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Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in 

which low level currents are administered over the scalp to influence underlying brain function. 

Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local 

stimulation location. However, network level effects are reported as well, and appear to depend 

upon differential underlying mechanisms. Here, we evaluated potential network-level effects of 

tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based 
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connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to 

fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI 

connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS 

effect were observed within different parametric task versions, consistent with network models. 

Overall, these findings demonstrate objective physiological effects of tDCS at the network level 

that result in effective behavioral modulation when tDCS parameters are matched to network-level 

requirements of the underlying task.
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1. Introduction

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation approach 

in which low level currents are applied across the scalp to influence underlying brain 

function (rev. in (Brunoni et al., 2014)). Although potential effects were known from 

classical studies, a recent reemergence of tDCS research began ~20 years ago (Nitsche and 

Paulus, 2000) with the demonstration that low-level currents applied over the scalp 

effectively modulated underlying cortical excitability as measured using transcranial 

magnetic stimulation (TMS) (Nitsche and Paulus, 2000). As a result, tDCS, along with other 

non-invasive brain stimulation approaches, have high potential to enhance cortical function 

(Nissim et al., 2019), enhance neurorehabilitation (Sánchez-Kuhn et al., 2017), and reverse 

deficits in neuropsychiatric disorders (Szymkowicz et al., 2016) such as depression (Bennabi 

and Haffen, 2018) or schizophrenia (Brunelin et al., 2012). Nevertheless, despite an 

extensive literature on tDCS effects, significant issues related to its mechanism of action 

remain unanswered (for discussion see Polanía et al. (2018)). In particular, models of tDCS 

have focused extensively on its effects on local excitability within cortex directly underlying 

the stimulation electrodes (Polanía et al., 2018; Bikson et al., 2018; Jacobson et al., 2012). 

By contrast, more recent studies focus more on network-level effects across cortical regions 

(To et al., 2018). Here, we used multimodal imaging combined with a well-studied (rev in 

Buch et al. (2017)) motor learning paradigm -the serial reaction time task (SRTT) - to 

investigate mechanisms underlying tDCS effects.

In the SRTT, subjects make a series of button presses based upon visual cues (Fig. 1A). 

When sequences are unpredictable (i.e. “random” sequences), reaction time (RT) remains 

constant over the course of repeated trials. By contrast, when the sequence repeats 

predictably (“fixed” sequences), individuals typically show a progressive reduction in RT 

over repeat trials even if they are not told of the sequence in advance, a process termed 

implicit motor learning. Motor learning in this task is distributed across a range of levels in 

the brain, beginning with perceptual and posterior parietal nodes of the dorsal visual system 

(Ashe et al., 2006) and projecting to motor cortex and premotor cortex/supplementary motor 

area (PMC/SMA) (Hardwick et al., 2013 b; Focke et al., 2017). Sequence information may 

be specifically encoded within dorsal stream visual regions (Hardwick et al., 2013b; Focke 
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et al., 2017; Kantak et al., 2012; Savic and Meier, 2016; Grafton et al., 1998; Keele et al., 

2003) as well as visual sensory regions (Gavornik and Bear, 2014b, 2014a).

In general, task-dependent modulation (Boroda et al., 2020) of motor activity within this 

extended visuomotor networks, including in the SRTT is reflected in alterations in coherence 

within the β (14–24 Hz) frequency range (Brovelli et al., 2004; Schoffelen et al., 2008; 

Hardwick et al., 2013a), as well as in fMRI functional connectivity between regions (Tzvi et 

al., 2014). To our knowledge, however, a multimodal approach utilizing these measures has 

not previously been used to assess tDCS effects on motor learning, in part due to technical 

limitations in the use of scalp-based β-activity to assess intracranial effects, and in part due 

to limitations of current methods by which SRTT behavioral data are typically analyzed. 

Here, we used two innovations to permit the application of the β-coherence approach to the 

study of tDCS effects on long-range cortical synchronization. First, instead of using mean 

RT across groups of trials, as is typical, we resolved RT on a trial by trial basis. Second, we 

used source-space β-coherence analyses complemented with fMRI connectivity measures to 

overcome the limitations of standard, surface-based approaches.

Traditionally, RT changes in the SRTT have been studied using mean RT values averaged 

across blocks of trials (Huang et al., 2018b), often with the underlying assumption that the 

large decrease in RT (typically > 100 ms) reflects increased efficiency of motor cortex. 

However, a more parsimonious explanation of the learning effect is that as a consequence of 

learning the sequence, individuals are increasingly able to predict where the next stimulus 

will appear and thus are able to prepare in advance where to press, so that the stimulus only 

needs to indicate when to press. By contrast, in other trials, the subject needs to wait for the 

stimulus and react when it occurs. In classical terms (Donders, 1969), a task in which the 

stimulus instructs both type of response and timing is termed a “choice reaction time” (CRT) 

task, whereas one in which the stimulus instructs only response timing is termed a “simple 

reaction time” (SRT) task. RT is longer in a CRT vs. SRT task by several hundred 

milliseconds, reflecting the increased processing required to first determine response type 

and only then to initiate the response (Donders, 1969; Greenhouse et al., 2015).

Here, we hypothesized that in the random condition, in which it was (by definition) 

impossible to predict where the next stimulus would appear, a single distribution of 

“reactive” long-RT trials would be observed. By contrast in the fixed condition, a mixture of 

fast, “predictive” and slow, “reactive” trials would be observed, with the reduction in mean 

RT reflecting primarily an increase in percentage of predictive vs. reactive responses over 

time. Given the large difference in RT between slow, reactive and fast, predictive responses, 

we further hypothesized that the different response types would depend upon differential 

connectivity patterns across networks, rather than alteration in response magnitude within 

motor cortex itself. Finally, we hypothesized that differences would be most apparent within 

the β-frequency range.

To test this hypothesis, we analyzed RT changes across subjects at both the mean level 

across trials as usual (e.g. (Buch et al., 2017; Hardwick et al., 2013b; Savic and Meier, 

2016)), and the single trial level. In parallel, we collected multimodal event-related potential 

(ERP) and fMRI measures simultaneously to tDCS. ERP measures have high temporal 

Sehatpour et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution and thus can be analyzed on a trial-by-trial basis, permitting investigation of 

neural networks engaged during slow (CRT-like) vs. fast (SRT-like) responses. However, the 

spatial resolution is limited, so that source analyses must be confirmed by other approaches. 

fMRI possesses high spatial resolution, permitting precise localization of structures involved 

in the task. However, temporal resolution is low, preventing differentiation of activation 

patterns relating to different response types (i.e. fast vs. slow). By using convergent 

measures, we were able to obtain high temporal as well as high spatial resolution.

In ERP, cortical control over motor activity is indexed most strongly by event-related 

desynchronization (ERD) of ongoing beta-frequency (10–24 Hz) rhythms (Pfurtscheller and 

Lopes da Silva, 1999; Roelfsema et al., 1997; Gompf et al., 2017; Gladwin et al., 2008; 

Jasper and Penfield, 1949; Neuper and Pfurtscheller, 2001). These rhythms reflect 

interactions both within motor cortex and between motor cortex and related regions (rev. in 

(Khanna and Carmena, 2015; Weinrich et al., 2017)). Here, we used a source-space analysis 

approach (Scherg et al., 2019; Gross et al., 2001; Mehrkanoon et al., 2014) to evaluate 

pairwise β-coherence (Singer and Gray, 1995; Bressler, 1995 b; Buzsaki and Draguhn, 2004) 

between dorsal-visual, PMC/SMA and motor nodes of the canonical SRTT circuit (Kantak 

et al., 2012; Keele et al., 2003) as a function both of motor learning and tDCS effect, and 

used fMRI to verify the source location used for ERP analyses. In general, increased β-ERD 

is associated with increased BOLD response within motor cortex, suggesting that it may 

index bringing motor regions “online” during the task. Nevertheless, non-linear relationships 

between β activity and BOLD are also observed. Thus, depending on the task, both increases 

and decreases in β-ERD and both motor activity and BOLD response may be observed 

(Gompf et al., 2017).

From the fMRI data, we also evaluated effects of tDCS on effective connectivity between 

frontal, motor and visual regions using a general psychophysiological interaction (gPPI) 

approach (McLaren et al., 2012). In general, PMC/SMA neurons are involved in “decision 

making” whereas motor cortex neurons are more proximate to the specific response (Huang 

et al., 2018 b; Lara et al., 2018; Tanji and Mushiake, 1996; Nachev et al., 2008). We 

hypothesized that during motor learning, slow and fast responses would be differentiable 

based upon the relative degree to which they depend upon Dorsal-visual → PMC/SMA vs. 

Dorsal-visual → Motor cortex interactions. These network measures were then used to 

evaluate the mechanism of action of tDCS.

As in other tDCS studies of SRTT (Manoach et al., 2004; Nitsche et al., 2003), we applied 

both anodal and cathodal stimulation over motor cortex to evaluate polarity-specific effects 

on behavior and physiological activity. In addition, given our network hypothesis, we also 

stimulated over dorsal stream visual cortex (Pobric et al., 2018; Zito et al., 2015; Antal et al., 

2004 a, 2004 b; Heinen et al., 2016), which is known to be implicated in visuomotor 

learning (Keele et al., 2003). These studies thus test the hypothesis that beneficial effects of 

tDCS are mediated at the network level, and that effects on motor speed may be obtained 

even without direct targeting of motor cortex.
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2. Methods

2.1. Participants

Seventeen (4 female) neurologically normal paid volunteers, aged 19.4–54.0 (mean = 35.2, 

SD ± 10.8), participated in the ERP study. Eight (2 female) also participated in the fMRI 

section of the study in a counterbalanced order. All subjects provided written informed 

consent, and the procedures were approved by the Nathan Kline Institute/Rockland 

Psychiatric Center Institutional Review Board and ethics committee. All subjects reported 

normal or corrected-to-normal vision. All were right-handed.

2.2. Stimuli and experimental design

2.2.1. SRTT—Subjects were instructed to press one of four visually cued color-coded 

keys on a standard computer keyboard with the fingers of their right hand as quickly and 

accurately as possible following presentation of a corresponding visual cue consisting of a 

color-coded square corresponding to the keys (Fig. 1A). A 3-s response window was 

permitted following each cue. Crosses, corresponding to each of the four designated keys on 

the keyboard, were persistently present on the monitor. Stimuli were presented on a 

computer monitor (Iiyama Vision Master Pro 502, model # A102GT) located 143 cm from 

the subject and consisted of four crosses that collectively subtended ± 1.4 ° visual angle 

from the center of the screen.

The studies were performed using a 5-element repeat sequence, modeled after previous 

studies (Manoach et al., 2004; Nitsche et al., 2003). We used four different SRTT sequences, 

one for each tDCS condition (see Section 2.3), i.e. Sham (3, 1, 4, 2, 4), Motor-cathodal (2, 3, 

1, 2, 4), Visual-cathodal (1, 3, 4, 2, 3), Motor-anodal (4, 2, 1, 3, 2), to ensure no one received 

the same sequence twice. Two blocks of SRTT, 12 min each, were administered during 

tDCS/EEG (Fig. 1A). Each block consisted of 12 self-paced runs, with random runs at 

positions 1 and 10 of the sequence, as per (Nitsche et al., 2003). A single block was repeated 

10-min post-tDCS.

Motor learning was defined as the difference in RT in each fixed block minus RT in the 

random block. Similar methods were used in the fMRI experiment (Fig. 1A), except that 

SRTT was delivered through MR-compatible liquid crystal display goggles (Resonance 

Technology Inc., Northridge, CA).

2.2.2. SRT—A control task was also administered prior to, during and following tDCS. In 

this condition only a single (central) stimulus was presented in each trial and subjects 

responded by pressing a single button with their right index finger as quickly as possible 

following cue stimulus presentation. Stimuli were presented with a mean ISI of 100 ms. A 

jitter of ± 50-ms was used to prevent self-paced tapping at a fixed ISI.

2.3. Transcranial direct current stimulation

2.3.1. tDCS application—tDCS was applied by a saline-soaked pair of surface sponge 

pads (3 × 3 cm) using the battery-driven, NeuroConn DC-Stimulator MR (NeuroConn, 

Ilmenau, Germany). During the ERP section of the study, the participants received four 
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stimulation conditions (Sham, Motor-cathodal, Visual-cathodal, Motor-anodal) using a 

constant current of 2-mA intensity applied for 30 min during the task performance (Fig. 1A). 

Each stimulation condition was administered on a separate day (at least 36 h apart) for each 

subject in counterbalanced order.

Pad placements for the Motor-cathodal and Motor-anodal conditions followed the M1-SO 

(left primary motor-right supraorbital) scalp positions used in prior tDCS SRTT studies (rev 

in Buch et al. (2017)) (Fig. 1B). Ensuring that the sponges are not so wet as to drip we 

applied a thin layer of Ten20 paste (Weaver and Company) to provide good contact with the 

scalp and prevent the sponges from moving. We then carefully placed one pad under the 

EEG cap at position C5 and the other at FP2 in accordance with the 10–20 EEG electrode 

system. We took care that no prior local skin inflammations were present at pad locations. 

For Visual cortex stimulation, the anode pad was placed over the vertex (Cz) and the cathode 

pad was placed on the scalp area (POz) overlaying the Glasser atlas-defined dorsal visual 

area (Glasser et al., 2016). For sham stimulation, the pads were placed in the same positions 

as for motor stimulation; however, the stimulator only delivered 30 s of ramp up and down. 

During simultaneous fMRI-tDCS experiments, only visual-cathodal and sham stimulation 

conditions were used. For placement of stimulation electrodes, we followed the above 

procedure using the damp sponges along with a layer of Ten20 paste and using the EEG cap 

cloth, without the EEG electrodes and holders, to hold the electrodes in place. The 

stimulation cables were run through the side-openings of the head-coil as recommended by 

the manufacturer (neuroCare Group 2016). The stimulation pad wires were each equipped 

with 5.6 kΩ resistors to avoid temperature increases that could result from induction 

voltages. For the MRI-tDCS setup we followed the precautions detailed in (Esmaeilpour et 

al., 2019) and closely replicated the set up in (Antal et al., 2011b). The stimulator device 

was connected to the subject via a waveguide with a length:width ratio of 4:1 with RF filters 

on either side. The RF filters, one placed in the control room at the opening of the 

waveguide and one placed at the head end opening of the magnet bore, proximal and off-

centered from the head coil (neuroCare Group 2016), had an approximate attenuation of 60 

dB within a frequency range of 20–200 MHz. The cable ran at the edges of the scan room as 

far as possible from the magnet bore and was weighed down using sandbags to prevent 

movement and curling of the cable. Impedance was checked continuously and was kept 

under 10 kΩ during the stimulation. The MRI machine triggered the onset of the task on the 

task delivery PC using a BNC connection between the two. One minute prior to the onset of 

the task the tDCS stimulation was started manually to allow for the ramp up of the current.

Finite-element modeling of average electric field strength was performed on the MNI-152 

head (6th generation, non-linear - T1-weighted), using the ROAST (Huang et al., 2018 a) 

toolbox in MATLAB. Thirty empty slices were first added to the MNI volume in all six 

directions to allow room for simulated electrodes. Then both montages were simulated with 

3 cm square pad electrodes of 3 mm thickness, using standard conductivity values for pads 

and gel. The motor stimulation montage comprised pad electrodes centered at C5 and Fp2, 

passing − 2 mA and + 2 mA, respectively (motor-cathodal in this case). The visual 

stimulation montage comprised electrodes centered at POz and Cz, passing −2 mA and + 2 

mA, respectively. Electrical field maps output by ROAST as NIfTI volumes were then 

mapped onto a standard HCP averaged surface (WU-Minn HCP Data - 500 Subjects dataset, 
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32k mesh resolution) in HCP Workbench (Fig. 1B), and field strength averages were 

computed for each ROI in the Glasser parcellation (Glasser et al., 2016).

2.3.2. tDCS discomfort—We used the Faces Pain Scale (Hockenberry et al., 2005) to 

measure discomfort caused by tDCS application after each session. This scale consists of 6 

faces with face 0 indicating a happy face denoting “No Hurt” and face 5 indicating a crying 

face denoting “Hurts Worst”. This scale illustrates physical pain and is easy to understand. 

We also asked the participants to verbalize what type of hurt they felt if any i.e. itching, 

burning, pain, etc.

2.4. EEG and fMRI data acquisition

2.4.1. EEG acquisition—Continuous EEG was acquired through Brainvision Brainamp 

MR Plus amplifier system using 32 scalp active electrodes, impedances < 5 kΩ, referenced 

to the FCz electrode, bandpass filtered from 0.05 to 100 Hz, and digitized at 500 Hz. Data 

were re-referenced to average-reference and analyzed offline using BESA Research, version 

5.3 (Brain Electric Source Analysis, BESA GmbH), EEGLAB (Delorme and Makeig, 2004), 

ERPLAB (Lopez-Calderon and Luck, 2014) and Matlab software, version 2017a 

(MathWorks). The recording of EEG during tDCS requires particular attention because 

neurostimulation may also affect electrophysiological measurement (Gebodh et al., 2019). 

The EEG system used here, having DC amplifiers, eliminates the delayed response after 

amplifier saturation that is observed with EEG systems relying on AC recordings, which 

contribute to data clipping and recording artifacts. The system provides a dynamic range of 

110 dB that handles the offset potentials during tDCS application without the need of a high-

pass filter and provides equal frequency responses at all channels, aiding to mitigate data 

distortion during stimulation (Levit-Binnun et al., 2010).

Prior studies have successfully removed EEG artifacts caused by concurrent tDCS (Roy et 

al., 2014). These include cardiac and ocular motor distortion as inherent and motion and 

myogenic distortion as noninherent physiological artifacts (Gebodh et al., 2019). The non-

inherent physiological artifacts are greatly reduced by instructing the participants to 

minimize their movements and to relax their neck and jaw muscles. Nevertheless, tDCS can 

accentuate these artifacts if present.

Here we applied an artifact criterion of ± 70 μV at all scalp sites, in addition to manual 

inspection, to reject epochs contaminated by these artifacts. The inherent physiological 

cardiac artifact is not event-related and can be baseline corrected. As previously suggested 

(Gebodh et al., 2019) baseline correction might not be adequate to eliminate this artifact. In 

the frequency domain however, the peak cardiac artifact signature is within 1–1.2 Hz 

frequency range which is below our frequency range of interest i.e. 10Hz-24 Hz (see 

results). For detection and removal of ocular motor and other artifacts presenting with 

characteristic topographic signatures we employed blind source separation using 

Generalized Eigenvalue Decomposition as spatial filtering approach (Cohen, 2017; Comon, 

1994; Parra and Sajda, 2003; Parra et al., 2005). The average EEG epoch acceptance rate 

was 85%.
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2.4.2. fMRI acquisition—Scanning was conducted on a 3T Siemens TiM Trio system 

(Erlangen, Germany), using a standard twelve-channel circularly polarized head coil, at the 

Center for Biomedical Imaging and Neuromodulation at NKI using standard measures 

(Sehatpour et al., 2010; Sehatpour et al., 2006) and considerations for concurrent MRI-tDCS 

implementation outlined in (Esmaeilpour et al., 2019). Briefly, we acquired two resting state 

scans, one during sham and one during active tDCS, in axial orientation aligned to the AC-

PC plane (TR = 2500 ms, TE = 30 ms, FOV = 216 mm, matrix = 72 × 72, 38 3.3 mm slices, 

0.7 mm gap, acceleration factor = 2) with a time series duration of 240 TRs and task-based 

(same sequence) scans with a time series duration of 209 TRs during task + tDCS 

stimulation. Blood oxygenation level dependent (BOLD) data were acquired during resting 

state and task. Motor responses were registered using a custom-made MR-compatible 

keyboard. T1-weighted structural scans also were collected (TR = 1900 ms, TE = 2.52 ms, 

TI = 900 ms, FOV = 256 mm, matrix = 246 × 256, 176 1-mm slices, no gap, acceleration 

factor = 2) aligned to the AC-PC plane.

2.5. Data analysis

2.5.1. Behavioral data analysis

Mean RT analysis:  For initial analyses, RT data from fixed blocks were log-transformed, 

averaged across trials within a block, and normalized by block relative to mean RTs from the 

interspersed random blocks. Exponential decay functions were calculated for each condition 

using group mean data using PRISM Graphpad 7.0 (GraphPad Software, San Diego, CA). 

Values of the plateau and time-constant values were tested across using sum-of-squares F-

tests across the four stimulation conditions. If a significant difference was observed across 

conditions, pairwise comparisons between active tDCS conditions and sham were 

performed. Confirmatory analyses were conducted using mixed-model regression with 

condition as a factor and run number as a covariate. Post-hoc comparisons were conducted 

using Sidak correction for multiple comparisons. Potential order effects were assessed using 

session number for each condition as an additional factor.

Single-trial RT distribution analyses:  For follow-up analyses, single-trial log-RT 

distributions were compared across conditions using single vs. dual-Gaussian models using 

GraphPad 7.0 non-linear curve fitting functions. For each analysis, both single Guassian and 

dual Gaussian fits were considered. For the single Guassian model, data were fit to the 

formula

# of responses @ log − RT = X = Total#of responsesacrossRTs * e− x‐Mean/SD∧2

where Total number of responses, Mean, and SD were modeled parameters. All parameters 

were constrained to be positive values. For the dual Gaussian model, a second set of 

parameters corresponding to the second Gaussian distribution were added. Starting values 

were provided based upon apparent peaks in the histogram plots.

In all cases, the simpler model (single Gaussian) was chosen unless the more complex model 

(Dual Gaussian) was shown to be statistically superior. Comparison between models was 
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assessed using a goodness-of-fit ANOVA. In addition, absolute goodness of fit (R2) was 

required to be > 95% for all accepted fits. Initial analyses were performed using data from 

the random repeat runs only, which yielded unimodal models in all cases. Mean RT values 

from the random runs were used to constrain the slow RT component for the subsequent 

analyses of RT data from the fixed-sequence blocks. Initial values for each model were 

provided based upon visual inspection of RT histograms. Analyses were conducted both by 

quarter to evaluate stability of RTs over the course of the training and collapsed across 

quarters to compare coefficients.

Comparison of percentage fast responses across tDCS conditions was performed by 

comparing dual Gaussian models in which the ratio between fast and slow responses was 

assumed to be constant vs. those in which it was assumed to vary across conditions. The 

simpler model (all percentages equal) was accepted unless the more complex model 

(percentages different) was found to be statistically superior. For individual runs, because 

there were not sufficient trials to model single- vs. dual-Gaussian fits, a cut value of log RT 

= 2.35 log-ms (223.9 ms) was chosen to best discriminate fast from slow responses. For 

display purposes, the absolute number of trials across all RTs was normalized to 100% for 

all conditions.

2.5.2. EEG data analysis

Sensor-level analysis:  Epochs of continuous scalp-recorded EEG extending from 200 ms 

before to 200 ms after each motor response were used to compute the response-locked ERP. 

The data from the two missing electrodes due to pad placements in each stimulation 

condition was replaced using Spherical Spline Interpolation (SSI) (Perrin et al., 1987). 

Baseline was defined as the 200 ms to 100 ms pre-response interval. To obtain the envelope 

amplitude and the phase of a specified frequency band as a function of time, time-frequency 

transformation was performed by using complex demodulation (Hoechstetter et al., 2004; 

Sehatpour et al., 2008) for frequencies of 4–50 Hz in the time-window between −500 to 600 

ms. Baseline was defined as the 200 ms to 100 ms pre-response interval. Frequencies were 

sampled in 2-Hz steps; latencies were sampled in steps of 25 ms. This corresponds to a time-

frequency resolution of +/− 2.83 Hz and +/− 39.4 ms at each time-frequency bin (full width 

at half maximum).

β-ERD values were calculated using temporal spectral evolution (TSE) defined as the 

relative power change at a time-frequency bin compared with the mean power over the 

baseline epoch for that frequency (Pfurtscheller and Lopes da Silva, 1999; Sehatpour et al., 

2008). A one-way ANOVA with post-hoc Sidak correction was performed to test for a 

significant differences of TSE values between sham and each active condition at the C3 

scalp electrode site overlaying the left motor cortex. The corrected significance level α was 

set to 0.05.

Source-space analysis:  Intracranial sources of beta-activity were assessed using a 

Beamformer approach (Van Veen et al., 1997; Sekihara et al., 2001), which involves the 

following steps: 1) For each channel single-trial data in time domain is transformed into 

time-frequency domain in order to compute the complex time-frequency signal (Sehatpour et 
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al., 2008); 2) Complex cross-spectral density matrices is then computed for each trial. 3) A 

forward model is applied, and a lead-field matrix is estimated; and 4) The brain in Talairach 

space is divided into a grid and the normalized task-dependent contribution (q) to a given 

time-frequency range of interest from every location on this grid is then estimated.

Each channel single-trial data in time domain is transformed into time-frequency domain, 

deriving Sx, n(f, t) = Ax, n(f, t) ⋅ eiϕx, n(f, t) as the complex time-frequency signal of channel x 

in trial n at frequency f and latency t, characterized by its amplitude A and its phase φ.

Prior to computation of the Beamformer we removed the event-related signal from each trial 

for calculations of the estimates in the frequency domain (Sehatpour et al., 2008; Van der 

Lubbe et al., 2016). This transformation ensures stationarity in the EEG data notably during 

concurrent tDCS application.

For each trial n the regression coefficient b n is computed as:

bn =
∑f, tSn(f, t) ⋅ S(f, t) 2

∑f, t Sn(f, t) 2

where S = ∑nSn(f, t)

From each trial n, the correlated fraction bn of the time-frequency transform of the average 

waveform was subtracted. This approach accounts for the amplitude fluctuations between 

trials and ensures stationarity.

Complex cross spectral density matrices C are then computed for each trial:

Cxy(f, t) = Sx, n(f, t) ⋅ Sy, n* (f, t)

Here, * indicates the complex conjugate.

The output power P of the beamformer for a specific brain region at location r is then 

computed as (Gross et al., 2001): P (r) =tr′ LT (r) ⋅ Cr
−1 ⋅ L(r) −1

 Here Cr
−1 is the inverse of 

the average of Cxy (f, t) over trials and the time-frequency range of interest, L is the leadfield 

matrix (i.e. the magnitude of the signal each source contributes to each recording sensor 

(Scherg and von Cramon, 1985) of the model containing the regional source (Sehatpour et 

al., 2006; Scherg and Picton, 1991) at location r. In computing the lead-field matrix we used 

the standardized finite element model (FEM) implemented in BESA which has been created 

from an averaged head using 50 individual MRIs in Talairach space. The FEM model 

provides a realistic approximation to the averaged head and uses three compartments: brain/

CSF, skull and scalp to describe the electrical conductivity distribution inside of the head. T 

is the matrix transpose and tr’ [] is the trace of the [3 × 3] submatrix (of the expression in the 

bracket) for the source at location r.
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We then normalized the power P(r) with the power at the corresponding time-frequency 

interval of the sham condition Psham (r) to obtain the value q(r):

q(r) =

P (r)
Psham(r) − 1,  for P (r) ≥ Psham (r)

1 −
Psham (r)

P (r) ,  for P (r) < Psham (r)

The brain in Talairach space is divided into a grid with a resolution of 5 mm3 and the 

beamformer image is constructed from values q(r) computed from every location on this 

grid. q values are then shown in% where q[%] = q * 100. This image is then extrapolated to 

a resolution of 1 mm3 and projected to an inflated brain image derived from an MRI of equal 

resolution. Since in the computation of beamformer image regional sources having three 

orthogonal vectors (i.e. radial, tangential and oblique) are used, projection onto an inflated 

brain surface more accurately represents the spread of the cortical activation. The cortical 

regions with the highest q value are then seeded with a virtual source (Scherg et al., 2019; 

Hoechstetter et al., 2004), revealing three distinct cortical regions at MNI coordinates: 

PMC/SMA [−36, 2, 59] (left BA-6), Motor [−43, −20, 60] (left BA-4), Visual [−38, − 87, 9] 

(left BA-18). The goodness-of-fit value of the model (% variance explained) is 90.0 SE ± 

2.0. Seeded sources allow for individualized fitting of the dipolar angle accounting for 

variations in subjects’ cortical anatomy (Scherg et al., 2019). Source mean β-frequency ERD 

amplitudes for each identified generator (virtual source) were determined on a single-trial 

basis across all tDCS conditions and evaluated by ANOVA with factors of tDCS condition 

and region.

In the next step single-trial source TF data was used to derive coherence measures across 

this cortical network as a measure of functional connectivity (Bressler, 1995 a; Bressler et 

al., 1993; Fries, 2005).

Cxy′ (f, t) =
∑nSx, n(f, t) ⋅ Sy, n* (f, t) 2

∑n Sx, n(f, t) 2 ⋅ ∑n Sy, n(f, t) 2

Coherence ranges from 0 (no coherence) to 1 (maximum coherence). To determine the 

probability that coherence at a particular timefrequency sampling point is significantly 

higher than what is expected from random fluctuations is investigated based on an approach 

suggested by Lachaux et al. (1999) and previously implemented and described by our group 

(Sehatpour et al., 2008).

To investigate the probability that the coherence in sham differed significantly from the 

coherence in each of the other conditions, and to determine if two active conditions differ, 

the individual subject mean coherence estimates were then subjected to a permutation cluster 

analysis (Bullmore et al., 1999; Maris and Oostenveld, 2007). This approach is carried out in 

two general steps.
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In the first step a Student’s paired t-test is carried out for every time-frequency (TF) bin to 

determine if there is a significant difference between the two conditions in the group. Here a 

cluster alpha level of 0.05 is set which allows us to identify the TF bins whose t-values 

exceed the 95th quantile threshold and can be considered as a candidate to be included in a 

cluster of TF bins, which in our case are based on temporal and spectral contiguity.

A cluster value is obtained by summing the t-values of the individual data bins in a cluster. 

This value serves as a test statistic for the next step of the analysis. In addition to the results 

obtained in this preliminary parametric step of the analysis we considered clusters to be 

submitted to the next step of the analysis, for further interrogation by permutation testing, 

based on our a-priori hypothesis (see the introduction) as well as the results observed from 

the scalp data which indicated the modulatory effects of tDCS within a time window of 100 

ms prior to the motor response in the β frequency range 10Hz − 24HZ.

In the second step of the analysis the clusters within the a priori TF window are subjected to 

permutation testing wherein the coherence data for sham gets systematically interchanged 

with the coherence data of the test condition. For each permutation, a new t-test is obtained 

per TF bin and a new test statistic (cluster-level summed t-values) is computed.

Here we have used 2000 permutations (drawn randomly without repetitions) from all 

possible permutations, i.e., 217. From the distribution of the test statistics obtained from our 

permutations we then calculate the proportion of the test values that are larger than the value 

obtained from the initial cluster obtained in step 1. Hence if less than 5% of all values are 

larger than the initial test value it is assumed that the data of the two conditions are not 

interchangeable with a chance level greater than 95% i.e. (P <.05).

2.5.3. fMRI data analysis

Activation analysis (BOLD).: fMRI data processing was carried out using FEAT (FMRI 

Expert Analysis Tool) Version 6.00, part of FSL (FM-RIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl). The following pre-statistics processing was applied following the 

removal of the first three TRs; motion correction using MCFLIRT (Jenkinson et al., 2002); 

non-brain removal using BET (Smith, 2002); spatial smoothing using a Gaussian kernel of 

FWHM 6.0 mm; grand-mean intensity normalization of the entire 4D dataset by a single 

multiplicative factor; high pass temporal filtering (Gaussian-weighted least-squares straight 

line fitting, with sigma = 45.0 s). Time-series statistical analysis was carried out using FILM 

with local autocorrelation correction (Woolrich et al., 2001). Registration to high-resolution 

structural and standard space images (2 mm MNI space) was carried out using FLIRT 

(Jenkinson et al., 2002; Jenkinson and Smith, 2001).

To examine effects of stimulation, first level scans for the Sham condition were entered into 

a mixed-effects (OLS) analysis. To examine condition effects, first-level scans for Sham and 

Visual conditions were entered into a repeated-measures analysis. Contrasts of interest were 

the sham-vertex and vertex-sham comparisons. Z (Gaussianized T/F) statistic images were 

thresholded using clusters determined by Z > 2.3 and a corrected cluster significance 

threshold of P <.05, with minimum cluster size determined according to Gaussian Random 

Fields (GRF) theory (Worsley, 2001).
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RSFC:  Functional connectivity (rsFC) was computed from resting-state fMRI scans during 

sham and active tDCS, using DPARSFA as described previously (Hoptman et al., 2014; 

Chao-Gan and Yu-Feng, 2010). The first 10 images for each time series were discarded. 

Next, images from each session were motion-corrected. The T1-weighted image was 

registered to the functional data, linear trends were removed from the motion-corrected data, 

nuisance covariates were applied (24 motion parameters, global, CSF, and WM signals), 

registered to the EPI template in 3 mm MNI standard space, and smoothed with a 6-mm 

FWHM kernel. Images were then filtered using a 0.01–0.1 Hz bandpass.

For assessment of sham/active (visual-cathodal) rsFC changes, a spherical region of interest 

(ROI; 5 mm radius; MNI coordinate −42, −18, 54, left pericentral gyrus) was created from 

the peak location of motor activation on the sham activation images across subjects. This 

was used as a seed for the rsFC analyses. rsFC values were converted to Z scores using 

Fisher’s r-to-z transform. These data were analyzed using repeated-measures mixed-effects 

(OLS) analysis. Statistical images were thresholded using clusters determined by Z > 2.3 

and a (corrected) cluster significance threshold of P=.05 (Worsley, 2001).

gPPI analysis.: A generalized context-dependent psychophysiological interaction analysis 

(gPPI) (McLaren et al., 2012; Cisler et al., 2014) was implemented to examine task-

associated changes in functional connectivity in relation to tDCS stimulation. Analyses were 

carried out with AFNI software (Analysis of Functional NeuroImages, http://

afni.nimh.nih.gov/afni/) following similar pre-processing steps as described above for 

RSFC. Seed time series from PMC/SMA, motor, dorsal and ventral regions were extracted 

from the pre-processed fMRI data during sham and cathodal visual tDCS conditions. Seed 

regions were based on the location of peak activation during sham fMRI across all subjects. 

Each extracted time series was detrended and deconvolved with the gamma variate 

hemodynamic response function (HRF).

For each seed, the PPI regressor for the task was generated as the product of the 

deconvolved-seed time series and a regressor based on the timing of the task. Separate 

individual-level gPPI general linear model (GLM) analyses were then conducted for each 

seed using AFNI 3dDeconvolve. Each model included the PPI regressor, the seed time series 

and the regressor of the original model. Including both seed and task regressors of the 

original model in the GLM allowed us to test the PPI term as the interaction effect above and 

beyond the main effects. The resulting beta coefficient for the PPI regressor is thus an 

estimate of the amount of signal explained by both the response in the seed region and the 

stimulus condition. Finally, mean PPI beta coefficients (for each seed and tDCS condition) 

were extracted from each seed region in a pairwise fashion and entered into group-level 

analyses.

3. Results

3.1. tDCS results

3.1.1. Field strength mapping—As expected, stimulation over motor cortex produced 

highest field strength within left premotor (0.320 ±.038 V/m) and somatomotor (0.315 ±.038 

V/m) regions, with lower mean field strength within visual regions (mean 0.102 ±.008 V/m). 
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By contrast, visual cortical stimulation produced greatest inward current flow within the 

dorsal visual region (0.219 ±.028 V/m) and outward current flow within the superior parietal 

region (0.219 ±.031 V/m) (Fig. 1B).

3.1.2. Discomfort—All subjects tolerated the tDCS/EEG and tDCS/MRI well. None of 

the participants reported a score higher than 2 on the scale of 0–5 (during EEG: mean = 1.2, 

SD ± 0.6), (during MRI: mean = 1.1, SD ± 0.4). No correlation between discomfort level 

and tDCS condition (including sham) was found (r = 0.036; p=.892). The subjective feeling 

of discomfort was primarily reported as itching (64%), tingling (24%) and burning (12%). 

No adverse events occurred during this study.

3.2. SRTT results

3.2.1. SRTT behavior—The effects of tDCS on motor learning were assessed using 

exponential modeling of behavioral data across runs.

Fixed condition:  During stimulation, RT declined according to a single exponential across 

runs, (Fig. 2A, bottom tracings) with a significant difference in the plateau across conditions 

(F3,72 = 15.91, p <.0001). Motor cathodal (F1,36 = 10.8, p=.0023) and Visual (F1,36 = 26.93, 

p <.0001) stimulation both induced significant RT differences vs. sham, whereas Motor-

anodal stimulation was statistically ineffective (F1,36 = 2.13, p=.15) (Fig. 2B, top). Dorsal 

visual stimulation also increased the rate of improvement (F1,36 = 7.62, p=.009), whereas 

other conditions did not affect motor learning rate (both p >.6). In the random condition 

there was no significant change over time in any group (all p >.4), or significant effect of 

tDCS (F3,12 = 1.736, p=.21) (Fig. 2A, top tracings).

Similar results were obtained using a mixed-model regression analysis with factors of 

stimulation condition and with run number as a covariate. As in the exponential fit model, 

there was a highly significant effect of stimulation condition (F3,1549 = 21.3, p <.0001). 

Difference between sham and both Motor cathodal (p=.013) and Visual (p <.0001) 

stimulation remained significant following Sidak correction for multiple comparisons.

When behavior assessments were repeated 15-min after the end of stimulation (Fig. 2A, 

right), no significant further improvement occurred in any condition. The mean RT across 

blocks was also significantly different across conditions (F3,36 = 5.65, p=.003), with 

significant differences for Motor-cathodal (F1,18 = 13.8, p=.0016), Visual (F1,18 = 6.81, 

p=.02) and Motor-anodal (F1,18 = 9.53, p=.006) vs. sham (Fig. 2B, bottom). By contrast, no 

significant tDCS effects were observed for the random condition (all p >.4).

Single-trial RT distribution:  For assessment of single trial RT distribution, data were first 

log transformed for normalization and then split into quarters, corresponding to 1st half of 

block 1, 2nd half of block 1, 1st half of block 2, and 2nd half of block 2. Thus, each quarter 

contained data from 5 fixed runs and 1 random run. This permitted assessment of evolution 

of response profile across quarters. Subsequent analyses used data collapsed across quarters 

to compare across tDCS conditions.
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During random runs, single unimodal distribution was observed across all 4 quarters in the 

sham condition (Fig. 2C), with mean RT across all quarters of 2.676 ± .002 log-ms (474.2 ± 

1.0 ms). Similar unimodal distributions were observed for all quarters during active 

stimulation as well (Supplementary Table 1). In all cases, R2 goodness of fit to a single 

normal distribution was > 0.99.

By contrast, the RT distribution in the fixed condition fit preferentially to a bimodal (2-

Gaussian) distribution across all 4 quarters in the sham condition (Fig. 2C). When 

comparisons were performed across tDCS conditions bimodal fits were statistically superior 

to a unimodal fit across all quarters and stimulation conditions (F18,478 = 58.3, p <.0001). 

Moreover, in all cases R2 goodness of fit to the bimodal distribution was > 0.95 

(Supplementary Table 1). When data were collapsed across quarters, unimodal fits were 

again observed for all random conditions (not shown), and bimodal fits were again observed 

for all fixed conditions (Fig. 2D), with increased percentage fast responses during Motor-

cathodal and Visual stimulation vs. sham (Supplementary Table 1).

When data were analyzed by run using a cutoff value of fast vs. slow responses of 2.35 log-

ms (223.9 ms), the percent of fast responses increased exponentially across the initial blocks 

(Fig. 2E). As with RT, the plateau value for percentage fast responses was significantly 

different across conditions (F3,72 = 10.62, p <.0001), with highly significant effects of 

Motor-cathodal (F1,36 = 21.32, p <.0001), Visual (F1,36 = 30.5, p <.0001) and a small, but 

significant, effect of Motor-anodal (F1,36 = 4.62, p=.038).

Following stimulation, bimodal distributions were again observed during the fixed sequence 

under all stimulation conditions (all p <.002), with a mean RT for the fast component of 

2.135 ±.007 log-ms (136.8 ms). The difference in percentage fast responses was statistically 

reliable across conditions (F3,100 = 2.95, p=.04), with an increase in percentage fast trials for 

both Motor-cathodal (F1,50 = 5.62, p=.02) and Visual (F1,50 = 4.16, p=.047) stimulation 

relative to Sham, whereas no significant difference was observed for Motor-anodal 

stimulation (F1,50 = 2.53, p=.12).

Order effects:  Visual stimulation was added later in the study and thus was the last session 

for most subjects. Nevertheless, there was no significant effect of order (F3,1444 = 1.33, 

p=.26) or order X condition interaction (F5,1443 = 1.22, p=.3). Furthermore, the condition 

effect remained significant (F3,1448 = 4.96, p=.002) with significant post-hoc difference 

between visual and sham stimulation (LSD p=.04).

3.2.2. SRTT neurophysiology

Scalp neurophysiology:  Neurophysiological responses were back averaged from the motor 

response. As expected, a premotor potential was observed ~25 ms prior to the response (Fig. 

3A). tDCS modulated both the topography (Fig. 3A) and amplitude (Fig. 3B) in a location- 

and polarity-dependent fashion.

In time-frequency analyses, (Fig. 3C), the premotor potential corresponded primarily to a β-

frequency response during the-75 to −25 ms premotor period. tDCS significantly (p <.05) 
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modulated the premotor β-activity, with significant effect of both Motor-cathodal and Visual 

stimulation relative to sham (Fig. 3D).

Single-trial β-analyses:  For these analyses, β-ERD during the −75 to −25 ms premotor 

interval was projected into source space and analyzed across trials. Separate β-sources were 

resolved for left PMC/SMA, Motor and Visual regions (Fig. 4A). tDCS significantly 

modulated β-ERD amplitude at these intracranial sources in a tDCS-type-(F3,99,759 = 138.6, 

p <.0001) and region- (F2,99,759 = 22.9, p <.0001) dependent fashion. The Region X 

Condition interaction was also significant (F6,199,518 = 77.3, p <.0001). Post-hoc pairwise 

comparison between sham and the other tDCS conditions, using Sidak multiple comparison 

correction (Šidák, 1967), showed a significant (p <.001) modulation of β-ERD at each 

region (Supplementary Table 2).

β-coherence was then used as an index of functional connectivity (FC) across each pair of 

the above three cortical sources as a function of task-type (fixed/random) and tDCS 

condition. Under sham stimulation, task-dependent coherence was observed across the three 

regions during the −75 to −25 ms interval. β-coherence was significantly larger during the 

pre-response interval than during baseline (0.05 ±.04), reflecting a functional brain network 

involved in the performance of SRTT (Fig. 4B, left). Furthermore, under sham condition, 

coherence estimates for fast vs. slow trials, revealed a significantly greater FC for visual 

cortex-motor cortex interaction in slow than fast trials, suggesting a greater reliance on this 

connection (Fig. 4C).

Analysis of variance for the effect of stimulation on the coherence measures showed (F3,64 = 

25.3, p <.0001) tDCS modulated coherence in a location- and polarity-specific pattern (Fig. 

4B, right). Post-hoc pairwise comparison between tDCS conditions, using Sidak multiple 

comparison correction showed, relative to sham, Motor-cathodal stimulation reduced 

coherence between PMC/SMA and visual cortex (0.13 ± 0.03, p <.0001) mimicking a 

pattern that is observed between slow vs fast trials (0.11 ± 0.03, p=.04) under the sham 

condition (Fig. 4C), consistent with its beneficial effect on motor learning. Visual-cathodal 

stimulation reduced coherence between motor and visual cortex (0.16 ± 0.03, p=.03) 

suggesting an alternate beneficial connectivity shift. The connectivity pattern under motor-

anodal condition did not differ from sham suggesting the relatively smaller improvement in 

the RT (Fig. 2E) could be the result of local motor effects of anodal tDCS rather than 

network interactions.

Comparison of the coherence difference between motor-cathodal vs visual-cathodal 

stimulations showed significantly lower coherence between PMC/SMA and visual cortex (− 

0.13 ± 0.04, p=.008) and significantly higher coherence between motor and visual cortex 

(0.18 ± 0.04, p=.02). Comparison between motor-anodal vs visual-cathodal stimulations 

showed significantly higher coherence between motor and visual cortex (0.17 ± 0.04, p=.03). 

Comparison between motor-anodal vs motor-cathodal stimulations showed significantly 

higher coherence between PMC/SMA and visual cortex (0.12 ± 0.04, p=.002).
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Comparison of coherence for random vs fixed SRTT sequences under sham showed 

increased coherence in random trials when compared to fast trials (0.14 ± 0.03, p=.02) and 

slow trials (0.21 ± 0.03, p=.008) only between PMC/SMA and motor cortices (Fig. 4D).

3.2.3. SRTT fMRI—A subgroup (n = 8) of subjects also participated in fMRI scanning 

during the SRTT while receiving Sham or Visual (cathodal) tDCS (Fig. 5A). Consistent with 

the results of the β-source localization (Fig. 4A, Supplementary Table 3), significant 

activations were observed in left PMC/SMA along with adjacent frontal eye fields as well as 

in left motor cortex. When relative activation patterns were compared across brain regions, a 

highly significant correlation was observed between the β-source and fMRI measures (r = 

0.81, p <.0001) (Fig. 6).

During Visual-cortex stimulation, a significant reduction in activity was observed 

particularly over PMC/SMA, dorsal (Fig. 5A, arrow) and ventral visual cortex. When these 

regions were used as seeds in a gPPI analysis, a significant negative correlation was 

observed between both motor and dorsal visual cortex and SMA at baseline. Visual tDCS 

significantly altered the pattern of dorsal-SMA interaction, as well as local interaction within 

the dorsal visual region (Fig. 5B). Furthermore, a persistent change in SMA to dorsal visual 

interaction was observed even following cessation of tDCS (Fig. 5C).

3.3. SRT results

3.3.1. SRT behavior—RT was also assessed in a pure SRT condition, in which subjects 

pressed with a single finger whenever they saw a centrally located stimulus. Data were 

collected before, during and after stimulation. ERP were obtained only during stimulation. 

In all cases, data were best fit by a single Gaussian distribution (all goodness of fit R2 > 

0.95) (Fig. 7A).

At baseline, the difference in mean RT across tDCS conditions was not significant (F3,64 = 

2.41, p=.08). By contrast, during stimulation, the mean RT varied significantly across the 

tDCS conditions (F3,64 = 5.98, p=.0012), with significant pairwise reductions for both Visual 

(F1,32 = 5.81, p=.02) and Motor-anodal (F1,32 = 14.8, p=.0005) stimulation vs. Sham (Fig. 

7B).

Similar effects were obtained by ANOVA across all trials and conditions, which showed a 

significant main effect of condition (F3,14,568 = 23.3, p <.0001), with significant post-hoc 

differences between both Visual and Motor-anodal stimulation and sham during stimulation. 

Despite significance, the degree of RT reduction was relatively modest (~15 ms).

3.3.2. SRT neurophysiology—In β-analyses, the main effect of tDCS was not 

significant (F3,45,204 = 2.20, p=.086) although a significant Region X Condition effect was 

observed (F6,90,406 = 3.93, p=.004). When analyses were performed by region, tDCS effects 

were significant only for Motor cortex (F3,45,204 = 6.76, p <.0001), with Motor-cathodal 

stimulation decreasing β-activity vs. sham (p=.008).

In a mixed-model regression of RT vs. regional β-activity across all stimulation conditions, 

there were overall main effects of PMC/SMA (F1,45,176 = 4.94, p=.026) β-activity and tDCS 
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stimulation-type (F3,45,176 = 19.7, p <.0001), and significant interactions of tDCS with 

PMC/SMA (F1,45,176 = 8.25, p <.0001), Visual (F1,45,176 = 5.42, p=.001), PMC/SMA × 

Motor (F1,45,176 = 8.02, p <.0001) and Motor × Visual (F1,45,176 = 825, p <.0001) sources.

Separate analyses were therefore performed by tDCS condition. Under Sham, single-trial RT 

correlated primarily with single-trial β-activity in Visual cortex (F1,12,365 = 6.70, p=.01) and 

the interaction of PMC/SMA and Motor (F1,12,365 = 10.1, p=.001) sources, while the 

relationship with β-activity in PMC/SMA was not significant (F1,12,365 = 3.46, p=.063). By 

contrast, during anodal stimulation, a highly significant correlation was observed between 

RT and single-trial β-activity in PMC/SMA (F1,11,965 = 17.1, p <.0001) (Fig. 7C) and with 

the interaction between PMC/SMA x Motor sources (F1,11,965 = 12.5, p <.0001). No 

significant differences were observed between Sham and Motor-anodal stimulation for the 

lowest 2 hexiles (p >.2), but highly significant differences were observed for each of highest 

4 hexiles of β-ERD (all p <.002).

Comparison of coherence between SRT and fast trials of SRTT showed no significant 

differences across the PMC/SMA - Motor - Visual sources, supporting the hypothesis that 

fast SRTT trials represent a functional shift to an SRT-like process. Comparison of 

coherence between SRT vs slow trials of SRTT showed increased coherence across 

PMC/SMA and Motor (0.18 ± 0.04, p=.03) and across Motor and Visual (0.09 ± 0.03, 

p=.04) cortices. Finally, Comparison of coherence between random trials of SRTT vs SRT 

showed increased coherence across PMC/SMA and Motor (0.21 ±.05, p=.04) cortices (Fig. 

7D).

4. Discussion

tDCS is a non-invasive brain stimulation approach in which low level (1–4 mA) currents are 

applied across the scalp (Bikson et al., 2006). Although the technique is widely used in both 

basic research and clinical treatment studies, predictability and reproducibility of effect 

remain major issues (Bikson et al., 2018; Parkin et al., 2019). Here, we evaluated the 

sensitivity of EEG- and fMRI-based connectivity measures to tDCS effects and motor 

learning in the SRTT task. Our main findings are threefold.

First, we demonstrate that in the SRTT motor learning is associated with a shift in response 

mode from slow, reactive CRT-like response to fast, predictive SRT-like responses, similar to 

what has been observed in other motor learning tasks (Liebrand et al., 2017; Yu et al., 2019). 

Moreover, we demonstrate that these response types show differential connectivity patterns, 

such that slow responses are associated with increased β-coherence between dorsal visual 

cortex and SMA/PMC relative to fast responses. This finding is consistent with a model of 

behavioral plasticity in the SRTT in which, during fast response trials, the subject has 

already identified where the stimulus will appear, and only needs to use the visual stimulus 

to determine timing of the response. In such cases, the response depends primarily on direct 

interaction between dorsal visual and motor cortices, with limited involvement of PMC/

SMA.

Sehatpour et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



By contrast, during slow responses, visual cortex must communicate both location and 

timing of stimulus information to PMC/SMA, which then determines the response type, and 

then transmits to motor cortex. The longer response latency in the slow trials thus reflects 

the differential involvement of PMC/SMA. Consistent with this hypothesis, in the SRTT 

“random” condition, in which only slow responses are possible, connectivity was 

significantly higher between SMA and motor cortex than it was during the fixed condition. 

Consequently, the shift from slow to fast responses may be seen as resulting from 

competition between the visual → motor and visual → PMC/SMA projections, with the fast 

responses reflecting a “win” for the more direct pathway.

Second, we demonstrate that effects of tDCS on motor learning in the SRTT are related to a 

modulation of the shift between fast and slow responses, rather than a shift in mean latency 

of either response type, and that this shift is related to alterations in functional connectivity 

patterns as reflected in both EEG β-coherence and fMRI gPPI measures. Prior studies of 

cortical stimulation in the SRTT have focused primarily on frontal, premotor and motor 

cortex (Nitsche et al., 2003; Kang and Paik, 2011; Robertson, 2005; Robertson et al., 2001). 

By contrast, learning of the motor sequence is thought to be encoded within the dorsal visual 

stream, also termed the “perception for action” system (Keele et al., 2003; O’Regan and 

Noe, 2001). Stimulation over dorsal visual stream would thus plausibly improve plasticity in 

the SRTT by increasing the efficiency of motor encoding

Third, we further document that the “anodal excitatory, cathodal inhibitory” (AECI) model 

of predicting tDCS effect does not hold for motor learning/plasticity, although it may hold 

for simpler types of motor response tasks. The AECI model is based upon the concept that 

anodal stimulation produces net depolarization in the apical dendrite of the superficial 

cortical pyramidal neurons due to its asymmetric orientation. This depolarization then 

increases cortical excitability, leading to decreases in both TMS motor threshold (i.e., less 

energy needed to activate a response) and shorter RT in a simple finger tapping task. 

Cathodal stimulation has the opposite effect (e.g. (Nitsche and Paulus, 2000; Nitsche et al., 

2003; Antal, 2004)). However, the degree of change in RT noted as a consequence of anodal 

stimulation in a simple motor response task (e.g., ~15 ms, Fig. 7), is very small compared to 

the much larger changes in RT seen in motor learning tasks such as the SRTT (e.g., ~300 

ms, Fig. 2), suggesting alternate mechanisms.

An overarching goal of this study was to provide side-by-side evaluation of EEG- and fMRI-

based measures that could serve as target engagement biomarkers during clinical treatment 

studies. To date, tDCS has been used extensively in healthy volunteer subjects in order to 

assess effects on various cognitive functions. On the other hand, it has been used to only a 

limited degree in clinical trials for treatment of specific neuropsychiatric conditions, and its 

utility for these indications has been severely hampered by lack of target engagement 

biomarkers. Specifically, NIMH-supported early-stage testing of device-based intervention 

studies require demonstration of a treatment effect on a target engagement biomarker before 

initiating a clinical trial (Bikson et al., 2018). In the absence of such biomarkers, it remains 

unknown whether negative clinical trials were unsuccessful because the underlying theory 

was incorrect, or because the treatment simply did not engage the intended brain circuit.
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In our EEG studies, we evaluated effects on ongoing EEG activity, surface-based ERP (Fig. 

3), source-space β ERD (Fig. 4A) and source-space connectivity (β-coherence) (Fig. 

4B,C,D). No significant effects were observed in ongoing EEG, consistent with observations 

that such changes only occur with voltage gradients > 1 mV/mm (Vöröslakos et al., 2018). 

Surface ERP measures were sensitive to tDCS effects especially when analyzed in the 

frequency domain (Fig. 3D), but the effects were too limited for detailed mechanistic 

analysis.

More robust effects were detected when ERP responses were mapped into source space 

using a “beamformer” approach. When this was done, a significant relationship was 

observed between changes in motor learning and tDCS-induced network-level alterations 

using either β-coherence (EEG) or gPPI (fMRI). β-coherence measures, in particular, were 

sensitive to the differential network involvement in fast vs. slow trials and across different 

task versions (Fig. 4B,C,D). Significant effects were observed for both of the tDCS 

conditions that enhanced motor learning (motor-cathodal, visual-cathodal), but not for the 

motor-anodal condition that was ineffective during the SRTT (Fig. 4B, lower right).

Importantly, both motor cathodal and visual cathodal stimulations appeared to function by 

altering different connectivities within the distributed motor learning network. Thus, 

whereas cathodal tDCS over motor cortex primarily down-modulated connectivity between 

dorsal visual stream and PMC/SMA, potentially reflecting increased processing efficiency 

within that pathway, cathodal tDCS over dorsal visual cortex primarily downregulated β-

coherence between dorsal visual and motor cortex, suggesting differential mechanism of 

action.

In fMRI, we investigated both BOLD activation over the course of the task and effective 

connectivity as assessed using gPPI. In these studies, significant reductions in BOLD 

response were observed over both dorsal visual and motor cortex with visual-cathodal 

stimulation (Fig. 5A). Moreover, across brain regions we observed a highly significant (p 
<.0001) correlation between ERP and fMRI activation patterns, providing convergent 

validity between the two approaches (Fig. 6). In gPPI studies, the effects of dorsal visual 

stimulation were associated with alterations in effective connectivity within dorsal stream 

itself, as well as within the 3-way SMA, dorsal and dorsal visual network.

Finally, in pre/post rsfMRI, the observed persistent improvement in motor learning was 

associated with a significant reduction in dorsal visual to motor connectivity (Fig. 5C). 

Overall, these findings especially support the use of connectivity measures in assessing 

tDCS target engagement during learning tasks that require distributed neural networks. EEG 

measures are far simpler to obtain concurrently with tDCS and show strong sensitivity to 

tDCS effects. Nevertheless, fMRI-based connectivity measures are feasible, provide 

improved spatial localization and may be used in further refining electrode placement or in 

guiding high-definition tDCS approaches.

Our findings are consistent with an emerging literature demonstrating network-level effects 

(Mehrkanoon et al., 2016; Breakspear, 2017) of tDCS (Heth and Lavidor, 2015). For 

example, Polanía et al. (2018, 2011 a, Polanía et al., 2012, 2011 b) demonstrated significant 
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alterations in EEG and fMRI connectivity during a repetitive motor task, although they did 

not investigate the interrelationship between connectivity and behavioral changes. 

Subsequently, it has been demonstrated that effects of tDCS on BOLD activation were 

dissociable from its local excitatory effects as assessed using TMS, suggesting diverse 

physiological mechanisms (Antal et al., 2011 a; Lopez-Alonso et al., 2015). Beneficial 

effects of tDCS on disorders such as tinnitus, depression and dyslexia may also be 

attributable to network-level effects (To et al., 2018).

Our behavioral results are also somewhat more robust than those observed in other tDCS 

studies, (rev. in Buch et al. (2017)) even for tDCS applied over motor cortex. This may be 

attributable to several factors. First, we used a current of 2 mA, as opposed to prior studies 

that primarily used stimulation currents of 1 mA. One prior study (Cuypers et al., 2013) 

found numerically, but not significantly, greater change in RT following 1.5 vs. 1.0 mA 

stimulation and obtained improvements in RT similar in magnitude to those observed here. 

Use of the higher currents in the present study was enabled by recent safety 

recommendations that support higher current levels (Nitsche and Bikson, 2017). The low 

discomfort levels associated with tDCS stimulation in the present study further support use 

of 2 mA stimulation in future tDCS studies.

A limitation of this study is the relatively small sample size, especially for the imaging 

components (n = 8). Nevertheless, our sample size is similar to that of other studies that 

investigated tDCS effects on the SRTT (rev. in Buch et al. (2017)) and sufficient to detect 

significant tDCS effects. Moreover, we note that this is the first study of which we are aware 

to combine tDCS treatment with either ERP or fMRI in the context of the SRTT. In addition, 

order of the Visual stimulation condition was not counterbalanced across subjects, which 

would potentially affect the across-group comparisons, but would not account for differential 

patterns of effect associated with the different conditions. Moreover, the Visual stimulation 

effect remained significant even following control for stimulation order. Nevertheless, future 

studies using a counterbalanced design are required to replicate the findings.

In addition to its specific findings regarding tDCS modulation of motor learning in the SRTT 

in healthy individuals, the present study may also have direct implications for use of 

network-targeted tDCS for treatment of motor manifestations of neuropsychiatric disorders. 

Thus, it has become increasingly appreciated that “whole brain” diseases such as 

schizophrenia have a prominent motor component including impairments in TMS-induced 

motor plasticity (Mehta et al., 2019) that may significantly contribute to poor treatment 

outcome (Green et al., 2004; Morrens et al., 2014). To this end, a motor domain has recently 

been added to the Research Domain Criteria (RDoC) matrix of the NIMH, facilitating future 

research (Bernard and Mittal, 2015). In schizophrenia, reductions in motor dexterity as 

measured by tests such as the “grooved pegboard” are as robust as those observed in other 

cognitive domains, and strongly predictive of outcome (Revheim et al., 2006; Lehoux, 2003; 

Lin et al., 2015; Dickson et al., 2020; Galderisi et al., 2009). Future studies investigating 

effects of tDCS on motor learning in schizophrenia and other neuropsychiatric disorders thus 

appear warranted as well.

Sehatpour et al. Page 21

Neuroimage. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Conclusions

We provide the first demonstration that 1) motor learning in the SRTT reflects a shift from 

slow, CRT-like responses to fast, SRT-like responses, 2) the shift in response type reflects a 

shift in relative connectivity of dorsal visual cortex to PMC/SMA vs. motor cortex, 3) tDCS 

modulates these alterations, and 4) beneficial effects may be obtained by specific stimulation 

approaches targeting differential components of the circuit. We further demonstrate that 

EEG and fMRI approaches provide complementary and convergent information regarding 

underlying mechanisms. Finally, we demonstrate that source-level β-coherence measures 

obtained concurrent with tDCS may serve as an effective “target engagement” biomarker for 

motor learning, potentially allowing greater application of this approach to both neurological 

and psychiatric disorders associated with prominent impairments in motor plasticity.
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Fig. 1. 
Task, tDCS montages. A. Schematic Task description: Top Right: During the Serial 

Reaction Time Task (SRTT) subjects were cued to press on each trial on a key 

corresponding to 1 of 4 locations on the display screen. Crosses, corresponding to each of 

the four designated keys on the keyboard, were persistently present on the monitor. Subjects 

also performed a Simple Reaction Time (SRT) task, in which a stimulus was presented with 

jittered ISI at a single location and only a single response type was required. Left: The 

figures present the sequence of task presentations and their relationship to tDCS stimulation 

conditions. For EEG all four tDCS conditions were implemented on separate days. For MRI 

only sham and visual-cathodal were implemented. The 30 s periods indicate the ramp up and 

down of the tDCS stimulation window. B. tDCS montage: Pads were placed as shown for 
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the Motor-cathodal/anodal (top) and Visual-cathodal (bottom) stimulation conditions, 

leading to electric field (EF) intensity distributions affecting primarily anterior and posterior 

brain regions, respectively. As the EF intensity maps do not show direction of current flow 

the maps for the anodal and cathodal motor stimulation conditions would be the same.
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Fig. 2. 
Behavioral effects in the SRTT during tDCS. A. Mean RT by tDCS condition across fixed 
and random runs both during tDCS stimulation and 15-min post-stimulation. RTs during 

random runs are shown in the top part of the graph and remain constant over runs. RTs 

during the fixed condition are shown in the bottom part and show exponential reduction over 

time. B. Mean final RT by tDCS condition during (top) and after (bottom) stimulation. 

Values are the plateau values from panel A. C. RT distribution by quarters for Random 

(top) and Fixed (bottom) sequences, showing that responses fit to unimodal distributions 

across for the random condition across all quarters vs. bimodal distributions in the fixed 

condition. Q1 represents combined responses for runs 1–6, Q2: runs 7–12; Q3: runs 13–18; 

and Q4: runs 19–24. Thus, in each quarter there is one random run and 5 fixed runs. 

Responses from after stimulation are combined across all runs (1–12). Note log RT axis. D. 

RT distribution collapsed across quarters during the fixed sequence by tDCS condition 

showing bimodal fits under all conditions. RT distributions for the random sequences (not 

shown) were unimodal under all tDCS conditions. E. Percent fast responses by run: Fast 

responses were defined as those with RT < 2.35 log-ms (223.9 ms), showing progressive 

increase with run number in the fixed condition. The number of fast responses during the 

random runs (not shown) was not statistically different from 0 for any condition. Inset: 
Plateau value for%fast responses across conditions. * * p <.01 vs. sham; * * * p <.001.
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Fig. 3. 
Average scalp β activity: A. Scalp topography of SRTT: response-locked motor potential at 

25 ms prior to the key press showing modulation of the event-related topography under the 

various tES conditions. The green circle represents the C3 electrode scalp site overlaying the 

motor cortex. B. Response-locked ERP: observed at C3 showing tES modulation of the 

scalp potential shortly prior to the key-press (zero). Bottom panel: Mean amplitude of the 

ERP from the shaded area − 75 ms to − 25 ms. Main effect of condition: F3,89,161 = 3.595, 

p=.013; Motor-cathodal vs Sham: mean diff= 0.170, std err = 0.060, p=.013; no other 

significant differences were observed. C. Response-locked TSE: power spectrogram at C3 

showing the tES modulatory effect in the time-frequency (TF) domain. The bounding box 

indicates TF window of 10–24 Hz at −75 to − 25 ms prior to key press (zero). D. Response-

Sehatpour et al. Page 32

Neuroimage. Author manuscript; available in PMC 2021 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locked evoked power: averaged across frequency range 10–24 Hz. Bottom panel: Mean 

power from the shaded area − 75 ms to − 25 ms. Main effect of condition: F3,69,208 = 6.453, 

p <.0001; Motor-cathodal vs Sham: mean diff= − 0.02, std err = 0.008, p=.012; Visual vs 

Sham: mean diff= − 0.024, std err = 0.009, p=.005; no other significant difference was 

observed.
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Fig. 4. 
Single-trial, source-based β analyses: A. Source-space β-distribution over the cortical 
surface: as obtained by Beamformer inverse solution procedure, showing locations of the 

PMC/SMA, motor (in convexity) and visual sources. Data are thresholded at p <.05, 

corrected. Inset: virtual source montage for the β-sources. B. Coherence measures under 
each stimulation condition: Left: (top row) for each source pair significant coherence 

measures (mean ± sem) within the beta-frequency range (10–24 Hz) in the 100-ms pre-

response window are shown. The baseline coherence measures across the sources pairs was 

0.01–0.09 (0.05 ± 0.04). These baseline measures did not differ significantly between the 

tDCS conditions. (bottom row) The coherence values for each time and frequency bin within 

this window (data cluster) was entered into a permutation test to assess the relationship 

between coherence levels in each stimulation condition vs. sham. * p <.05. Right: Bar 

graphs representing coherence measures under each tDCS condition across the intracranial 

source pairs. * p <.05 vs sham. C. Coherence measures slow vs fast trials: (top) 

Alterations in mean coherence values across fast and slow SRTT trials for each source pair 

under sham condition. (bottom) Slow vs Fast trials * p <.05. D. Coherence measures 
random vs fixed trials: significant differential coherence measures when comparing 

random vs fast SRTT trials and random vs slow SRTT trials indicating additional 

recruitment of PMC/SMA-Motor connectivity under the random condition. * p <.05, * * p 
<.01.
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Fig. 5. 
Effects of tDCS on SRTT-related fMRI: (A) fMRI BOLD activation: during SRTT vs. rest, 

showing significant activation in left premotor cortex/supplementary motor area (PMC/

SMA), Motor cortex, and ventral/dorsal visual regions. Data were thresholded at p <.001, 

corrected. B. Generalized psychophysiological interaction: gPPI strength between 

indicated seed and target regions. C. fMRI-based resting state functional connectivity: 
Change in fMRI-based rsFC between PMC/SMA seed (asterisk) and dorsal visual stream. * 

* * p <.001.
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Fig. 6. 
Correlation across fMRI and EEG measures: Correlations between regional β-ERD 

distributions and regional fMRI activation patterns. r = 0.81, p <.0001.
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Fig. 7. 
Simple Reaction Time (SRT) response: A. Single trial RT distributions: showing single 

Gaussian distribution under all stimulation conditions. B. Mean RT by tDCS stimulation 
type: * * p <.01; * * * p <.001 vs sham. C. Correlation: between RT and β-activity at 

PMC/SMA region under sham and motor anodal stimulation conditions. D. Coherence: 
significant differential coherence measures when comparing SRT vs fast SRTT trials, SRT 

vs slow SRTT trials, and random vs SRT. * p <.05.
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