fact,
NK cells are a newly emerging target. NK cells are innate lymphocytes specialised in early defence
against transformed cells [54]. Their function is regulated by activatory and inhibitory surface
receptors (checkpoint molecules). Alterations in the expression of these receptors can result in impaired
cytotoxicity against tumour cells [55]. Thus, it is now of interest to target NK-cell receptors with
monoclonal antibodies for cancer immunotherapy. However, in this review, we discuss checkpoint
inhibitors in modulating T cell response against cancer.

3.1. Development of Immune Checkpoint Inhibitors

3.1.1. Cytotoxic T-Lymphocyte-Associated Antigen 4—CTLA-4

The first checkpoint antibody approved by the FDA was ipilimumab (CTLA-4 inhibitor) for
the treatment of melanoma. CTLA-4 (also known as CD152) is a member of the immunoglobulin
superfamily, B7/CD28 [56]. It is constitutively expressed on Tregs but can also be upregulated by other
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T cell, especially CD4+ T cells, following activation [48,52]. Their main role is to counteract the activity
of the co-stimulatory receptor CD28. Both CTLA-4 and CD28 share the same ligands, CD80 and CD86.
CD28 is constitutively expressed on the T cells and interaction between CD28 and CD80/86 causes the T
cell receptor (TCR) signals to amplify and leads to T cell activation [57] (Figure 2). However, CTLA-4 has
a much higher overall affinity for CD80/86 and drastically reduces the activation of T cells [58]. Research
has shown that CTLA-4 is also expressed on the surface of tumour cells [59] and inhibit T cell activation
and prevent anti-tumour immunity. Partial blocking of CTLA-4 with Abs resulted in regression of
tumour in mice displaying partially immunogenic tumours [60]. These findings in preclinical studies
led to the production of fully humanised CTLA-4 Abs, ipilimumab and tremelimumab. Clinical
testing was initially carried out on patients that were not responding to conventional treatments and
with cancers in advanced stages [61]. The outcome was that both ipilimumab and tremelimumab
produced a clinical response in 10% of the patients with melanoma [62]. Despite both humanised Abs
reached phase III clinical trials, ipilimumab (Yervoy) was the only drug approved for the treatment
of advanced melanoma by the FDA in 2010. Ipilimumab has since been extensively investigated
as a therapeutic agent in several clinical trials; for example, Yervoy showed promising results in
a phase I/Ib multicentre, investigator-initiated study where the efficacy of ipilimumab in patients
with relapsed hematologic cancer after allogeneic HSCT was investigated [63]. Its approval by the
FDA came after the results of a randomized three-arm clinical trial (NCT00094653) of patients with
advanced melanoma where patients receiving ipilimumab showed a median overall 10-month survival
benefit [64]. However, survival analysis at a later point revealed a reduced survival rate to 23.5%
after two years of treatment compared to 45.6% after year 1 of treatment [64]. This suggests that a
substantial proportion of initial-responders relapse probably with lethal, drug-resistant disease months
or years later [65], which emphasises the importance of targeting other factors such as PD-1/PD-L1,
and introducing more efficacious therapy and/or a combination approach.
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Figure 2. Schematic representation of CTLA-4 and anti-CTLA-4 mechanisms of action on T cell
activation. (a) Following the binding of MHC-presented immunogenic peptide antigen to the TCR,
the co-inhibitory cell surface receptor CTLA-4 will bind to its ligands CD80 and CD86 found on antigen
presenting cells, blocking the co-stimulatory signal (brought by CD28) thus preventing continued T cell
activation. (b) By blocking CTLA-4–CD80 or CTLA-4–CD86 interaction with anti-CTLA-4 Abs, T cells
proliferation will be activated and will migrate towards secondary lymphoid organs.
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3.1.2. Programmed Cell Death Protein 1—PD-1

PD-1, also known as CD279, is a type I transmembrane protein receptor predominantly expressed
on T cells, B cells, natural killer (NK) T cells, activated monocytes, and dendritic cells (DCs) [66].
Their main role is to regulate T cell mediated immune response in peripheral tissues, mounting a strong
resistance mechanism within the TME [67]. PD-1 has two ligands: PD-1 ligand 1 (PD-L1) and PD-1
ligand 2 (PD-L2) (Figure 3), both members of the B7 family and they bind to a co-stimulatory receptor
on T cells [68]. In physiology, activated T cells demonstrate an upregulation of PD-1 which lasts until
these cells reach the target tissue. Here, PD-1 ligands—PD-L1 and PD-L2—expression is induced
leading to the downregulation of T cell activity, thus reducing damages to the tissues possibly caused
by a strong immune response [48]. It is not surprising that, due to its important role in the prevention
of autoimmunity, the PD-1 signalling pathway can be used by tumour cells to evade the antitumor
immune response [69]. It has been demonstrated that PD-1 is highly expressed on tumour-infiltrating
lymphocytes (TILs) and its ligands, particularly PD-L1, are constitutively expressed on tumour cells
of various types e.g., melanoma and lung cancer cells [70]. In addition, PD-L1 is often expressed on
myeloid cells within the TME which also contributes to the inhibition of antitumor immunity [71].
Studies showed that if either tumour cells or TILs expressed PD-L1, the overall survival is decreased
compared to PD-L1 negative tumours [48].
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Figure 3. Schematic representation of PD-1 and anti-PD-1/PD-L1 mechanisms of action on T cell activity.
Activated T cells at secondary lymphoid organs/tumour tissue (a) will upregulate the expression of
co-inhibitory cell surface receptor PD-1. Binding of PD-1 to its ligands, PD-L1 or PD-L2, found on
the surface of several immune cells as well as tumour cells, will inhibit signalling downstream of the
TCR, thus downregulating T cell activity. (b) Targeting PD-1 or PD-L1 with antibody therapeutics
can reinvigorate exhausted T cells at the tumour site, increase the activity, consequently allowing
T cell-mediated tumour cell killing.

Based on this finding and the relationship between PD-1 and PD-L1, Abs were developed to
specifically inhibit these molecules to enhance the host immune response against cancerous cells.
For instance, animal studies demonstrated that by blocking either PD-1 or its ligands, the antitumor
immune response was amplified [72]. Thus, several PD-1 and PD-L1 inhibitors have been or are being
tested for use in several different cancers such as non-small cell lung cancer (NSCLC), head and neck
squamous cell carcinoma (HNSCC) and Hodgkin lymphoma. Examples of drugs that have been
approved by the FDA targeting PD-1 are shown in Table 2.
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Table 2. Approved anti-PD-1/PD-L1 therapies in the clinics.

Drug First FDA
Approval Date Cancer Type Ref

Pembrolizumab
(Anti-PD-1) 2014

Melanoma; non-small cell lung cancer; head and neck squamous
cell cancer; classical Hodgkin lymphoma; primary mediastinal

large b-cell lymphoma; urothelial carcinoma; microsatellite
instability-high cancer; gastric cancer; cervical cancer;

hepatocellular carcinoma; merkel cell carcinoma

[73]

Nivolumab
(Anti-PD-1) 2014

Unresectable or metastatic melanoma; adjuvant treatment of
melanoma; metastatic non-small cell lung cancer; small cell lung

cancer; advanced renal cell carcinoma; classical Hodgkin
lymphoma; squamous cell carcinoma of the head and neck;

urothelial carcinoma; microsatellite instability-high (MSI-H) or
mismatch repair; deficient (dMMR) metastatic colorectal cancer;

hepatocellular carcinoma

[74]

Cemiplimab
(Anti-PD-1) 2018

Metastatic cutaneous squamous cell carcinoma or locally
advanced cutaneous squamous cell carcinoma who are not

candidates for curative surgery or curative radiation
[75]

Atezolizumab
(Anti-PD-L1) 2016

Locally advanced or metastatic urothelial carcinoma; metastatic
non-small cell lung cancer; locally advanced or metastatic

triple-negative breast cancer
[76]

Durvalumab
(Anti-PD-L1) 2017 Locally advanced or metastatic urothelial carcinoma [77]

Avelumab
(Anti-PD-L1) 2017 Metastatic Merkel cell carcinoma (>12 yo); Locally advanced or

metastatic urothelial carcinoma; advanced renal cell carcinoma [78]

Many clinical trials are currently ongoing in a variety of cancer types. For instance, phase III
trials for patients with cholangiocarcinoma have been initiated in China (NCT03101488) to investigate
Envafolimab, a first-in-class nanobody that binds with high affinity and specificity to PD-L1, blocking
interaction with PD-1, and resulting in T cell-mediated immune response to neoplasms.

Although in clinics, anti-PD-1/PD-L1 therapies pose a number of adverse effects and toxicities such a
cardiotoxicity, myocarditis, hepatitis, diarrhoea, endocrine dysfunction, etc., reviewed elsewhere [79,80].
Anti-PD-1 therapies have shown to trigger TNF production, which potently impairs CD8+ TIL
response. There are now guidelines available on the management of adverse events in anti-PD-1/PD-L1
therapies [81–83]. Additionally, anti-PD-1/PD-L1 therapies can develop resistance. For instance,
in a follow-up study involving 205 melanoma patients treated with pembrolizumab, 26% of patients
developed resistance. A similar outcome was observed in melanoma patients where 15 out of 42 patients
developed a 35% resistance rate [84].

Another factor that remains unknown is the optimal duration of treatment with checkpoint
inhibitors [85]. For instance, longer treatment duration is generally associated with higher incidences
of immune-related selected toxicities [85]. Although most clinical trials with checkpoint inhibitors have
been carried out over a two-year duration, investigations are underway to identify shorter optimal
duration with better clinical outcome, least amount of toxicities and reduced burden of financial
toxicity [85]. This is even more relevant to the current pandemic, COVID-19, due to its added risk to
patients life and the over-representation of cancer patients (e.g., lung cancer patients representing up
to 28%) among those affected by the impact of SARS-COV-2 [86].

These challenges, along with the limited benefits of these checkpoint inhibitors, meant that better
treatment plans were required in place and hence, a combination of anti-PD-1/PD-L1 and anti-CTLA-4
therapies were tested in both pre-clinical and clinical settings.
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3.1.3. Combination Therapy for CTLA-4 and PD-1

Although overall survival of patients treated with anti-CTLA-4 increased, only a limited number of
patients benefit from this in the long term. Thus, efforts are being directed towards finding biomarkers
that can predict responses to anti-CTLA-4 [53], as well as evaluating the efficacy of the CTLA-4
inhibitor (ipilimumab) in combination with other immune checkpoint inhibitors. For instance, in a
follow up report of the CheckMate067 (phase III trial), a significant improvement in overall survival
and objective response rate was observed in advanced melanoma patients treated with nivolumab
(PD-1 antibody) plus ipilimumab (CTLA-4 antibody) compare to each monotherapy [87]. Twenty-one
percent of the patients who received the combination therapy achieved complete remission, whilst 37%
of the patients had 30% reduction in lesions and achieved partial remission. Unfortunately, 59% of
patients in this group reported severe adverse events [87]. Thus, although a combination of these
therapies show promise, they also come with enhanced toxicities, and associated costs. Interestingly,
in a promising pre-clinical study it was shown that using anti-TNF antibody or TNF-receptor inhibitor
with this combination therapy can significantly reduce increased double-checkpoint blockade-induced
colitis and increase infiltration of tumour-specific CD8+ T cells in to the TME [88,89]. A phase I trial
(NCT03293784) in metastatic melanoma patients is in progress.

It has been shown that some patients respond better than others to combination treatments
because of a number of possible factors such as the composition of their gut microbiota [90], mutational
signatures or aneuploidy in the tumour [91,92]. For instance, when researcher addressed the role of
the gut microbiota of patients with metastatic melanoma was investigated, they observed that mice
that received faecal microbial transplantation of faeces harvested from individuals with abundance
of immunogenic Bacteroides spp. in the gut (39%), showed a greater reduction in tumour size after
ipilimumab treatment. This indicated that a certain composition of the gut microbiota is connected to a
better anticancer response [90]. Additionally, recent investigations in the human leukocyte antigen
class I (HLA-I) of cancer patients—advanced melanoma and NSCLC—indicated that reduced survival
following checkpoint blockade therapy is associated with homozygosity at HLA loci, suggesting
polymorphisms in the HLA genes may underpin responsiveness to immune checkpoint inhibitors.
Moreover, it was observed that the presence of the HLA-B62 supertype (including HLA-B*15:01) is
correlated with a poor survival as they impair the ability of CD8+ TCR to recognise neoantigens [93].
Thus, these results need to be confirmed and used to stratify which patients should receive immune
checkpoint therapies.

Currently, several clinical trials involving both anti-PD-1 and anti-CTLA-4 have reached phase III
of the trials. One of these is the Checkmate 649 trial (NCT02872116) for gastric cancer/gastroesophageal
junction cancer. This clinical trial was designed based on a previous multicentre, open-label, phase I/II
trial (CheckMate 032; NCT01928394) with nivolumab and nivolumab/ipilimumab in the second-line
setting. On March 2020, following the success of a multicentre, multiple cohort, open-label trial
(NCT01658878), the FDA approved the use of ipilimumab in combination with nivolumab (OPDIVO,
a anti PD-L1 drug) for patients with hepatocellular carcinoma (HCC) who have been previously
treated with sorafenib [94]. This is an interesting bispecific targeting strategy which should enhance
anti-tumour response by the host immunity.

3.2. Beyond PD-1 and CTLA-4

Despite the success of the previously mentioned immune checkpoint therapies, only a small
percentage of patients (10–30%) show durable responses [95]. In fact, many patients develop de
novo or adaptive resistance, as well as severe immune-related adverse events (irAEs). For this reason,
research has recently focused on finding novel immune checkpoint targets with the intent of using them
either in monotherapy or in combination with other immune checkpoints inhibitors. Some promising
therapeutic targets that are currently being characterised and under clinical trials are the lymphocyte
activation gene-3 (LAG-3) [96], the T cell immunoglobulin and mucin-domain containing-3 (TIM-3) [97]
and the T cell immunoglobulin and ITIM domain (TIGIT) [98].
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3.2.1. Lymphocyte Activation Gene-3 – LAG-3

LAG-3 (CD223) was first discovered in the early 1990s by Triebel et al. [99]. It is expressed
on several cell types including CD4+ and CD8+ T cells [99], Tregs [100] and a subpopulation NK
cells [101]. Evidence has shown that LAG-3 signalling is responsible for negatively regulating the
activation and proliferation of T helper 1 (Th1) cells, and cytokine secretion [102]. Several ligands
that interact with LAG-3 have been identified, such as MHC-II, galectin-3, LSECtin, a-synuclein, and
fibrinogen-like protein 1 (FGL1) [103]. It has been shown that a constant stimulation of antigens in cancer
or during an infection results in LAG-3 being chronically expressed, leading to T cell exhaustion [95].
Thus, targeting LAG-3 can potentially facilitate T cell reinvigoration. Based on promising experimental
results, the first clinical trials concentrated on developing an antibody sLAG-3-Ig, IMP321 (Eftilagimod
alpha), which showed only modest clinical responses in patients with metastatic renal cell carcinoma
(mRCC) [104]. However, the first mAb directed against LAG-3 to be commercially available is relatlimab
for the treatment of melanoma [105]. The first trial in which relatlimab was involved was to evaluate
its efficacy as monotherapy or in combination with the anti-PD-1 nivolumab (NCT01968109) [106].
This showed an overall response rate of 11.5%, and even higher in patients with higher LAG-3 expression
(≥1%) [107]. Currently, there are more than 18 registered clinical trials working on relatlimab, some in
phase I or II, but none completed.

3.2.1.1. T Cell Immunoglobulin and Mucin-Domain Containing-3—TIM-3

TIM-3 (HAVCR2) is a member of the TIM family and has been known to express mainly on
CD4+ Th1 and CD8+ t cytotoxic 1 cells as well as on B cells, Tregs, NK cells, DCs, macrophages
and monocytes [108]. TIM-3 interacts with numerous ligands including tumour-secreted galectin-9,
high-mobility group protein B1 (HMGB1), carcinoembryonic antigen cell adhesion molecule 1
(CEACAM-1, expressed on tumour cells), and phosphatidyl serine (PtdSer) [109]. The upregulation of
TIM-3 is linked with poor prognosis in solid tumours and some preclinical trials have shown that the
blockade of TIM-3 leads to the reduction of tumour growth [103]. Considering the promising results,
several clinical trials have been initiated to evaluate the efficacy of TIM-3 antagonistic mAbs. One of
these is a multicentre, open-label study (NCT02817633) intended for studying a novel IgG4 anti-TIM-3
mAb, TSR-022 (Cobolimab), as a monotherapy or in combination with anti-PD-1 mAb in patients with
advanced solid tumour which showed clinical benefits in the combination cohort [110] with a 15%
objective response rate and 40% stable disease [111].

3.2.1.2. T Cell Immunoglobulin and ITIM Domain—TIGIT

TIGIT, also known as WUCAM and Vstm3, is a member of the CD28 family [112]. It was first
identified as an immune checkpoint receptor with its expression limited to NK cells and T cells
subsets (Tregs and memory T cells) [98]. TIGIT binds two ligands: CD155 and CD112 [113] which are
shared with other counterparts CD266 and/or CD96. Depending on which receptor binds the ligands,
either a positive co-stimulatory signal (CD226) [98] or inhibitory signals (TIGIT) are produced [114].
Based on preclinical trial results, several pharmaceutical companies started to develop anti-TIGIT
drugs and are currently in early phase clinical trials. One of these is Etigilimab (OMP-313 M32),
a humanized mAb created to prevent the interaction between TIGIT and CD155. This is an open-label
research (NCT03119428) to study the safety and efficacy of the anti-TIGIT both as monotherapy and in
combination with an anti-PD-1 mAb in patients with advanced malignancies [115].

Despite the numerous clinical trials researching these new targets, no drug is available in clinic at
this date.

4. Dendritic Cell Vaccines

Dendritic cells (DCs) are antigen-presentation cells that ‘present’ peptides to T-cells leading to
their activation. DCs can therefore be cultured ex vivo with specific tumour antigens and reinfused
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into the patient to generate potent cancer vaccines. Unlike other therapies, DC-based vaccines function
by boosting the patient’s own immune response against their own tumour and pose a low risk
of toxicity [116]. DC vaccines have been tested in phase I, II and III clinical trials for a variety of
cancers, including melanoma [117], AML [118], myeloma [119], HNSCC [120] and ovarian cancer [121].
Naturally-circulating DCs or monocytes are isolated from the patient’s blood via leukapheresis and
cultured in vitro with a specific cocktail of cytokines, depending on the cancer and type of T cells
needed to be activated, to induce differentiation into mature DCs. Pulsing the DCs with antigen
peptide, protein, mRNA or tumour cells/lysate prime the cells for the specific antigen(s) expressed
by the tumour. The vaccine is injected into the patient, resulting in the activation of antigen-specific
T cells [122] (Figure 4).
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Figure 4. Action of DC vaccine in the body. Dendritic cells are matured and loaded ex vivo with
tumour associated antigens (TAA). Following administration of the vaccine, antigen-specific T cells are
activated and circulate round the body searching for cancer cells expressing their respective antigen.
After detecting a cancer cell, T cells dock and exert their cytotoxic activity.

4.1. Development and Recent Advances of DC Vaccines

Based on the native capacity of potent antigen presentation and T cell activation, and its ease
of development in vitro conditions, DCs were tested as cancer vaccine around mid-1990s. However,
it was in 2010, when the FDA approved the first DC vaccine, Sipuleucel-T, a treatment for asymptomatic
castration resistant prostate cancer [123]. This study highlighted that DC vaccines are safe and well
tolerated in cancer treatment; however, limited clinical benefit was seen when treating patients with
advanced prostate cancer.

This limited efficacy was thought to be due to advanced/metastatic tumours deploying a number
of immunosuppressive strategies that prevent the maturation and activation of DCs. High expression
levels of immunosuppressive cytokines (VEGF, TFGβ) are exhibited by advanced tumours [124,125],
which prevent DC differentiation and maturation, creating an immunosuppressive microenvironment in
which tumour cells thrive. Increased expression of suppressive alarmins, e.g., matrix metalloproteinase-2
(MMP-2) is also detected in cancer cells [126]. These digest the extracellular matrix, aiding tumour
invasion and inhibit secretion of IL-12, preventing Th1 T cell differentiation and NK cell activation and,
hence, a high level of MMP2 is associated with a poor prognosis. Therefore, recent research into DC
vaccines has been aimed at improving DC activation and promoting of T cell function, as well as the
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use of adjuvant treatments alongside DC vaccines to counteract the effect of an immunosuppressive
TME [127].

The most recent clinical trials surrounding DC vaccines focus on improving the ex vivo steps
required to make the vaccine in order to increase efficiency [128]. These improvements aim to diminish
the effects of the TME (Figure 5). Strategies include refining activation and mobilizations, maturation,
dose and administration of DCs as well as creating vaccines using different subtypes of DCs.
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Figure 5. Dendritic cell dysfunction in cancer. Tumour cells have the ability to alter the microenvironment
to impair the function of dendritic cells (DCs), suppressing an anti-tumour immune response. Metabolic
stress: Tumour cell can decrease the availability of nutrients and oxygen in the tumour microenvironment
(TME), altering DCs metabolism and impairing their function. Reduced antigen expression: Tumour
cells have the ability to alter/hide their antigens to avoid detection by the immune system. Suppressive
alarmins: Expression of alarmins, e.g., MMP-2 have been found to create an immunosuppressive
environment by inhibiting the secretion of IL-12 by DCs thus preventing Th1 T cell differentiation and
NK cell activation. Activation of T-ref cells and myeloid-derived suppressor cells (MDSCs): Tumour
cells are able to directly induce the activation of Treg cells and MDSCs which function to suppress the
immune system by inhibiting T cell production. Reduced Dendritic Cell Infiltration: Tumour cells can
reduce the expression of DC chemoattractants e.g., (CC-chemokine ligand 4). Activation of Immune
Checkpoints: Tumour cells hijack the immune checkpoints to prevent detection. Overexpression of
CTLA-4 and PD-1 ligands reduce the amplitude to T cell activation. Secretion of Immuno-suppressive
cytokines: certain cytokines (IL-6 and IL-10) prevent the maturation and activation of DCs.

Choosing the correct DC when creating a vaccine is vital for its success as each subtype has
different capacities for antigen presentation, cytokine secretion and migration, and thus can activate
different types and numbers of T cells. DCs are heterogeneous and consist of four major subsets:
monocyte-derived DCs (MoDCs), plasmacytoid (pDCs; major producers of anti-viral IFN-I) and
conventional DCs (cDCs; lymphoid-tissue resident), which can be further split into type 1 (cDC1s)
and type 2 (cDC2s) [129]. The majority of DC vaccines are generated using MoDCs; a group of DCs
that arises in response to inflammation [130]. MoDCs display features such as the ability to activate
both CD8+ and CD4+ T cells, to produce co-stimulatory cytokines and migrate [127,131]. Phase II
clinical trials utilising MoDCs-based vaccines have recently begun for bladder cancer (NCT04184232),
endometrial cancer (NCT04212377) and advanced melanoma (NCT03803397). A recent study, focusing
on treating head and neck cancer using a dendritic cell vaccinate pulsed with Wilms’ Tumour-1 peptide



Cancers 2020, 12, 1826 15 of 38

in combination with chemotherapy demonstrated that MoDC vaccine has the ability to enhance
peptide specific immunity [120]. The vaccine was administered with OK-432, a dead/weaken form of
Streptococcus pyogenesis used to increase DC activation. No severe side effects above grade 2 adverse
events were seen in the 11 patients participating in the study; the most common side effects being
a low-grade fever and mild redness around the injection site. This showed that MoDC vaccines
are a safe and feasible option for advanced HNSCC when used in combination with conventional
chemotherapy [120].

Despite the promising outcome of the aforementioned study, MoDCs have been reported to have
decreased migration and MHC molecule expression compared to other DC subtypes, possibly due
to their long ex vivo culturing periods [132]. It has been suggested that using naturally occurring
DCs (pDCs and cDCs) to generate vaccines may result in a more effective treatment as they require a
shorter in vitro maturation phase, preserving their innate migration and T cell activation ability [133].
pDCs are specialised in the production of type I interferons which function to activate innate immune
cells e.g., NK cells and macrophages [134]. In contrast, cDCs are specialised for cross-presentation
on MHC I molecules, resulting in the activation of CD8+ T cells [135,136]. Cross-presentation has
proven to be vital for tumour rejection [137]. As naturally occurring DCs account for a small proportion
of peripheral blood cells (<1%), the process of extracting them from the blood is a labour-intensive
process, which is prone to failure [133]. Therefore, there needs to be more research into developing a
standardised protocol for vaccine generation, as current treatment using naturally-occurring DCs is
limited to highly specialized institutions.

On Clinicaltrials.org there are currently seven clinical trials being conducted treating patients with
melanoma, prostate or any solid tumour with pDC vaccines. One trial focuses on treating melanoma
stage IV patients using pDC (NCT01690377), whereas three trials focus on treating melanoma stage IV
(NCT03747744, NCT01690377) or solid tumours with CD1c+ myeloid DCs (NCT03707808), the rest are
testing the effects of a combination of vaccines on melanoma stage III (NCT02993315, NCT02574377)
and prostate cancer (NCT02692976). Of these seven, three clinical trials have been completed. A phase
I clinical trial involving 15 patients with metastatic melanoma who received intra-nodal injections of
pDCs vaccines demonstrated that vaccination using pDC is feasible and results in minimal toxicity [117].
Several of the patients showed increased proliferation of CD8+ and CD4+ T cells following vaccine
administration and a temporal increase of IFN secretion showing the vaccine induces favourable
immune responses [117]. Similar results were seen when treating metastatic melanoma patients
with primary myeloid DCs vaccines [138]. In this case, administration of the vaccine resulted in an
anti-tumour response improved progression free survival.

Given that each subset of DC has different function and crosstalk abilities it has been implied
that the most efficient vaccine would include multiple subsets, however there has yet to be any data
generated/clinical trials completed to support this theory [139]. Additionally, one of the disadvantages
of using autologous DCs in vaccines is that it takes a long time to extract them from a patient’s blood,
which can be reduced by utilising allogenic DCs [140]. There is currently a clinical trial testing a pDC
vaccine generated using pDCs from an allogenic cell line in melanoma patients (NCT01863108).

4.2. Main Challenges with DC Vaccine

Despite the promises and the safety profile, developing and administering DC vaccines can be
challenging. Some of these challenges are discussed below:

4.2.1. Antigen Selection and Loading

Tumour associated antigens (TAA) are critical parts of DC vaccines as they are expressed on the
surface of mature DCs and are recognised by specific cytotoxic T cells. Self-antigens are found on the
surface of all cells but are typically overexpressed in cancerous cells [121]. Due to their presence in
normal and germline tissues, TAA prevent the generation of a strong immune response due to central
tolerance. This may contribute to reduced efficiency of self-antigen DC vaccines [141].
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The issue of central tolerance can be solved by incorporating neo-antigens into the production of
DC vaccines. Neo-antigens contain somatic mutations specific to an individual’s cancer cells, generated
by the genetic instability of the tumour [142]. Designing a DC vaccine using these antigens allows
for a personalised approach to treatment. Personalised cancer vaccines can be manufactured using
computer software to predict neo-antigens and generating artificial peptides that can be pulsed with
DCs [121,143,144]. The main issues with generating vaccines using this method are (1) the time it takes
to generate a vaccine, and (2) the cost of identifying neo-epitopes.

Incubating DCs with whole tumour lysate or killed tumour cells bypasses the need to identify
neo-antigens and generate peptides [145]. Additionally, these methods allow a wide range of
neo-antigens to be presented on DCs, increasing the range of antigens displayed on MHC-molecules.
Tumour lysate as a source of TAA has been used to generate vaccines to successfully treat ovarian
cancer [121] and breast cancer [146]. When conducting a pilot clinical trial testing a DC vaccine
pulsed with oxidized autologous whole-tumour lysate administered alone, in combination with
bevacizumab and low-dose cyclophosphamide, results showed an amplified T cell response against
mutant neo-epitopes [121]. Interestingly, T cell exhibited a higher avidity to previously known
neoepitopes but also showed priming of T cells to previously unrecognised neo-epitopes. These are
neo-epitopes that could have been missed if artificially generating peptides to prime DCs.

4.2.2. Dendritic Cell Maturation

The generation of vaccines requires DCs to be stimulated in vitro using a specific maturation
cocktail as the cytokines used for differentiation can impact downstream T cell response. The desired
outcome of maturation is to induce high expression of MHC I and MHC II molecules and upregulate the
secretion of inflammatory cytokines and chemokines. Cocktails are designed to mimic the conditions
of maturation in vivo, containing a mixture of pro-inflammatory cytokines or pathogen recognition
receptor agonists [147]. When DC vaccines were initially trialled, the typical maturation-cocktail
included pro-inflammatory cytokines, e.g., TNFα, IL-6 mixed with PGE2 (prostaglandin 2). PGE2 was
used as it had been proven to promote DC migration, however it was later suggested that PGE2 may
be reducing the anti-tumour immune response through inducing the differentiation of Treg cells and
preventing the production of some interleukins needed for DC cell maturation [148,149]. Tumour cells
have the potential to utilise circulating PGE2, or create their own, to impair NK cells survival and their
ability to produce chemokines which attract cDC1 cells to the tumour microenvironment, aiding tumour
cells evasion of the immune system [150]. From these tests it became clear that the cocktail used
for maturation has a major effect on the success or failure of DC vaccines. Later, cocktails including
Toll-like receptor (TLR) agonists, co-stimulatory receptors and electroporation with mRNA encoding
proteins have been tested [151,152]. Maturing DCs using a strategy known as TriMix (electroporation
with mRNA encoding DC40, DC70 and TLR4) is now being explored. Co-electroporation of TriMix DCs
alongside whole tumour-antigen-encoding mRNA has been reported to induce an antigen-specific T cell
response in melanoma patients [152]. This method could be the future of DC maturation as incubating
with cytokines can take ~24 h to produce mature DCs. However, this long incubation period can lead
to DC exhaustion, reducing the immune response activated by the vaccine [152]. Tri-Mix DC vaccines
have been successfully administered alongside Ipilimumab in patents with advance melanoma [153],
suggesting that the effect of vaccines can be increased when combined with other immunotherapies.

4.2.3. Administration of DC Vaccines

Reduced immune response may also be caused by the administration of DC vaccines. The site of
injection greatly affects the migration of mature DCs to lymph organs. When treating prostate cancer
using Sipuleucel-T the vaccine is administered intravenously [123]. However, in murine models this
method of injection has been shown to result in DCs accumulating in vascular tissues rather than lymph
nodes, failing to activate T cells for defence [154]. Migration studies show that intra-nodal injection
results in the highest number of DCs reaching the lymph nodes due to no need for migration [155].
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Injected DCs accumulate in the injected node before draining into the lymph nodes. As seen when
treating ovarian cancers with personalised DC vaccines, this injection needs to be completed under
ultrasound guidance [121].

4.3. Dendritic Cell Vaccines in Combination Therapy

Alongside clinical trials testing the optimum vaccine preparation methods, trials are also being
conducted to test the effect of vaccines alongside other therapies (Table 3). The clinical benefit of DC
vaccination when used as a monotherapy for advanced/metastasis disease is limited with only very
modest increases in progression-free survival. Treatments such as chemotherapy and radiotherapy
which act to reduce the size of tumours may function as an adjuvant alongside DC vaccines to help
bolster anti-tumour immune responses [156]. Furthermore, an increased immune response could
be seen when DC vaccines are used in combination with other immunotherapies, e.g., checkpoint
inhibitors; this induced immune response can eradicate the tumour.

Table 3. Selective ongoing clinical trials for DC vaccines.

Start Date Title Conditions NCT Number Intervention Phase Current Status

2012
Natural Dendritic Cell
Vaccines in Metastatic
Melanoma Patients

Melanoma NCT01690377 Biological: PDC or
myDC I Complete

2013

Safety Study of a
Dendritic Cell-based
Cancer Vaccine in
Melanoma
(GeniusVac-Mel4)

Melanoma NCT01863108 Biological:
GeniusVac-Mel4 I Complete

2015 myDC/pDC in Stage
III Melanoma Patients Melanoma NCT02574377

Drug A: myDC
vaccination
Drug B: pDC
vaccination
Drug C: combined
myDC/pDC
vaccination

I & II Unknown

2016
Melanoma Patients
Immunized with
Natural Dendritic
Cells (MIND-DC)

Melanoma NCT02993315
Biological: nDC
vaccination
Biological: Placebo
injection

III Active, not
recruiting

2016

Natural Dendritic
Cells for
Immunotherapy of
Chemo-naive
Metastatic
Castration-resistant
Prostate Cancer
Patients

Prostatic
Neoplasms NCT02692976

Biological:mDC
vaccination
Biological: pDC
vaccination
Biological: mDC and
pDC vaccination

II Complete

2017

Dendritic Cell Therapy,
Cryosurgery, and
Pembrolizumab in
Treating Patients With
Non-Hodgkin
Lymphoma

Non-Hodgkins
Lymphoma NCT03035331

Procedure:
Cryosurgery
Biological: Dendritic
Cell Therapy
Biological:
Pembrolizumab
Biological:
Pneumococcal
13-valent Conjugate
Vaccine
Other: Quality-of-Life
Assessment

I & II Recruiting

2018

Intratumoral Injection
of Autologous CD1c
(BDCA-1)+ Myeloid
Dendritic Cells Plus
Talimogene
Laherparepvec
(T-VEC) (myDCTV)

Melanoma NCT03747744 Other: CD1c
(BDCA-1)+ myDC I Recruiting

2018

Intratumoral Injection
of Autologous CD1c
(BDCA-1)+ myDC,
Avelumab, and
Ipilimumab Plus
Systemic Nivolumab
(myDAvIpNi)

Solid Tumours
Metastases of
Soft Tissue

NCT03707808
Drug: intratumoral
injection of autologous
CD1c (BDCA-1)+
myDC

I Recruiting



Cancers 2020, 12, 1826 18 of 38

Table 3. Cont.

Start Date Title Conditions NCT Number Intervention Phase Current Status

2019
Treatment of Recurrent
Bladder Cancer With
Dendritic Cells

Bladder
cancer NCT04184232

Biological: Dendritic
cells
Other: Standard
treatment according to
the Clinical protocols

II Recruiting

2019

Dendritic Cells for
Immunotherapy of
Metastatic
Endometrial Cancer
Patients (DECENDO)

Endometrical
Cancer NCT04212377

Biological: Dendritic
Cells for endometrial
cancer

II Recruiting

2019

Arm 1: Infusion of
Autologous
Monocyte-derived
Lysate Pulsed
Dendritic Cells
(PV-001-DC) in
Patients With
Advanced Melanoma

Metastatic
Melanoma NCT03803397 Biological: PV-001-DC I Not yet

recruiting

2019

DCVAC/OvCa and
Standard of Care (SoC)
in Relapsed Ovarian,
Fallopian Tube, and
Primary Peritoneal
Carcinoma (VITALIA)

Ovarian
Cancer
Fallopian Tube
Cancer
Peritoneal
Carcinoma

NCT03905902
Biological:
DCVAC/OvCa
Bioloigcal:
DCVAC/OvCa placebo

III Not yet
recruiting

A phase III trial is currently testing activated autologous dendritic cell vaccines (DCVAC) in
patients with relapsed ovarian cancer, fallopian tube cancer or peritoneal carcinoma in combination
with platinum-based chemotherapy (NCT03905902). Patients will receive either a placebo or the vaccine
alongside chemotherapy, with or without bevacizumab. The aim for this study is to determine which
combination of treatments improves overall survival. This, along with other studies, should enhance
the efficacy of DC-based immunotherapy in the future.

5. Oncolytic Viruses

Oncolytic viruses (OVs) are viruses with a specific affinity for cancer cells that help illicit
powerful anti-tumour immune responses. Depending on the type of cancer, its location, tumour
microenvironment and many other factors, OVs can be manufactured to detect, infect and replicate
inside cancerous cells, releasing pathogen associated molecular patterns (PAMPs) and damage
associated molecular patterns (DAMPs) that can be further recognised by antigen presenting cells
(APCs) and can lead to the recruitment of adaptive immune system cells (Figure 6) [157]. Therefore,
the OVs work by lysing cancer cells and triggering a systemic immune response against the released
tumour antigens (Figure 6).

Tumour tropism represents an important aspect in engineering these viruses and it can be either a
native feature of the virus or gained through the insertion of specific genes, expressing ligands that can
bind to receptors ubiquitously present in cancers such as adenovirus type 3 (Ad3) or herpes virus entry
mediator (HVEM) [157,158]. Cancer cells present a unique opportunity for viruses since their antiviral
responses are often defective and they highly express the enzymes and factors required for rapid cell
division [157,159–161]. Therefore, viruses, with a natural tropism, are able to effectively infect these
highly replicative cells.

Another benefit of these agents is insertion of therapeutic genes in their viral genome, so that an
anti-tumour immunity can be strongly induced [162]. Nevertheless, the number of genes that can be
inserted is highly determined by the size of the viral genome and the location of the targeted tumour.
For instance, RNA based viruses can cross the blood brain barrier and target central nervous system
tumours, if administered systemically, but can become unstable or generate low titres when a large
number of genes are incorporated [157]. In contrast, viruses with larger genomes can have multiple
genes, needed in the activation of the immune system inserted [163].
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These features have been utilised in designing OVs as a form of therapeutic agents; some of which
have already been approved by the FDA and other regulatory authorities. This development process
however faces a number of challenges which are addressed by continued research in this area.

Cancers 2020, 12, x 19 of 38 

rapid cell division [157,159–161]. Therefore, viruses, with a natural tropism, are able to effectively 
infect these highly replicative cells. 

 
Figure 6. Mechanism of action of oncolytic viruses. Attachment to cancerous cells by OVs is realised 
through receptors found in high quantities on their surface. OVs are replication-attenuated and 
cannot infect normal cells due to restrictions which limit their infectivity to proliferating cells. Once 
the infection is established, continuous replication will finally lead to oncolysis and the spread of 
neoantigens in the microenvironment. Antigen-presenting cells can therefore process the tumour-
associated antigens and cause activation and recruitment of cytotoxic T cells. Both oncolysis and OV 
mediated anti-tumour immunity are the basic mechanisms of function of these agents. 

Another benefit of these agents is insertion of therapeutic genes in their viral genome, so that an 
anti-tumour immunity can be strongly induced [162]. Nevertheless, the number of genes that can be 
inserted is highly determined by the size of the viral genome and the location of the targeted tumour. 
For instance, RNA based viruses can cross the blood brain barrier and target central nervous system 
tumours, if administered systemically, but can become unstable or generate low titres when a large 
number of genes are incorporated [157]. In contrast, viruses with larger genomes can have multiple 
genes, needed in the activation of the immune system inserted [163]. 

These features have been utilised in designing OVs as a form of therapeutic agents; some of 
which have already been approved by the FDA and other regulatory authorities. This development 
process however faces a number of challenges which are addressed by continued research in this 
area. 

5.1. Development and Recent Advances 

Although the concept of using viruses to destroy cancer cells arose in the 19th century, limited 
success and low profiling of this virotherapy strategy meant that very little research was conducted. 
However, it was the discovery of genetic engineering that brought about a renewal of interest in 
virotherapy that allowed the generation of more potent, tumour-specific oncolytics. This initiated 
active research in the discovery of safer, more selective virotherapies, such as herpes simplex virus 
(HSV) and adeno virus-based therapies in cancer, leading to successful clinical trials and approvals 
by health regulatory bodies worldwide. 
  

Figure 6. Mechanism of action of oncolytic viruses. Attachment to cancerous cells by OVs is realised
through receptors found in high quantities on their surface. OVs are replication-attenuated and cannot
infect normal cells due to restrictions which limit their infectivity to proliferating cells. Once the infection
is established, continuous replication will finally lead to oncolysis and the spread of neoantigens in the
microenvironment. Antigen-presenting cells can therefore process the tumour-associated antigens and
cause activation and recruitment of cytotoxic T cells. Both oncolysis and OV mediated anti-tumour
immunity are the basic mechanisms of function of these agents.

5.1. Development and Recent Advances

Although the concept of using viruses to destroy cancer cells arose in the 19th century, limited
success and low profiling of this virotherapy strategy meant that very little research was conducted.
However, it was the discovery of genetic engineering that brought about a renewal of interest in
virotherapy that allowed the generation of more potent, tumour-specific oncolytics. This initiated
active research in the discovery of safer, more selective virotherapies, such as herpes simplex virus
(HSV) and adeno virus-based therapies in cancer, leading to successful clinical trials and approvals by
health regulatory bodies worldwide.

5.1.1. Herpes Simplex Virus Type 1 (HSV-1)

HSV-1 is a large double-stranded DNA pathogen, known for its neurotropism and the capability
of causing lifelong infection [164]. Its tumoricidal potential was considered following the deletion of
thymidine-kinase (dlsptk), a gene involved in the regulation of thymidine levels and is crucial for virus
replication [165]. The removal of this essential gene rendered a replication-attenuated virus reliant on
proliferating cells (e.g., cancer cells) for their successful replication [164]. The innate neurotropism and
the conditional replication achieved through dlsptk established perfect features for targeting brain
cancers, but its advancement into clinical trials was stopped due to the resistance to antiviral drugs
gained through dlsptk deletion and undesirable toxicities at high titres [166]. Since dlsptk modifications
have been implemented through genetic engineering to lower neurotoxicity of HSV-1 based OVs
while still maintaining their ability to target actively dividing cells. Deletion of both γ134.5 g genes
(blocks shut-off of protein synthesis in the infected cells to induce neurovirulence) and disruption
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of UL39 (allows viral growth in non-dividing cells) improved the susceptibility of these OVs to
acyclovir and ganciclovir, restricted its replication to actively dividing cells and prevented latency
establishment [164,166]. G207, an improved HSV-1 oncolytic, possesses these improvements and is
currently in a phase I clinical trial (NCT02457845) for the treatment of recurrent supratentorial brain
tumours in children. In previous clinical trials, G207 demonstrated a lack of toxicity, anti-tumour
activity and median survival of 7.5 months in patients suffering from recurrent malignant glioma [164].
An altered version of G207, G47∆ included deletion of the α47 gene enabling the virus to be more
effective in producing oncolysis and improving tumour associated antigen presentation [167]. G47∆
is currently under clinical investigation (JPRN-UMIN000002661) in glioblastoma. Another similar
oncolytic HSV-1 is HSV1716, which has the UL39 gene but the activity of γ134.5 genes was lost through
insertion of mutations within their sequences [164]. HSV1716 was tested in third phase I clinical trial
in high-grade glioma and reported absence of toxicity and increased survival (15–22 months) in 25% of
the patients [168].

Improvements in initiating anti-tumour effects were achieved through the insertion of the
therapeutic gene interleukin-12 (IL-12). M032 is a second-generation OV that bears the IL-12 gene,
inducing T cells immunologic effects in murine models and is currently tested in a phase I clinical trial
(NCT02062827) [169].

More recently, in October 2015, FDA and EMA approved the use of Talimogene Iaherparepvec
(T-VEC) in the treatment of advanced melanoma [170]. T-VEC is an attenuated HSV-1 engineered that
expresses human granulocyte-macrophage colony- stimulating factor (GM-CSF), which is a regulatory
cytokine that functions in the recruitment and maturation of antigen-presenting cells [157,170].
Apart from exhibiting immune-mediated regression of distant lesions, the intratumorally administration
of the virus avoids serum neutralization, which poses a technical challenge depending on the tumour
location [171,172]. Nevertheless, the overall survival rate reported was 23.3 months in 26% of the
patients, as well as 15% of visceral metastasis reduction [173]. However, one significant issue that
has been encountered in the utilisation of this agent is the lack of training of the oncologists in safe
handling, preparation and administration of T-VEC in patients [170].

5.1.2. Adenovirus

This family of double-stranded DNA viruses causes upper-respiratory tract and gastrointestinal
infections in humans [157]. However, their potential in targeting tumours has been observed following
an induction of decreased pathogenicity and replication conditioning through mutations. For instance,
the early region 1B (E1B) gene deletion in a modified human adenovirus serotype 5 (ONYX-015) is
a strategy for attenuating the pathogenicity of the virus, as it protects the infected cells from the
E1A-induced p53 effects [157,174]. The lack of E1B dictates the tumour tropism feature, limiting
infectivity to cells that provide RNA export, which is not found in normal cells [175]. A completed
phase I trial utilised ONYX-015 in the treatment of recurrent malignant glioma with a good outcome
(median survival time 6.2 months) with no adverse effects observed and no maximum tolerated
dose reported [176]. The effectiveness of adenovirus serotype 5 in oncolytic virotherapy was further
confirmed by the approval of Oncorine (H101) in conjunction with chemotherapy by the Chinese SFDA
in November 2005 in the treatment of HNSCC or oesophageal squamous cell carcinoma [164,177].
Clinical studies performed on a multicentre, randomized and controlled phase III trial showed a
significantly higher response rate in the Oncorine plus chemotherapy-treated HNSCC patients (78.8%),
compared with the chemotherapy treated control SCCHN patients (39.6) [177]. No serious adverse
events were detected apart from fever, local site pain and flu like symptoms [177]. Following the
completion of the study, the oncolytic virus was approved for use in China. The same company,
Shanghai Sunway Biotech Co., Ltd., is currently developing other two adenoviruses: H103 and H102,
with the former one in phase II clinical trial and the latter still in preclinical stage.

Another genetically engineered oncolytic virus, DNX2401, uses the genome of an adenovirus-
gamma 24 with a cyclic arginine/glycine/aspartic acid (RGD-4C) peptide motif inserted in it and a ∆-24
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mutation [178]. DNX2401 preference of infecting cancerous cells was achieved through the addition
of RGD-4C, as it permits attachment to integrins, which are ubiquitously present on glioma cells,
and overcomes the relative low expression of CARs (coxsakie-adenovirus receptors) [178]. The Delta-24
mutation restricts viral replication to cells defective in the retinoblastoma protein tumour suppressor
(RB1), allowing DNX2401 to selectively replicate in tumour cells that have lost RB1 [178]. The latest
data from an ongoing phase I study (NCT00805376) suggests dramatic responses with long-term
survival in recurrent high-grade gliomas and more than 95% in tumour size [179]. Infiltration of T cells
with Th1 immune response was observed, as well as an adaptive immune memory effect 2.5 years
after a complete response [179].

Currently there are numerous virotherapies that are being tested in clinics and the most promising
ones are focused on brain cancer. Central nervous system (CNS) malignancies usually show a dim
prognosis with a median survival rate of just 14.6 months in the case of glioblastoma according to
WHO [180]. The interest in virotherapy for this type of cancer has risen in the last decade mainly
due to the ability of RNA-based OVs to cross the blood-brain barrier when administered systemically,
and generally no maximum tolerated doses reported [180].

When compared with other immunotherapies OVs seem to be more potent anti-tumour immunity
inducers [181]. The issues regarding immunosuppressive tumour microenvironment, often encountered
by T cells therapies when treating solid malignancies is overcome by OVs [31,181]. It has been known
that oncolysis of cancerous cells lead to a rapid maturation and antigen presentation by BAFT3+

DCs, therefore, recruitment of T cells at the site of infection and their activation is promoted [157].
Moreover, some groups have demonstrated that the tumour microenvironment immunosuppression is
reversed by OVs, and due to cytokine signalling, the infiltration of immune cells within the tumour is
increased [171]. Interestingly, the ability of initiating anti-tumour immune responses differs in OVs,
one study on murine models demonstrating that adenovirus based OVs would be better at enabling
T cell anti-tumour activity than vaccinia virus, HSV and reovirus based OVs [181]. Nevertheless,
antiviral immunity has to be considered when designing OVs with strong immunity activation, as virus
clearance can occur faster than tumour-associated antigen presentation process [157].

5.1.3. Combination Therapy- Pre-Clinical and Clinical Trials

Altering the tumour microenvironment is the most attractive feature for combination strategies
with other immunotherapies such as checkpoint inhibitors, dendritic vaccines and CAR T-cells,
where the entrance problem is often encountered (Figure 7). Combination therapy of already approved
agents in the treatment of cancer and their synergistic effect on the overall survival rate in patients are
being widely explored at the moment.

Melanoma is susceptible to immunotherapies and targeting it with both OVs and immune
checkpoint inhibitors that were specifically designed to target this cancer and have previously been
approved for clinical use was thought to have a better outcome, compared with monotherapies [182].
However, the data obtained from a phase II clinical study (NCT01740297) on patients with unresectable
stage IIIB-IVM1c malignant melanoma suggests that pseudo-progression (a delayed tumour shrinkage
following an increase in tumour burden after treatment) is common in immune checkpoint inhibitor
therapies, T-VEC and T-VEC plus ipilimumab [183]. The lower pseudo-progression incidence was
reported in checkpoint inhibitor monotherapy, and the duration response (DOR) was longer for patients
without pseudo progression versus those with pseudo progression [183]. Furthermore, 39% of patients
had an objective response and regression of visceral lesions was observed in 52% of patients [184].

In preclinical assays made on murine models, many OVs have shown better results in the overall
survival rate and cancerous cell destruction when combined with immune checkpoint inhibitors [185].
The insertion of immunomodulatory cytokine genes within the oncolytic virus genome, however,
proved to be even more efficacious at inducing anti-tumour immunity in the case of acute myeloid
leukemia (AML) and colon cancer in mice [186,187]. Another preclinical study suggests that the
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combination of an oncolytic adenovirus with immune checkpoint inhibitors can broaden the spectrum
of T-cell responses and reverse the systemic resistance to PD-1 immunotherapy [185].
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of cancerous cells (1) leads to oncolysis (2) and reverse the immunosuppression of tumour
microenvironment. DAMPs and PAMs released by bursting cells are recognised by DCs and presented
to T cells (3). Virus progenies or viral components can be detected as well by DCs (4). Initiation of an
anti-tumour immune response by DCs (5) needs to happen before activation of antiviral immunity
and most OVs are designed to delay their detection. The anti-tumour immune cells are attracted by
cytokines towards the tumour (6). The response against the tumour is enhanced by immune checkpoint
inhibitors (7), as downregulation of cytotoxic T cells by Tregs or cancer itself is inhibited. CAR-T cells can
enter the tumour more easily due to reverse immunosuppression of the tumour microenvironment (8).

The potential of combining checkpoint inhibitors with OV therapy is currently being tested in a
phase II clinical study (NCT02798406) where the adenovirus DNX-2401 with pembrolizumab are used
in the treatment of glioblastoma (GBM) and gliosarcoma. Interim results of this phase II revealed that
there was no dose-limiting toxicity or unexpected safety issues with 47% of the patients experienced
clinical benefit and two patients with >94% tumour regression [188]. Following the evaluation of data
obtained from the phase I trial (NCT00805376), avoidance of tumour immune suppression through
checkpoint inhibitors has been strongly implicated as a way to help augment clinical benefit [179].
T-cell exhaustion was partially overcome by DNX-2401 in NCT00805376 as its administration induced
a decrease in transmembrane immunoglobulin mucin-3 (TIM-3) (discussed in Section 3.2.1.1) [179].
As T-cell exhaustion is often a result of the tumours’ ability to supress immunity, inhibiting these
receptor/ligand axis has been shown to reverse this mechanism in advanced melanoma patients and
the combination therapy used in this phase II trial (NCT02798406) might have a great success [189].
However, pseudo-progression was observed as well during the tumour regression period in the phase
I trial and it should be considered in phase II study, given the fact that it has been seen in T-VEC and
ipilimumab trials as well. Other combination clinical trials using DNX-2401 include a phase I trial in
combination with temozolomide (NCT01956734) for the treatment of GBM and a phase Ib trial for the
treatment of GBM or gliosarcoma (NCT02197169) that uses DNX-2401 alone or in combination with
interferon-γ [164,190].
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6. Future Directions

Advances in immunotherapies against both solid tumours and haematological malignancies have
shown promise and an increase in clinical benefits in recent years. However, the complex dynamic of
the TME, the heterogeneity of tumours and their histological features pose everlasting challenges in
achieving improved treatment efficacy. Despite the successes in targeting non-tumour components,
including immunosuppressive mechanisms, our lack of understanding of the cellular and molecular
crosstalk in the tumour niche results in only a few patients exhibiting objective control of tumour
progression. Therefore, numerous investigations are being carried out to identify potential targets such
as galectin-1, cancer associated cathepsins, OX40+Foxp3+ Treg cells, etc., to develop new therapies and
to achieve greater treatment efficacy. Such recent and ongoing efforts are discussed below.

6.1. Galectin-1 and Its Tumour-Immune Suppressing Role

Galectin-1 (Gal1) is a key pro-tumourigenic player with multiple roles in the TME. This glycoprotein
is secreted by tumour cells and induces tumour cell proliferation, migration and invasion of local
tissue, reviewed elsewhere [191]. Tumour-secreted dimeric Gal1 binds to extracellular matrix proteins
such as fibronectin, collagen and laminin, and cell-surface glycoconjugates mediating a bivalent
cross-linking between tumour cells and the stroma, inducing homotypic tumour cell aggregation,
invasion and metastasis [191]. Interestingly, in the later stage of tumour development, tumour cells,
tumour-associated macrophages and T cells, and local microvascular endothelial cells overexpress and
secrete Gal1, resulting in further tumour growth and angiogenesis via both autocrine and paracrine
interactions [191–197]. However, the poor prognosis associated with this elevated level of Gal1 is now
thought to be primarily related to its immunosuppressive mechanisms [198].

Earlier studies from both in vitro and in vivo experiments demonstrated an increase in extracellular
Gal1-induced apoptosis in Th1 cells via its interaction with CD43, CD45 and CD7 receptors, resulting
in tumour-induced immune evasion [199,200]. More recently, it was reported that extracellular Gal1
induces a switch from a Th1 and Th17 cytokine secretory profile to Th2 response (IL5, IL-10 and
TGF-beta) [201–204]. Th2-mediated cytokine response is more anti-inflammatory, and it was reported
that Th2-secreted Gal1 selectively induces apoptosis of Th1 and promote Th2 cytokine secretion [205].
Consistent with this, it was found that Gal1-deficient mice had enhanced Th1 and Th17-mediated
immune response, indicating a potent tumour-induced immune evasion role of Gal1 in the glioma
TME [206].

It was thought that Gal1 secreted from large tumours induces T cell apoptosis and switches to Th2
cytokine production. However, recent data suggests that Gal1 conditions the tumour endothelial cells
by inducing expressions of PD-L1 and Gal9 and suppresses anti-tumour immunity by causing T cell
exclusion, which in fact takes place relatively earlier during tumour growth [207]. Thus, any lack of
successes in anti-PD-1 treatment, whereby patients eventually develop progressive disease, may be due
to Gal1-induced immune-evasion and addressed by introducing anti-Gal1 antibody in combination
with anti-PD-1 treatment. Indeed, Gal1 blockade enhanced the effect of anti-PD-1 therapy in preclinical
models of head and neck cancers [207]. Therefore, this strategy of blocking Gal1 in combination with
anti-cancer immunotherapies should be investigated further and introduced in clinical studies.

Another evolving anticancer treatment is a combination of radiation therapy and anti-PD-1 therapy.
Early clinical data (phase I) showed an improved outcome of the combination of photon radiation
with anti-PD-1 immunotherapies in patients with non-squamous non-small cell lung carcinoma
(NSCLC) [208], which has moved onto phase II (NCT03044626). Interestingly, radiotherapy results in
an elevated extracellular Gal1 level [209] and, therefore, patients undergoing this combination therapy
may be at a disadvantage as secreted Gal1 can induce T cell exclusion via PD-L1 and Gal9 expression.
Thus, introducing Gal1-blockade into the combination strategy may improve efficacy of this anticancer
treatment. Indeed, in preclinical models with Gal1-KO tumours, this combination (radiation and
anti-PD-1 treatment) showed a greater anti-tumour response, with no detectable tumour in 70% of the
mice bearing HNC post-radiotherapy initiation [207]. Therefore, therapeutically targeting this potent
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pro-tumourigenic and immunosuppressing factor in combination with other anti-cancer therapies may
be vastly clinically beneficial for a number cancers [210].

6.2. Cathepsins in Cancer

Cathepsins are lysosomal enzymes which are highly expressed in tumour cells in response to
the hypoxic and slightly acid microenvironment. A number of these cathepsin enzymes has been
implicated in the progression of tumour growth and metastasis in the last two decades [211–213].
Notably, aspartyl cathepsin D gained an increased attention due to their extracellular presence in the
TME [211,214]. Cathepsin D has been shown to be over expressed and hyper-secreted in a number
of cancers including breast, ovarian, lung, prostate and malignant glioma cancers, and known as a
marker for poor prognosis in breast cancer patients [211,215]. Over the last three decades, extracellular
cathepsin D has been reported to play a pro-tumourigenic role, inducing tumour growth, invasion
and angiogenesis. This is particularly true for triple negative breast cancer (TNBC), which accounts
for 15–20% of all breast cancers, with limited treatment options [216,217]. In this context, patients
with TNBC have an unfavourable prognosis besides high risk of metastases, increased risk of tumour
relapse, and worse survival rate, compared with other breast cancer subtypes. There is ample of
evidence which demonstrates that high levels of CathD in TNBC primary tumours is indicative
of local recurrence or distant metastasis [218,219]. Furthermore, CathD expression is suggested to
be an independent prognostic factor for disease-free survival of TNBC patients [219]. Therefore,
targeting extracellular CathD immunotherapeutically may reduce tumour growth and subsequent
metastasis. To address this, Ashraf et al. recently demonstrated an anti-tumour efficacy for anti-CathD
antibody in triple-negative breast cancer (TNBC) mice models [220]. The two human anti-CathD Abs
used in this study efficiently bound to human and mouse CathD resulted in a significant inhibition
of tumour growth in three different TNBC mouse models (MDA-MB-231 cell xenografts and two
TNBC patient-derived xenografts) [220]. Furthermore, the recruitment of the immune-suppressing
tumour-associated macrophages (TAMs) and myeloid-derived suppressor cells within the TME were
effectively blocked. This preclinical study demonstrated a promising proof-of-concept that may
also be utilised in peritoneal metastases, such as high-grade serous carcinoma (advanced ovarian
cancer), where TAMs constitute over 50% of cells and ascites [221]. More recently, co-expression
of androgen receptor with CathD in TNBC patients showed poorer overall survival, demanding
the use of anti-CathD targeting in combination therapy [222]. Therefore, targeting cathepsins in
cancers utilizing an immunotherapy approach in combination with conventional chemotherapy and/or
nanoparticle-based intervention [223–225] may be more efficacious. However, bioavailability, selective
targeting, and drug-delivery routes pose greater challenges which would require further research.

6.3. OX40-Positive Regulatory T Cells and Plasmacytoid DCs

Although they are indispensable at preventing autoimmunity, Foxp3-expressing Tregs has been
known to suppress effective anti-tumour immunity [226]. Tregs infiltrate into tumour hosting tissues,
which is often associated with poor prognosis in cancer patients [227–229]. Therefore, removing these
cells or reducing their activity in the TME, without negatively impacting its anti-autoimmunity role,
is a key focus in improving immunotherapeutic approaches.

A number of strategies have been tested in an attempt to dampen down the immunosuppressive
effects of Tregs in TME (reviewed in [3]), such as Tregs depletion using anti-CD25 mAbs, targeting
immune checkpoint proteins (e.g., OX40 [230]), selectively targeting cell signalling (e.g., PI3Kδ) in Tregs

(phase I, NCT02646748) [231], etc. Amongst these, targeting OX40, a member of the tumour necrosis
factor receptor (TNFR) family [232], has shown promising anti-tumour activity. OX40 is constitutively
expressed on FoxP3+ Tregs that under certain conditions can inhibit the generation of Foxp3 Tregs [233].
Several anti-OX40 agonistic mAbs are currently being tested, either alone or in combination with other
immunotherapies, in early phase cancer clinical trials [234]. A phase I trial (NCT01644968) analysed
the toxicity of the intravenous administration of three doses of 9B12 murine agonistic anti-human
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OX40 mAb in advanced stage solid cancer (melanoma, renal, urethral, and prostate cancers) patients
(n = 30), with 12 patients having regression of at least one metastatic lesion after a single course of
treatment [234]. Another OX40 targeted therapies that showed promise in patients previously treated
with immunotherapy is the human anti-OX40 agonistic mAbs (PF-04518600) which resulted in a
stable disease for more than six months with increased number of memory T cells [235]. Currently,
a combination of MEDI6383, an OX40 ligand-Fc fusion protein, and anti-PD-L1 drug durvalumab is
being investigated in patients with selected advanced stage solid tumour with the preclinical evidence
that this combination has significantly expanded and increased the effector characteristics of mature
T cells in the tumour-draining lymph nodes and tumour itself [236,237]. This dual therapy also resulted
in an increase in CD8+/Treg ratio, leading to rapid tumour shrinkage [236,237].

More recently, OX40-positive plasmacytoid DCs (major producers of IFN-I) were discovered to
promote anti-tumour immunity in the TME [238]. pDCs are major producers of antiviral type I interferon
(IFN-I). However, recently it was reported that a subset of naturally occurring OX40+pDCs increase local
IL-12 and IFN-α production and enhances anti-tumour conventional DCs (lymphoid-tissue resident)
and CD8+ T cells interactions in vivo in the TME of head and neck carcinomas [238]. Interestingly,
Lu et al. reported a key anti-tumour role for IFN-I in enhancing cytotoxic T cell effector function in
suppressing tumour development [239], which may coincide with the effect of the recently discovered
OX40+pDCs. Thus, inducing upregulation of OX40 in intratumoural pDCs as well as Foxp3+ Tregs

in combination with other anti-cancer treatments may enhance anti-tumour immune responses and
clinical benefit.

7. Conclusions

Anti-cancer immunotherapy as monotherapy or in combination has shown promising results
in several cancers. Although earlier successes were more evident in haematological malignancies,
more recent reports show increased clinical benefits in patients with solid tumours; in particular,
oncolytic virotherapy, which is able to cross the blood brain barrier and kill cancer cells directly but also
indirectly by enhancing T cell trafficking in the TME. However, resistance to therapies via mechanisms
such as tumour-induced immune evasion, may lessen the therapeutic efficacy. Therefore, further
research efforts should focus on rational combinations of immunotherapies to help overcome the
anti-tumour immune resistance and help drive clinical benefit.
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