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Purpose: Computed tomography myocardial perfusion imaging (CT-MPI) and coronary CTA have
the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary
angiography. However, beam hardening (BH) artifacts prevent accurate blood flow calculation in CT-
MPI. BH correction methods require either energy-sensitive CT, not widely available, or typically, a
calibration-based method in conventional CT. We propose a calibration-free, automatic BH correc-
tion (ABHC) method suitable for CT-MPI and evaluate its ability to reduce BH artifacts in single
“static-perfusion” images and to create accurate myocardial blood flow (MBF) in dynamic CT-MPI.
Methods: In the algorithm, we used input CT DICOM images and iteratively optimized parameters
in a polynomial BH correction until a BH-sensitive cost function was minimized on output images.
An input image was segmented into a soft tissue image and a highly attenuating material (HAM)
image containing bones and regions of high iodine concentrations, using mean HU and temporal
enhancement properties. We forward projected HAM, corrected projection values according to a
polynomial correction, and reconstructed a correction image to obtain the current iteration’s BH cor-
rected image. The cost function was sensitive to BH streak artifacts and cupping. We evaluated the
algorithm on simulated CT and physical phantom images, and on preclinical porcine with optional
coronary obstruction and clinical CT-MPI data. Assessments included measures of BH artifact in sin-
gle images as well as MBF estimates. We obtained CT images on a prototype spectral detector CT
(SDCT, Philips Healthcare) scanner that provided both conventional and virtual keV images, allow-
ing us to quantitatively compare corrected CT images to virtual keV images. To stress test the
method, we evaluated results on images from a different scanner (iCT, Philips Healthcare) and differ-
ent kVp values.
Results: In a CT-simulated digital phantom consisting of water with iodine cylinder insets, BH
streak artifacts between simulated iodine inserts were reduced from 13 � 2 to 0 � 1 HU. In a simi-
lar physical phantom having higher iodine concentrations, BH streak artifacts were reduced from
48 � 6 to 1 � 5 HU and cupping was reduced by 86%, from 248 to 23 HU. In preclinical CT-MPI
images without coronary obstruction, BH artifact was reduced from 24 � 6 HU to less than
5 � 4 HU at peak enhancement. Standard deviation across different regions of interest (ROI) along
the myocardium was reduced from 13.26 to 6.86 HU for ABHC, comparing favorably to measure-
ments in the corresponding virtual keV image. Corrections greatly reduced variations in preclinical
MBF maps as obtained in normal animals without obstruction (FFR = 1). Coefficients of variations
were 22% (conventional CT), 9% (ABHC), and 5% (virtual keV). Moreover, variations in flow
tended to be localized after ABHC, giving result which would not be confused with a flow deficit in
a coronary vessel territory.
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Conclusion: The automated algorithm can be used to reduce BH artifact in conventional CT and
improve CT-MPI accuracy particularly by removing regions of reduced estimated flow which might
be misinterpreted as flow deficits. © 2019 The Authors. Medical Physics published by Wiley Periodi-
cals, Inc. on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/
mp.13402]
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1. INTRODUCTION

Myocardial perfusion imaging using computed tomography
(MPI-CT) and coronary CTA have the potential to be nonin-
vasive gatekeepers for coronary angiography. However, beam
hardening (BH) artifacts hinder reliable interpretation of
MPI-CT images as well as accurate blood flow measurement
from dynamic perfusion. BH is of particular importance in
MPI-CT because of the large amount of iodine in the heart
ventricles and aorta. In CT reconstructions, BH results in
dark streaks evident in the myocardium, which can be in the
same order of magnitude as myocardium enhancement. A
dynamic MPI-CT scan is usually comprised of a set of 30–40
volumes containing different iodine concentrations. Accu-
rately correcting each one of those volumes is essential for
calculating accurate blood flow, making MPI-CT one of the
most demanding applications for BH correction. Often, BH is
difficult to fully interpret visually, leading to false-positive
readings of individual CT images1 and often result in inaccu-
rate quantification of blood flow from dynamic sequences.
Quantitatively, reductions in HU values in the myocardium
may lead to underestimation of myocardial blood flow
(MBF) from dynamic CT-MPI data as shown in Fig. 1.

There are many BH reduction and correction approaches.
One physical approach is to use prefiltration to harden the x-
ray beam and therefore reduce BH in the final reconstruc-
tion.2,3 Prefiltration is achieved using a filter comprised of
different layers of materials (e.g., aluminum and copper) and
a bow-tie filter. With energy-sensitive CT scanners (e.g., kVp
switching, spectral detector, or dual source), one can create
virtual monoenergetic images that are relatively free from BH

artifacts. Another approach uses a phantom with known char-
acteristics to measure a scanner-specific material calibration
curves and correct projections before reconstruction.2–5 This
type of method is used in most CT scanners to achieve water
BH correction. There have been many BH correction solu-
tions proposed that use image content, including the one pre-
sented in this paper.2–9 In general, a preliminary image is
reconstructed and used to obtain an estimate of material dis-
tribution and measurement error due to BH artifacts. The
post-reconstruction algorithms can be divided into two
groups: projection-based and image-based corrections. Pro-
jection-based algorithms take advantage of the raw data and
sometimes other scanner characteristics such as x-ray tube
spectrum, source-to-detector geometry, and periodically
obtained calibration tables. While detailed knowledge of the
CT system leads to suitable BH correction, this requires scan-
ner-specific knowledge and raw data. One can correct for BH
artifact using knowledge of the x-ray spectrum10 or, in the
absence of a known spectrum, using Poisson noise to esti-
mate material attenuation properties11 or using projection
consistency.12–15 However, when raw data are unavailable, as
in many cases, image-based approaches are needed. Image-
based approaches are mainly based on segmentation of the
input image into low- and high-attenuating materials then for-
ward projecting the segmented images to estimate the original
sinogram and relative contribution from different materials.4,5

Once forward projections are obtained, BH corrections can
be performed. Iterative algorithms2,5,9,10,16–32 are very popu-
lar and usually work by iteratively improving an image using
one of the previously described methods until some stopping
criterion is met. Some of those algorithms are applied as part

(a) (b) (c)

FIG. 1. Beam hardening artifact and its influence on blood flow estimation in a normal pig heart without coronary obstruction. (a) BH artifacts in conventional
CT images appear as dark streaks between high-attenuating structures. (b) Blood flow map calculated from the conventional 120kVp images. A false blood flow
deficit can be seen (arrow) at a much lower flow than at about 4 o’clock. (c) Blood flow map calculated from the spectral detector CT (SDCT) 70 keV images.
Blood flow is much more homogeneous as SDCT significantly reduces BH artifacts. [Color figure can be viewed at wileyonlinelibrary.com]
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of the iterative reconstruction process used in some scanners
and apply additional projection corrections like in the case of
the iterative BHC (IBHC)10 or the dynamic IBHC
(DIBHC).20 Usually in those cases, a cost function will mea-
sure the “distance” between the next iteration’s image to an
original image, usually obtained using filtered back projec-
tion (FBP), and add cost to another measured quantity like
image noise. By iteratively improving the image, the final
reconstructed image can achieve a significant noise reduction.
A different kind of iterative BHC works by iteratively opti-
mizing correction parameters until a cost function is mini-
mized, for example, the method presented in this work. Most
post-reconstruction algorithms require prior knowledge of
different scanner parameters, like the x-ray tube spectrum,
and/or require calibration for a specific scanner. In our work,
we aim for a scanner-independent, calibration free, image-
based solution requiring no access to raw data but only recon-
structed images.

To reduce the need for calibrations and to enable perfusion
assessments on any scanner, we propose an image-based, cal-
ibration-free, automatic beam hardening correction (ABHC)
algorithm. The method iteratively optimizes correction
parameters to minimize a BHA-sensitive cost function. We
quantitatively evaluate ABHC by applying it to a variety of
digital and physical phantoms, as well as to preclinical and
clinical images. Because we use an SDCT scanner, we can
elegantly compare in detail conventional CT, conventional
CT with ABHC, and virtual keV (without BH) acquired in
the same acquisition.

1.A. Theory

The proposed ABHC method uses an iterative approach to
estimate polynomial correction parameters. We first describe
the polynomial BH correction method. We then describe the
ABHC algorithm and processing pipeline.

1.B. Polynomial beam hardening correction

We derive the polynomial beam hardening correction, a
method described in more detail elsewhere.33 The intensity of
a monoenergetic x-ray beam passing through a homogeneous
material with linear attenuation coefficient l can be calcu-
lated using Beer’s law:

I ¼ I0e
�
R

ldx (1)

where I0 is the initial beam intensity. The projection, repre-
sented in a sinogram, is obtained by:

P ¼ ln
I0
I

� �
¼

Z
ldx (2)

From Eq. (2), one can see that the relationship between
the material thickness and the projection P is linear for a
homogeneous material. For a heterogeneous material, Eq. (2)
would be modified by replacing l with (x).

In the case of a polychromatic x-ray beam passing through
a material with energy dependent linear attenuation coeffi-
cient l(E), Eq. (1) takes the form of Eq. (3), where Ω(E) is
the normalized spectrum of the x-ray beam.

I ¼ I0

Z
XðEÞe�

R
lðEÞdxdE (3)

In this case, the projection, given by Eq. (4), is a nonlinear
function of the material thickness (due to beam hardening).
In this case, the projection is underestimated as compared to
the monoenergetic case (Fig. 2).

P ¼ ln
I
I0

� �
¼ ln

Z
X Eð Þe�

R
l Eð ÞdxdE

� �
(4)

In order to correct BH, we map the measured projection P
(illustrated by the red line in Fig. 2) to a corrected line Pc (il-
lustrated by the blue line in Fig. 2) using a polynomial expan-
sion, as presented in Eq. (5), where N denotes the order of
the polynomial. This method is applied in current CT scan-
ners for water correction.2–5 In this case, the coefficients ai
can be calculated from the knowledge of water’s linear atten-
uation coefficients and their dependency on energy, or in an
empirical way using water phantoms.

Pc �
XN
i¼1

aiP
i (5)

In contrast-enhanced cardiac imaging, such as MPI-CT,
where there are additional highly attenuating material
(HAM) objects, like bone and iodine, water correction is
insufficient. Since the projection is a sum of different l0s
along the x-ray beam [Eq. (2)], we can commutate the

FIG. 2. Beam hardening causes underestimation of the linear attenuation as
given by ln I0=Ið Þ. Data were simulated using monoenergetic source (ideal),
and a polyenergetic source (realistic) passing through Cortical bone. Cortical
bone l(E) values were taken from NIST.42 [Color figure can be viewed at
wileyonlinelibrary.com]
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addends and, without loss of generality, treat the scanned
object as a combination of one slab of soft tissue, or water-
equivalent, and one slab of HAM. The same argument
applies to the polyenergetic case [Eq. (4)], since we treat
each energy separately and then integrate over them. In this
case Eqs. (4) and (5) can be re-written as

Pc �
XN
i¼1

ailn
i I0
Iw

� �
þ
XN
i¼1

biln
i Iw

I

� �
(6)

where Iw denotes the beam’s intensity after passing through
the water (soft tissue) component.

Water-based BH correction is automatically performed on
most commercial CT scanners. To find the residual BH, DP,
due to HAMs, we can subtract Eq. (6) from Eq. (5) to form:

DP �
XN
i¼1

ailn
i I0

I

� �
�

XN
i¼1

ailn
i I0
Iw

� �
þ
XN
i¼1

biln
i Iw

I

� �" #

�
XN
i¼1

ai � bið Þlni Iw
I

� �
¼ a1 � b1ð Þkþ a2 � b2ð Þk2 þ . . . ¼ akþ bk2 þ . . .

(7)

where k¼defln(Iw/I), and can be found by thresholding the origi-
nal image to obtain the HAM image and then forward project-
ing it. In our work, we are using the second order polynomial,
as have others.34 The error image IE is then generated as the
FBP of DP. The final BH corrected image is obtained by:

IC ¼ I � IE (8)

Since k is the projection only through HAM, ak can only
change the intensity and cupping of the HAM, due to the lin-
earity of the FBP reconstruction, but cannot reduce streak
artifacts due to BH. The quadratic term k,2 on the other hand,
is responsible for reducing streak BH artifacts.

1.C. Automatic beam hardening correction

The ABHC iteratively optimizes a BHA-sensitive cost
function to estimate polynomial parameters to create BH-cor-
rected images.1,6 As shown in Fig. 3, ABHC begins by seg-
menting the HAM by using a threshold. ABHC will then
apply the chosen BH correction algorithm to an input image
using initial parameters. The corrected image is then filtered,
and a BH-specific cost function is evaluated. The algorithm
iteratively adjusts the BH correction algorithm parameters
until the cost is minimized. The final corrected image is gen-
erated using the optimized parameters.

To apply ABHC to dynamic perfusion images, we first
preprocess the images. We register the cardiac volumes
obtained over time using a nonrigid registration method
described previously for ECG-gated image acquisitions.35

Each volume is registered to the peak enhanced volume and

ABHC correction parameters are determined and applied in
one of the following ways. First, parameters can be estimated
using a single image volume at peak enhancement and then
use those parameters to correct all other images (ABHC-
peak). Second, parameters can be estimated for each image
containing iodine in the stack, and then apply the average of
those parameters to the entire dataset (ABHC-average).
Third, parameters can be estimated and applied for each
image separately (ABHC-single).

Segmentation of the left ventricle (LV) cavity and myo-
cardium, needed for calculation of the cost function, is per-
formed as follows. First, we analyze the registered time
series to identify constant, high HU structures (bones), and
structures that change intensity over time (iodine enhanced).
We obtain the bone and iodine masks by thresholding the
images. We then compute the standard deviation (SD) of
each pixel over time. Structures that are not enhanced with
iodine will have an SD equivalent to the image noise. Struc-
tures that are slightly enhanced, like the myocardium, will
have a higher SD. Structures with the highest SD are cavi-
ties that are filled with iodine, like the LV and aorta. Out of
all the slices in the volume and over time, the slice with the
largest sum of all temporally enhanced pixels will be the
slice that presents the peak enhanced time point. On that
slice, we apply connected components to all structures hav-
ing an SD above a threshold. The largest structure will be
the LV. Using connected components, we find the LV in
other slices. To segment the myocardium, we dilate the LV
mask and subtract the original LV mask to get a 3D shell
mask containing the myocardium. The LV mask dilation
parameters are chosen in a way that the dilated mask will
contain the whole myocardium. We observed several hearts
in a partial field of view (FOV), in which the myocardium
looks the biggest, and found that dilation with a disk where
r = 20 covers all cases. We then mark only those pixels from
the shell mask with an SD appropriate for the myocardium
to obtain the segmented myocardium. The SD parameter is
determined by classifying it to three classes: static structures
in which SD comes from the noise of the image; blood
pools, like the LV or aorta, which will have a large SD due
to the quick perfusion; and the myocardium, that has an SD
in between. Disregarding noise, the SD values are ~0, ~20,
and well above 100 for static, myocardium, and blood pools
respectively.

Noise reduction filtering is an important preprocessing
step prior to computing our cost function. High-frequency
noise, particularly textured streaks in reconstructed images,
interferes with assessment of low-frequency BH artifacts in
the cost function. We experimented with different simple
noise-reduction filters (Gaussian, median, and combinations)
and determined the effect on BH corrections.

1.D. Creating a corrected image

The algorithm starts by segmenting HAM and forward
projecting it to find k [Eq. (7)]. Then, k2 is calculated and
FBP to obtain Î2HAM . Next, the error image IE is constructed:
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IE ¼ a � IHAM þ b � Î2HAM . The base images IHAM and Î2HAM are
found only once which significantly reduces optimization
time. Finally, the corrected image IC is obtained by:
IC = I � IE. The iterative process finds “a” and “b” that min-
imizes the cost function that is calculated over the corrected
image IC.

1.E. Cost function

We created a cost function sensitive to BH artifacts that
typically manifest as dark and bright regions in the image, as
dark regions between two HAMs, and as cupping artifacts
within homogeneous HAM regions. The cost function con-
sists of two terms, where the first term, TVmyo, addresses
bright and dark artifacts in the myocardium and the second,
FLV, addresses cupping artifacts in the LV. The cost function
is given by:

w IC x; yjhð Þð Þ ¼ a � TVmyo f̂ IC x; yjhð Þð Þ� �þ ð1� aÞ
� FLV IC�LV x; yjhð Þð Þ (9)

where Ψ is the cost of the corrected image, IC(x, y|h), gen-
erated using the BH correction algorithm parameter vector
h. The first and second terms in Eq. (9), assess streak arti-
facts and cupping, respectively. The coefficient a determi-
nes the relative weight of each term in the cost function.
The first term is a measure of the total variation (TV)
within the myocardium, TVmyo. Since BHA is a relatively
low-frequency artifact compared to noise, the image is first
filtered, using a Gaussian filter f̂ . That ensures that the BH
contribution to the TV term will not be overwhelmed by
the TV of noise. TVmyo is then computed using the follow-
ing TV formula:

Gx ¼ @ f̂ ðIC x; yjhð ÞÞ
@x

;Gy ¼ @ f̂ ðIC x; yjhð ÞÞ
@y

G0 ¼ G2
x þ G2

y

TVmyo f̂ IC x; yjhð Þð Þ� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiX
myo

G0
s

=Amyo (10)

G0 is the gradient magnitude of G, and is obtained by
thresholding G such that all gradient values above a thresh-
old are set to zero. This step is done in order to calculate
only the gradient on relatively flat signals within the myo-
cardium and not on high-magnitude edges like those
between the myocardium and the LV, or the myocardium
and the air in the lungs. Amyo is the area of the myocardium
in pixels and is used to normalize TVmyo. The second term,
FLV, assesses cupping. Cupping is a well-known phe-
nomenon in CT images that manifests as artificial darken-
ing toward the middle of homogeneous attenuating
structures in the image. Using the segmented LV in the cor-
rected image (IC�LV x; yjhð Þ), we calculate the mean of the
20 highest HU values on the rim of the LV and subtract the
average noise over the rim to obtain LVmax. We subtract the
average noise in order to eliminate the bias that is intro-
duced by choosing the 20 highest HU values. The rim of
the LV is four pixels wide, along the circumference of the
LV. We then calculate the sum of square differences
between every pixel in the LV to LVmax:

FLV IC�LV x; yjhð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
LV

IC x; yjhð Þ � LVmaxð Þ2
r

=ALV

(11)

where ALV is the area of the LV and is used to normalize the
FLV term.

2. EXPERIMENTAL METHODS

2.A. Blood flow estimation

We used a model-based deconvolution algorithm to esti-
mate MBF from dynamic, contrast-enhanced CT images. Our
previous work has suggested model-based deconvolution to
be more accurate than model-independent deconvolution.36

After segmenting the myocardium (this segmentation deter-
mines where blood flow will be calculated to generate flow
maps and it is not a part of ABHC) using a semi-automated
algorithm (Medis), we compute average myocardial time-

Registration
Auto

segmentatio
n of HAMs

Generate
corrected

image using
the polynomial

Calculate cost4D CT
perfusion

scan images

Create final
images using

optimal
parameters

yes

Adjust
parameters

no

The ABHC algorithm

*HAM - Highly Attenuating Materials

FIG. 3. Flow chart of the ABHC algorithm. [Color figure can be viewed at wileyonlinelibrary.com]
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attenuation curves (TACs) over 5 9 5 super-pixel regions
within the myocardium. We also obtain an average arterial
input function (AIF) from a circular region in the center the
LV cavity as defined by the user. The AIF is convolved with
an analytic impulse response function (IRF) like the one used
in the Johnson-Wilson model35,37,38 to produce a model tis-
sue TAC. The IRF is defined by five parameters: time delay,
flow, intravascular transit time, extraction fraction, and a
decay constant. We reduce the model to three free parameters
similar to other works.39 Specifically, we fix the intravascular
transit time40 (ITT = 2 s) and extraction fraction (E = 0.6),
which are within the expected physiologic range and provided
good fits to physiologic data.40,41 To reduce the effect of
numerical errors in the model tissue TAC, convolution is per-
formed at 100 ms time increments with the AIF linearly inter-
polated between measured time points. The sum of squared
difference (SSD) is used as the cost function between the
model TAC and the measured TAC at the sampled time
points. The SSD is minimized as a function of the model
parameters using a Nelder-Mead simplex algorithm in Matlab
(fminsearch).

In porcine experiments on an animal that does not suffer
from cardiovascular disease, we anticipate homogeneous per-
fusion. To evaluate, we calculated flow ratios whereby we
divided the estimated flow in a large ROI with the lowest
flow by the estimated flow in an ROI with the highest flow.

2.B. Artifact measurements

We quantified BH artifact in images by multiple ways. (a)
We measured the difference in average HU inside the BH
artifact ROI to the average HU in a remote, unaffected ROI.
If the BH affected ROI was darker than an unaffected ROI,
we got a negative BH artifact value. (b) Cupping in what
should be a homogenous region was measured as the differ-
ence between the mean HU value taken in a small ROI in the
darkest point in the region and the mean HU of a small ROI
in the brightest point in the region. Averaging over an ROI
helps to reduce bias introduced by noise and other artifacts
like Gibbs ringing. Percent cupping reduction was calculated
as the absolute difference between the original cupping and
the cupping as measured on the corrected image, divided by
the original cupping. (c1) In order to measure homogeneity
along the myocardium, we measured the mean HU values in
several ROIs along the myocardium and calculated their stan-
dard deviation.

2.C. Digital and physical phantoms

Because of the ability to know ground truth, we evaluated
ABHC using digital phantoms created within a CT simulator.
The CT simulation software models a realistic CT scanner
(Brilliance 64, Philips), with a cone beam source, finite width
detector grid, x-ray prefiltration, and x-ray spectrum. Virtual
objects are created with 3D geometric primitives (e.g., ellip-
soidal volume). The simulation computes line integrals based
on analytic object geometries with defined mass-attenuation

spectra from NIST42 and accounts for Poisson noise. We cre-
ated two simulated phantoms: a water cylinder with four
tubes filled with different concentrations of iodine (shown
later in Fig. 6) and a cardiac porcine phantom (Fig. 4). We
used the cardiac phantom to simulate both static images and
dynamic perfusion scans. To generate an image sequence, we
used a physiologic perfusion simulator39 to generate appro-
priate, homogeneous iodine attenuation curves for the heart
chambers and myocardium. We simulated both polyenergetic
(e.g., 120 kVp) and monoenergetic (70 keV) x-ray sources.
The reason we chose 70 keV as the optimal energy for these
experiments is discussed in depth in our previous publica-
tion.43 Briefly, 70 keV HU values closely align with conven-
tional reconstruction on this scanner and provide minimal
BH artifacts while maintaining high CNR and SNR. The
monoenergetic simulation gave us ground truth since there
were no BH artifacts. We simulated a homogeneous MBF of
100 ml/min/100 g. Digital phantom MBF maps were evalu-
ated both qualitatively and quantitatively against the known
simulated value.

To account for all measurement issues, we constructed and
imaged two physical phantoms. The first phantom had diame-
ter of 23 cm and a thickness of 6 cm with four test tube insets
filled with iodine concentrations of 15, 22, 26.5, and 77 mgI/
ml. The second phantom was 6 cm thick with 26 cm diame-
ter and eight test tube insets. This phantom was scanned with
low-concentration iodine insets (0, 0.875, 1.75, 3.5, 5.25, 7,
8.75, and 10.5 mgI/ml) and with high-concentration insets (0,
1.75, 3.5, 7, 10.5, 14, 17.5, and 21 mgI/ml), hereafter called
low- and high-concentration phantoms, respectively.

2.D. Parameter optimization

The weighting parameter a, which sets the relative weights
of the two parts of the cost function, was found empirically.
Thirteen pigs and simulated phantoms were corrected using a
grid search on a. The optimal a was found for each subject
visually, that is, the a that produced an image with minimal
BH artifacts. Finally, the value of a was calculated as the
average of those individual a’s.

2.E. CT imaging

We imaged phantoms and in vivo porcine using a proto-
type spectral detector CT (SDCT, Philips Healthcare). The
SDCT is well-suited to this study as it is capable of recon-
structing virtual monoenergetic images which greatly reduce
BH artifacts, as well as conventional CT images with BH arti-
facts, from the same scan. For each scanning experiment, we
compared conventional CT, conventional CT with ABHC,
and 70 keV images. In the case of in vivo perfusion experi-
ments, we also compared perfusion measurements between
different data sets. The dynamic MPI-CT protocol included
40 ECG-gated scans acquired at 45% R-R cycle (near end
systole), 120 kVp, 100 mAs, 4 cm coverage, full 360-degree
scans, and 0.27 s rotation speed. Static imaging was done
with similar settings. Standard and virtual monoenergetic
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(70 keV) image slices of 512 9 512 pixels were recon-
structed with 2 mm slice thickness, 2 mm increment, and
120 mm FOV. In some experiments, we acquired images on a
conventional CT scanner, Brilliance iCT (Philips Healthcare)
using similar protocols.

2.F. Preclinical in vivo imaging study

Our porcine model, as described elsewhere,35,43 used
Yorkshire female, weight: 40–50 kg, age: 13–15 weeks with
percutaneously induced ischemia. A small angioplasty bal-
loon was inserted in the left anterior descending (LAD)
artery, guided by a fractional flow reserve (FFR) wire.44 This
allowed us to accurately induce ischemia in LAD territory of
the myocardium. The balloon was inflated to induce the
desired level of flow restriction as determined by FFR. We
used the FFR = 1.0 condition to evaluate the ability of
ABHC to reduce BH artifact and give uniform perfusion
while the FFR = 0.7 condition was used to evaluate whether
ABHC preserves ischemia. All experiments were conducted
under IACUC approval.

3. RESULTS

3.A. Optimization of the algorithm

From optimization experiments starting with different ini-
tializations, we discovered that it was necessary to reduce
noise in the intermediate BH-corrected images to avoid cap-
ture in local minima. Figure 5 shows that without filtration,
the cost function has multiple local minima that can capture
an optimization algorithm. However, after noise reduction,
there is a smooth descent of the cost function to a single glo-
bal minimum, at the same parameter values as obtained with-
out noise reduction. We experimented with filters including
median, median followed by linear and linear filtering, where
linear filtering was done with Gaussian filters of different
sizes. Best results were obtained with 2D Gaussian filtration
(r ¼ 0:7mm, ~3 pixels). With this filtration, optimization

was robust as we could initialize at different parameter values
and still converge to the same minimum.

The cost function is comprised of two parts (TV of the
myocardium and cupping artifact) as shown in Eq. (9). In
experiments, we found that both parts contributed to the
accuracy and robustness of the ABHC algorithm. Although
the TV term was enough to find the “b” parameter, we
obtained poor accuracy for the “a” parameter without includ-
ing the cupping term. That is, without the cupping term, the
“a” parameter had large fluctuations between consecutive
slices with average difference of �0.098. By adding the cup-
ping term, this variation was reduced to less than �0.01. The
coefficient a, which sets the relative importance of the two
cost function terms was optimized in a grid search and found
to be a = 0.47 � 0.04 over 13 pig experiments and simula-
tions. Furthermore, we found that the cupping term improved
robustness in cases of mild ischemia. By setting a = 1, we
were able to disable the flatness term of the cost function. In
this case, we observed that TV was able to slightly over-cor-
rect BH, leading to partial obscuring of mild ischemia (only
where BH artifact was present). Adding the cupping term
prevented this. We did not observe this in healthy heart
(FFR = 1) and in fully occluded LAD (FFR <=0.3).

In order to apply BH correction to a set of dynamic MPI-
CT images, we tested multiple approaches. First, we found
that “ABHC-single” introduced undesirable fluctuations in
corrected intensity values over time that impaired MBF esti-
mates. In “ABHC-average,” we averaged correction parame-
ters found when there was significant iodine present in the
image and applied them to all images in the set. ABHC-aver-
age produced good results but was time-consuming. In
“ABHC-peak,” we used parameters estimated at the peak of
the contrast in the image. This gave us comparable results to
ABHC-average with a shorter execution time. In the best
ABHC-hybrid method, we identified the peak contrast image,
estimated values at this image and the two adjoining images
in time, estimated parameters for teach image, and averaged
them. That gave us very good, robust results with a reason-
able execution time. In order to estimate blood flow on the

(a) (b)

FIG. 4. Simulated porcine phantom. (a) A porcine scanned on a prototype Philips SDCT scanner using a cardiac perfusion protocol. (b) Simulated cardiac por-
cine phantom. W = 60/L = 360.
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whole heart volume, that is, all spatial slices, we used the cor-
rection parameter obtained from one slice in the middle of
the volume, where the area of the LV is the largest, and
applied it to all other slices.

3.B. Experimental results

The ABHC algorithm was applied to static digital and
physical phantoms (Figs. 6 and 7). With the digital phantom
(Fig. 6), we found that streak artifacts are barely seen follow-
ing ABHC with artifacts reduced from roughly 13 � 2 HU
to 0 � 1 HU in the most affected region, near 3 o’clock. HU
values following correction matched phantom values in
iodine-containing cylinders and background within �2%.
Results from the physical phantom show similar reduction in
BH artifact (Fig. 7). The apparent increase in artifacts is due
to the use of high concentrations of iodine to accentuate the
artifact. BH artifact was reduced from 48 � 6 HU to
1 � 5 HU [Fig. 7(b)]. Cupping within iodine-containing
vials was reduced by 86%, from 248 to 23 HU [Fig. 7(c)].

We also evaluated ABHC on in vivo images from our por-
cine model without coronary obstruction (FFR = 1), (Fig. 8).
The graph compares standard CT with FBP, ABHC, and
70 keV images. Although we expect homogeneous perfusion
in the myocardium in this nearly short axis view, there is
some variation in the 70 keV image. Large variations in stan-
dard CT are very much reduced with ABHC. Standard devia-
tions of mean HU across ROIs were 13.26, 6.86, and 4.54,
respectively. BH artifact in ROI 3, the most affected and one
that can be misconstrued as an LAD defect, was reduced
from �23.7 to 5.2 HU.

We also compared BH correction capabilities with partial
FOV. We found that as long as the structures that cause the
majority of BH artifacts are present in the image, ABHC will
be able to correct the image. Namely, for MPI-CT, the ventri-
cles, aorta, and bones close to the myocardium must be in the
affected image for a successful BH correction. Highly attenu-
ating structures, like ribs, that are further away from the myo-
cardium, cause a BH artifact of around 1 HU. Their absence
in the affected image will not allow the BH correction

FIG. 5. Cost function value as a function of correction parameters “a” and “b,” with and without filtration. The data cursor on both panels shows the optimal cor-
rection parameters. Left: without filtration there are several local minima and the global minimum is not the same as that with noise reduction. Right: after filtra-
tion, there is a clear global minimum. Visual examination of resulting images supported the global minimum after noise reduction. [Color figure can be viewed
at wileyonlinelibrary.com]

(a) (b) (c)

FIG. 6. Reduction of BH artifacts using ABHC in a simulated phantom. (a) Original phantom simulated without noise in order to isolate BH artifacts.
(b) Conventional FBP reconstruction. (c) ABHC corrected image. W = 80/L = 0. [Color figure can be viewed at wileyonlinelibrary.com]
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algorithm to use them for correction but the residual BH arti-
fact should not exceed 1–2 HU.

Blood flow maps generated from simulated MPI-CT, with
homogeneous blood flow of 100 ml/min/100 g, using stan-
dard, ABHC, and 70 keV images are shown in Fig. 9. Image
SNR in the myocardium at the peak enhanced image was
~9.8. Standard CT gives very high flows (blue arrow) as well
as low flows (red arrow) with coefficient of variation of 22%.
If one considers relative flows, these results would lead one
to conclude the presence of a significant flow deficit. Flow is
much more homogeneous in 70 keV and ABHC images as
compared to standard CT. ABHC’s 9% variation is compara-
ble to physiologic variation of 70 keV at 5%.

The reason for the apparent flow deficit in the conven-
tional image can be seen in TACs from an ROI near 11
o’clock of Fig. 9(a) (Fig. 10). Standard CT curves show a
depression near the peak of the AIF due to BH which alters

model fits as compared to the cases with ABHC and 70 keV.
The remote ROI was chosen near 1 o’clock.

Blood flow estimates with and without BH correction are
compared for the porcine model with FFR = 1.0 in Fig. 11 to
standard CT. Since it is common to report relative flows,
blood flow ratios are given in the figure legend.

In Fig. 12, we measured FFR = 0.7 with an FFR wire fol-
lowing partial balloon occlusion in the LAD, expected to give
a flow deficit in the LAD territory at about 9–3 o’clock. An
appropriate flow deficit is shown in all three cases (standard
CT, ABHC, and 70 keV). The myocardium was separated
into sectors and results averaged (graph on right). Flow val-
ues with ABHC were much closer to the 70 keV reference
than standard CT scans. After ABHC, a clear transmural per-
fusion gradient is evident which was previously obscured by
BH artifacts. Importantly, ABHC did not “remove” the flow
deficit and therefore did not create a false negative.

(a) (b) (c)

FIG. 7. Reduction of BH artifacts using ABHC in physical phantom. (a) Acrylic phantom with four inserts filled with 15, 22, 26.5, and 77 mgI/ml (starting at bot-
tom right and moving clock wise) reconstructed with FBP. (b) BH-corrected image using ABHC. (c) Cupping artifact comparison. BH streak artifacts were
reduced from 48 � 6 HU to 1 � 5 HU and cupping was reduced by 86%. W = 100/L = 100. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 8. Comparison of mean HU values between (a) Conventional, (b) ABHC and 70 keV images in a baseline (FFR = 1.0) porcine model. Standard deviations
of mean HU across ROIs are 13.26, 6.86, and 4.54 respectively. ROIs are shown in panel (a). At baseline, enhancement in the myocardium should be uniform.
Reduction in HU in ROI3 is due to BH artifact and reduced by ABHC. W = 180/L = 50. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (4), April 2019

1656 Levi et al.: Automatic beam hardening correction 1656

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


We investigated ABHC correction parameters on phan-
toms as a function of kVp and scanner. The ABHC algorithm
robustly accounted for imaging at different kVp values
(Table I). We scanned the low-concentration phantom four
times at both 120 and 140 kVp on the SDCT scanner. Each
scan contained 16 slices for a total of 64 individual slices
(n = 64) at a single kVp. The high-concentration phantom
was scanned four times at 120 kVp (n = 64) and once at
140 kVp (n = 16). All scans were done at 100 mAs. Varia-
tion from one scan to the next (same scan protocol) as esti-
mated by SD was minimal, with coefficient of variation
typically about �0.22 and insignificant P-value (P > 0.01).
Comparing 120 and 140 kVP, we observed a statistically sig-
nificant difference (P < 0.01) in both “a” and “b” parameters
with the low-iodine concentration phantom (Table I). With

the high-concentration phantom, parameter “b” was signifi-
cantly different but “a” showed an insignificant trend
(P = 0.14). Comparing low- to high-concentration phantom
both scanned at 120 kVp or 140 kVp, also showed signifi-
cant difference in both “a” and “b.” Mean and standard error
(SE) can be seen in Table I.

We also compared correction parameters across scanners
for in vivo imaging of pigs and patients. For each pig or
patient, a specific slice was individually corrected for every
time point with significant contrast agent along the MPI-CT
series. Comparing correction parameters for different pigs
scanned with the same protocol on the same scanner, we
found that values of “a” and “b” were not significantly differ-
ent. However, when we compared the difference in correction
parameters between scanners (all pigs scanned on iCT

(a) (b) (c)

FIG. 9. Comparison of absolute blood flow calculated from (a) conventional, (b) ABHC, and (c) 70 keV simulated perfusion scans. Simulated data have constant
flow of 100 ml/min/100 g. Conventional had a less homogeneous blood flow compared to ABHC and 70 keV with coefficient of variations of 22%, 9%, and 5%
respectively. In conventional images, BH artifacts causes false hypo-perfusion (red arrow) and false hyper-perfusion (blue arrow) which is corrected by ABHC.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Effect of iodine-filled LV on TACs. There is an observed depression (red arrow) in the TAC of a BH affected ROI near 11 o’clock [Fig. 9(a)] when the
LV is filled with iodine. This will manifest as low blood flow in this ROI. ABHC reduces BH artifact in all affected time points, correcting this depression. For
comparison, in a remote ROI at 1 o’clock, no depression is observed. The overall difference between affected ROI to remote ROI (~3 HU) is from BH artifact
originated from the bones, regardless of iodine content. Note that the AIF taken from the ventricle was scaled down by 4 for presentation purposes. [Color figure
can be viewed at wileyonlinelibrary.com]
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compared to all pigs scanned on SDCT compared to patients
scanned on a different iCT), we found a significant difference
in both “a” and “b” parameters (Table II). Another way to
examine the importance of subject-specific parameter esti-
mates is to compare results on flow maps. When we applied
parameters from each of the pigs to the other pigs (all pigs
scanned on the SDCT under the same protocol), we found a
mean variation in flow of 1.9 100 ml/min/100 g, with

standard deviation of 6.7 100 ml/min/100 g, and absolute maxi-
mum flow difference of 13.26 100 ml/min/100 g. It is worth
noting that all pigs were of approximately the same size.

Figure 13 shows blood flow estimation in clinical MPI-
CT. Blood flow calculated from ABHC images is more
homogeneous compared to conventional.

The sensitivity of the BH correction to the parameters “a”
and “b” can be seen in Fig. 14. The colored contours show

(a) (b) (c)

FIG. 11. Comparison of absolute blood flow in porcine (FFR = 1.0) calculated from conventional (a), ABHC (b) and 70 keV (c) perfusion scans. Blood flow
was calculated using the Johnson-Wilson model. Conventional shows less homogeneous blood flow compared to ABHC and 70 keV, with flow ratios of 0.59,
0.85, and 0.93 respectively. Flow ratios were calculated as the ratio between the mean flow in ROI1 to the mean flow in ROI2. [Color figure can be viewed at
wileyonlinelibrary.com]

(a)

(b)

(c)

FIG. 12. Comparison of absolute blood flow in porcine model at FFR = 0.7, calculated from conventional (a), ABHC (b) and 70 keV (c) images. BH artifact
was effectively reduced without obscuring the flow deficit in the ischemic region. Blood flow calculated from ABHC images is closer to 70 keV than conven-
tional, as the sum of the squared difference was reduced by 46%. Flow ratios for R0I-6/ROI-1 are 1.7, 1.48, and 1.31, for conventional, ABHC, and 70 keV image
data, respectively. Data obtained from pig 17.
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the value of the cost function for a range of “a” (x-axis) and “b”
(y-axis) parameters. The black horizontal lines show the mea-
sured BH artifact. The red cross marks the minimum found by
ABHC. According to this specific example (data obtained from
pig 17), a change of � 4 9 10�6 in “b” parameter causes a
change of ~5 HU in BH artifact. As explained before, “a”
parameter does not affect BH streaks artifact.

A comparison of simulated blood flow maps obtained at
different kVps is presented in Fig. 15. Simulated data have a
homogeneous flow of 100 ml/min/100 g. Conventional
reconstructed images (a) and (c) obtained at 80 and 140 kVp,

respectively, show increased blood flow from 7 to 11 o’clock
and from 2 to 5 o’clock of up to 211 ml/min/100 g and
reduced blood flow as low as 73 ml/min/100 g in the rest of
the myocardium. ABHC-corrected images (b) and (d) show a
more homogeneous blood flow. The flow ratio of the low
flow region to the high flow region was increased from 0.61
to 0.85 at 80 kVp and from 0.43 to 0.89 at 140 kVp. A ratio
greater than 0.80 is considered hemodynamically insignifi-
cant according to clinical FFR criteria.44 In both cases,
ABHC would change the clinical interpretation from a false
positive to true negative for myocardial ischemia. The correc-
tion parameters found by ABHC where a = 0.12,
b = �1.79 9 10�6 for 80 kVp and a = 0.14, b = �8.23 9

10�6 for 140 kVp. BH artifact at 80 kVp compared to
140 kVp was 18.1 and 16.1 HU, respectively. Peak iodine
contrast (peakEnhance), as computed by the difference
between peak myocardial enhancement and the first time
index, was much higher at 80 kVp than 140 kVp (i.e.,
32.2 HU vs 16.3 HU, respectively). Taking the ratio of BHA/
peakEnhance, we observe that there is a much reduced effect
on the perfusion signal at 80 kVp (i.e., the ratios are 0.56
and 0.99, respectively).

4. DISCUSSION

Reduction of BH artifacts is necessary for MPI-CT, where
artifacts are on the order of the myocardial iodine

TABLE I. Comparison between polynomial correction parameters “a” and “b” for low- and high-concentration phantom scanned at 120 and 140 kVp. The SE for
“b” translates into less than 1 HU value in the corrected image (average in a small ROI at 3 o’clock on Fig. 6b).

“a” parameter “b” parameter

120 kVp 140 kVp 120 kVp 140 kVp

Low-concentration phantom Mean �0.12 �0.11 �1.63E-06 �2.18E-06

SE 1.41E-04 1.56E-04 7.5E-09 8.28E-09

High-concentration phantom Mean �0.04 �0.03 �2.3E�06 �2.74E-06

SE 1.56E-04 5E-04 1.4E-09 6.25E-09

TABLE II. Comparison of correction parameters “a” (left) and “b” (right)
between pigs scanned on iCT (N = 2) and SDCT (N = 11) and humans
scanned on iCT (clinical, N = 2). P-values for the “a” parameter were 3.53E-
03, 1.36E-04, and 0.024 for iCT-SDCT, SDCT-Clinical, and iCT-Clinical
respectively. P-values for the “b” parameter were 8.22E-03, 5.37E-04, and
5.04E-03 for iCT-SDCT, SDCT-Clinical, and iCT-Clinical respectively. All
scans were done at 140kVp.

iCT SDCT Clinical

“a” parameter

Mean 2.15E-03 1.04E-03 6.01E-04

SE 9.43E-06 2.16E-06 7.59E-06

“b” parameter

Mean �1.61E-06 �1.74E-06 �1.15E-06

SE 3.12E-09 1.36E-09 2.19E-08

(a) (b)

FIG. 13. Blood flow estimation in clinical MPI-CT, calculated from conventional (a) and ABHC (b) images. Blood flow calculated from ABHC images is more
homogeneous. [Color figure can be viewed at wileyonlinelibrary.com]
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enhancement signal, leading to both qualitative hypo-
enhancement in individual CT images and inaccurate blood
flow measurement in dynamic perfusion. The ABHC algo-
rithm is an automatic, calibration-free BH correction frame-
work that can be applied to any scanner and imaging
protocol. ABHC significantly reduces BH artifact in MPI-
CT, consequentially producing more accurate and reliable
blood flow maps, demonstrated by reducing the false flow
deficit at FFR = 1.0 and preserving ischemia at FFR <0.8
thus not creating false negatives. With the correction of false
positives, MPI-CT will improve its specificity, reducing the
number of unnecessary referrals to invasive angiography.
With accurate MPI-CT, CT could become a preferred

modality for noninvasive detection and rule-out of coronary
artery disease prior to invasive coronary angiography.

Previous work45 used TV as a cost function to achieve
automatic BH correction. We found that adding the flatness
term to the cost function produced a more robust and more
accurate BH correction and blood flow estimation in the case
of myocardial perfusion. The flatness term specifically targets
the cupping phenomenon that is usually apparent in the LV.

In case of ischemia, the concern is that the algorithm can
over-correct the image and essentially “remove” the ischemia,
creating a false negative. In this case, the TV part, computed
over the myocardium, tries to give a constant value in the
myocardium, which might pull the solution toward a “false
negative.” However, the flatness term is computed over the
LV and attempts to reduce cupping. It is sensitive to BH, but
without consideration of the myocardium. Hence, we think it
guards against an algorithm-induced, false-negative. More-
over, the extent of ischemia, whether it is LAD or RCA terri-
tories, is bigger than the BH artifact in most cases. For
example, ischemia in LAD territory usually affects the
antero-septal and anterior regions of myocardium from about
9 o’clock to about 2–3 o’clock where most of the extent of
BH is seen to be in the anterior region (between 11 o’clock
and 12–1 o’clock) (Fig. 12). Since the correction algorithm is
built on physical principles, and can only correct BH streaks,
it cannot remove the whole ischemic region.

Various algorithms to assess cupping (e.g., TV, maximum
difference between the highest and lowest values, and stan-
dard deviation) were investigated, but the one we used
[Eq. (11)] gave the most robust results. It also tends to bring
the signal within the ventricle to the appropriate value, an
important result for proper flow estimation. Estimating flat-
ness in the LV assumes a homogeneous iodine and blood
mixture. To address this issue, we find ABHC’s correction
parameters using the three time points around peak enhance-
ment. By these times, the LV is reasonably well mixed. For
example, at peak enhancement, the coefficient of HU varia-
tion within the middle of the ventricle is ~5% as compared to
35–40% at early time points. We used the ventricle because

FIG. 14. Example of the cost function sensitivity and BH artifact to the
parameters “a” and “b.” The colored contours show the values calculated
using the cost function. The black horizontal lines show the measured BH
artifact. The red cross shows the minimum of the cost function as found by
ABHC. Here, a change of � 4 9 10�6 in “b” parameter causes a change of
~5 HU in BH artifact, while the “a” parameter does not affect BH artifact.
[Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

FIG. 15. Comparison of simulated blood flow maps at different kVps. Simulated data have a constant flow of 100 ml/min/100 g. (a) and (c) were calculated
from the conventional reconstruction of MPI-CT images generated at 80 and 140 kVp respectively. (b) and (d) are the blood flow maps generated from ABHC
corrected images of (a) and (c). ABHC found the appropriate correction parameters for each kVp. The flow ratio of the low flow region to the high flow region
was increased from 0.61 to 0.85 at 80 kVp and from 0.43 to 0.89 at 140 kVp. In both cases, ABHC would change interpretation from a false positive for myocar-
dial ischemia to a true negative. In both cases ABHC could have changed a clinical decision. Parameters (a, b) were (0.12, �1.79 9 10�6) and (0.14,
�8.23 9 10�6), at 80 and 140 kVp, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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the aorta was obscured by artifact from the FFR wire. In a
clinical setting, we believe it will be advantageous to assess
cupping and measure the AIF in the aorta instead of the LV.
The aorta will have a better mixture of blood and iodine and
it does not have internal structures like trabeculae. Further-
more, it is easier to automatically segment due to its round
shape. We found that the cupping term improves the accuracy
of quantitative HU values, as determined from digital and
physical phantoms (e.g., see Fig. 6), although accurate
restoration of quantitative HU values might be challenging
without calibration. Furthermore, we found that adding the
filtration step before evaluating the cost of an image, greatly
improved robustness and accuracy of the correction algorithm
yielding reproducible results across a range of object sizes,
noise levels, FOV and different scan protocols. The optimiza-
tion problem is nonconvex. Before adding the filtration step,
the cost function had multiple local minima. The main cause
was that most of the signal of TV came from noise, a high-
frequency phenomenon, compared to BH which is a low-fre-
quency phenomenon. However, after applying the proposed
filtration, the local minima are removed and the objective
function appears to smoothly approach a global minimum.

The use of BH correction algorithms enables MPI-CT on
conventional single-energy CT scanners. While energy-sensi-
tive CT has the ability to significantly reduce BH artifacts,
many sites do not have access to these scanners. Energy-sensi-
tive CT systems include kV switching, dual source, dual layer
detector, and multi-spectral technologies. Typically, there is a
dose penalty for energy-sensitive CT, including dual source
imaging,46 which may give a clinical preference to conven-
tional CT for MPI-CT. With conventional CT, recent develop-
ments in model-based image reconstruction enable low-dose
imaging. Such technologies could bring x-ray dose down to
levels similar to or below that of cardiac SPECT imaging.47

We analyzed the need for subject, scanner, and kVp speci-
fic BH correction. Comparing the correction parameters that
ABHC found for different pigs on one specific scanner with
the same scanning protocol, we observed that there is no sig-
nificant difference. We attribute that to the fact that the cor-
rection parameters should be about the same for a specific
scanner using a specific protocol regardless to the subject
being scanned, especially if the subjects are close in build/
weight. However, when we compare different protocols or dif-
ferent scanners, we found a measurable difference in the cor-
rection parameters. We observed a much more accurate blood
flow maps after using a scanner specific, protocol specific
correction parameters compared to using the same parameters
for different scans. Comparing the low-concentration phan-
tom to the high-concentration phantom scanned with the
same protocol gave us significant differences in both “a” and
“b.” This supports findings in other similar experiments48.
We believe that a second degree polynomial is a good approx-
imation to the correction, but it is not ideal, especially when a
large difference in iodine concentrations are involved. We
deliberately used higher than clinical concentrations in the
high-concentration phantom. This also explains why we did
not observe the same behavior between different pigs or

different humans scanned with the same protocol. In those
cases, about the same iodine concentration was used. A higher
degree polynomial, or dividing the line integrals values (pro-
jections) into several ranges, corresponding to varied iodine
concentrations, and finding a different polynomial for each
range48 could produce more accurate results. When correcting
a set of MPI-CT images, we found it desirable to use a single
set of correction parameters. When each image is corrected
using different correction parameters, we observed fluctuations
in TACs giving inconsistent blood flow estimation.

Our experiments have drawn attention to an unexpected
effect of kVp on perfusion flow estimates. Although many
would likely argue that high kVp would be better than low
kVp for limiting the effect of BH on perfusion flow estima-
tion, this is not the case (see Fig. 15). Indeed, absolute BH
artifacts are more pronounced at low kVp than at high kVp.
However, since the iodine signal in the myocardium is much
higher at low relative to high kVp, the relative size of BH to
perfusion signal is less at 80 kVp than 140 kVp. After using
ABHC, this phenomenon is eliminated and we get good flow
estimation at both kVp values.

ABHC should enable MPI-CT with any existing conven-
tional scanner suitable for dynamic cardiac acquisition.
Although some vendors provide an iodine BH correction
method for their specific conventional scanners, ABHC could
provide a means of harmonizing results across all scanners.
The addition of accurate MPI-CT to coronary CT angiogra-
phy could make CT a preferred modality for noninvasively
determining significant obstructive coronary artery disease
and potential microvascular disease prior to invasive coronary
angiography.
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