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A B S T R A C T   

Hepatoid adenocarcinoma of the stomach (HAS) is a particular subtype of Gastric cancer (GC) with distinct 
pathological characteristics and genetic profile, but most HAS patients were received identical regimens as 
common GC. To date, only a few studies has been conducted to investigate the molecular characteristics of HAS, 
which may prevent the rational application of new anticancer strategies. To further obtain the genetic features 
and potential predictive and prognostic biomarkers of HAS, our current study evaluated the clinical implications 
of spectrum molecular markers in 36 surgical resection specimens. None Epstein-Barr virus (EBV) positive and/or 
micro-satellite instable high (MSI-h) tumors occurred in our study implies that the molecular classification of 
HAS should be mainly categorized into genomic stable (GS) and chromosomal instability (CIN) phenotypes, and 
wild type P53 status predicts better prognosis. More importantly, although the prognosis and clinical charac-
teristics were independent of programmed cell death-ligand 1 (PD-L1), the presence of tumor infiltrating lym-
phocytes (TILs) still suggested that a portion of the enrolled HAS patients are potentially appropriate candidates 
for immune checkpoint blockade therapy. Additionally, the immune prognostic index (IPI) and derived 
neutrophil to lymphocyte ratio (dNLR) demonstrated their potential as reliable and economic indicators for 
predicting prognosis of HAS. We hope this first systematic evaluation will help in deciphering the molecular 
characterization and potential individualized regimens for this particular subtype of GC.   

Introduction 

Hepatoid adenocarcinoma of the stomach (HAS) is an exceptionally 
rare subtype that accounts for 0.38–1.6% of all gastric cancer (GC) with 

worse prognosis [1–3]. HAS was first proposed by Ishikura et al [4]. This 
rare subtype of primary GC characterized by polygonal cells with a 
plentiful eosinophilic cytoplasm, which resembles of hepatocellular 
carcinoma, the diversified differentiation pattern further supports GC as 
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a highly heterogeneous tumor. However, although HAS has more 
aggressive biological behaviors, different histogenetic identities and 
even distinct genetic profiles [5–8], most HAS patients are treated as 
common GC in clinical practice. 

Recent advances in pathological mechanisms have fueled an upsurge 
in molecular typing and biomarker discovery in GC. The Cancer Genome 
Atlas (TCGA) [9] and Asian Cancer Research Group (ACRG), respec-
tively, classified GC into four molecular subtypes [10], which are closely 
related to genetic contexts, treatment responses and prognoses. Like-
wise, novel biological markers, particularly microsatellite instability 
(MSI), programmed cell death ligand 1 (PD-L1), tumor infiltrating 
lymphocytes (TILs) and tumor mutation burden (TMB), can also effec-
tively predict prognosis and even guide individualized treatment regi-
mens for GC patients. Nevertheless, the molecular subtypes and novel 
biomarker expression patterns in HAS remain controversial and elusive. 

Currently, advancements in the clinical application of immune 
checkpoint inhibitors (ICIs) drive the exploration of various molecular 
biomarkers that may reflect clinical efficacy and prognosis. Wang et al 
[5]. and Tsuruta et al [7]. attempted to identify the molecular charac-
teristics and targets of HAS. Although these studies reported that most 
HAS patients had refractory malignancies with microsatellite stability 
(MSS) [5,7], favorable disease control from ICIs combined chemo-
therapy was observed [11].These findings suggest that HAS is a genet-
ically distinct subgroup of GC, and the reevaluation of molecular 
signatures and current protocols will contribute to a better under-
standing of the pathogenesis of HAS and development of precision 
therapies. 

Accordingly, to further obtain the genetic features and potential 
predictive biomarkers of HAS, our current study evaluated the clinical 
implications of a spectrum of molecular markers in 36 surgical resection 
specimens. Among them, the tumor cell in situ MSI status, Epstein-Barr 
virus (EBV) status, combined positive score (CPS) of PD-L1 and POLE 
mutation were comprehensively assayed. Considering the decisive role 
of the immune microenvironment and peripheral proinflammatory sta-
tus in tumor growth and treatment response, the clinical value of TILs 
and the immune prognostic index (IPI) were simultaneously assessed. 
We hope this first systematic evaluation will help in deciphering the 
molecular characterization and potential individualized regimens for 
this particular subtype of GC. 

Materials and methods 

Patients and case selection 

36 Patients who underwent surgical resection for HAS, curative 
resection was performed in 31 patients, at the Second Affiliated Hospital 
of Zhejiang University School of Medicine between January 2008 and 
June 2018 were enrolled. Among them, 34 patients received 
fluorouracil-based adjuvant chemotherapy. All patients were followed 
up for at least three years after the operation. The definitive diagnosis of 
HAS was dependent on the histomorphological features and immune-
phenotypical evidence (immunohistochemistry staining of alpha-feta 
protein (AFP), glypican-3, SALL4, HepPar-1 and arginase-1). Tumor 
staging was determined according to the 8th edition of the guidelines of 
the Union for International Cancer Control/American Joint Committee 
on Cancer (UICC/AJCC) for the stomach. This retrospective study was 
approved by the Ethics Committee of the Second Affiliated Hospital of 
Zhejiang University School of Medicine 

DNA and RNA extraction 

Cancer and matched normal samples were obtained as formalin-fixed 
and paraffin embedded (FFPE) tissue (five sections, each 7 µm thick). 
Genomic DNA was extracted using a DNA FFPE Tissue Kit (Amoy Di-
agnostics Co. Ltd). DNA purity and quantification were assessed using a 
NanoDrop 2000 UV–Vis spectrophotometer (NanoDrop products, 

Wilmington, DE). 

MSI status determination 

The MSI Analysis kit (SinoMDgene Co. Ltd), was used for the 
detection of MSI. This kit allows the simultaneous evaluation of 6 flu-
orescently labelled MSI markers: NR-27, NR-24, NR-21, BAT-25, BAT-26 
and MONO-27. PCR products were loaded into the ABI PRISM 3130XL 
Genetic Analyzer (Applied Biosystem). The data were analyzed using 
Gene Mapper software (Applied Biosystems), which automatically 
determined the actual size of the PCR products and the amount of 
fluorescent signal from electrophotography outputs. MSI was predicted 
by the presence of novel peaks in tumor tissue compared to the control. 
Instability in two or more microsatellite loci was categorized as MSI- 
high (MSI-h), and that in a single locus was categorized as MSI-low 
(MSI-l). The absence of MSI in all 6 markers and MSI-l were grouped 
as microsatellite stability (MSS) for further analyses following current 
guidelines. 

POLE mutation determination 

Mutations in the exonuclease domain of POLE (amino acids 
268–471) were identified mainly in exons 9, 13, and 14. The primer sets 
used covered these regions and are described later in this subsection. 
Polymerase chain reaction (PCR) amplification and purification were 
performed according to the manufacturer’s instructions (Shenggong, 
Shanghai), followed by Sanger sequencing. The primers used were as 
follows: POLE-Exon 9 forward, 5′- tgcttattttgtccccacag − 3′ and reverse, 
5′- tacttcccagaagccacctg-3′; POLE-Exon 13 forward, 5′- 
tctgttctcattctccttccag-3′ and reverse 5′- cgggatgtggcttacgtg − 3′; and 
POLE-Exon 14 forward 5′- tctggcgttctctcctcag-3′ and reverse 5′- cga-
caggacagataatgctca − 3′. After confirming that mutations were somatic, 
the pathogenic impact of the mutation was annotated in three groups: 
hotspot mutations (P286R, V411L, S297F, A456P and S459F), POLE 
mutations with published high total mutational burden (TMB) 
(TMB>100Mb) (in our cohort A465V, D462Y, P436H), and POLE mu-
tations of unknown significance (VUS). For the subsequent analysis, 
except where specifically stated, only the POLE hotspot mutations were 
defined as POLE mutated. 

PD-L1 expression determination 

Immunohistochemistry (IHC) was performed with a Ventana 
BenchMark ULTRA automated staining system according to the manu-
facturer’s instructions using monoclonal antibodies against PD-L1 (clone 
E1L3N, 1:1000, Cell Signaling Technology) in 3 µm sections. The sam-
ples were processed in the automatic Ventana Benchmark Ultra platform 
using the OptiView Universal DAB detection kit and the OptiView 
Amplification kit. Tonsil samples were used as positive controls. Tris- 
buffered saline was used instead of primary antibody for negative con-
trols. For PD-L1 analysis, the specimens were scored on the basis of the 
percentage of stained tumor cells (TCs) and tumor infiltrating immune 
cells (TIICs). PD-L1 positive cases were defined by the presence of at 
least 1% TCs or TIICs with membrane staining, regardless of the in-
tensity. The highest score was selected if two or three cores from the 
same case exhibited different PD-L1 expression scores. 

TP53 expression determination 

Immunohistochemical analysis of TP53 expression in paraffin- 
embedded tissue sections was performed as previously described [12]. 
The serial sections were stained with hematoxylin-eosin (HE) and IHC 
(p53, DO-7, 1:200; Cell Signaling Technologies 48,818) in clinical HAS 
samples. 

Immunohistochemical staining was evaluated and scored in a double 
blinded manner. Protein expression was assessed by using the sum of the 
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percentage positivity of stained TCs and the staining intensity. The 
percentage positivity was scored from 0 to 3, with 0 for< 10%, 1 for 
10–30%, 2 for 31–50%, and 3 for> 50%. The staining intensity was 
classified follows: negative (score 0), weak (score 1), moderate (score 2) 
and strong (score 3). Subsequently, the expression was calculated as the 
value of percentage positivity score x staining intensity score, which 
ranged from 0 to 9. Drawing on published studies [13,14], the final 
expression level of p53 was defined as “wild type” (score 3–7) and 
“mutation status” (score 0–2 and 8–9). 

EBV detection 

EBV infection was studied by chromogenic in situ hybridization for 
EBV-encoded RNA (EBER-ISH, INFORM EBER probe, Ventana Medical 
Systems) using the same equipment as that described above, with 
enzymatic digestion (ISH protease) and the iViewBlue detection kit. The 
specimens from a patient with known EBV-positive gastric carcinoma 
were used as a positive control. A tumor was considered EBER-negative 
if EBER staining was undetected or was expressed only in benign- 
appearing lymphoid cells, and EBER-positive if the signal was local-
ized to malignant epithelial cells. 

TILs assessment 

Since there is no current consensus on the morphologic evaluation of 
TILs in GC, the present TILs evaluation in HAS was based on a modified 
version of TILs scoring recommendations of the international TILs 
working group on breast cancer[15], and the reliability and repeat-
ability of this scoring methodology was verified in GC [16,17]. Briefly, 
stromal TILs (str-TILs) was defined as the percentage of the tumor 
stromal area occupied by mononuclear inflammatory cells over the total 
intratumoral stromal area, and intratumoral TILs (itu-TILs) was defined 
as the percentage of the tumor epithelial nests that contained infiltrating 
lymphocytes. Regions of tissue necrosis, outside the tumor border and 
around normal gastric structures were excluded. All slides were scanned 
with an objective of × 40 magnification, and the average number of TILs 
was assessed as a continuous semi-quantitative parameter. All cases 
were classified into high or low subgroup. 

IPI determination 

IPI score employed the criterion for lung immune prognostic index 
(LIPI) [18], which has been shown to be an effective prognostic marker 
as well as an ICIs treatment predictor for various solid tumors, including 
gastric cancer. Specifically, the IPI was calculated based on pretreatment 
levels of the derived neutrophil to lymphocyte ratio (dNLR) and lactate 
dehydrogenase (LDH). The dNLR was calculated as neutrophil 
count/(total leukocyte count – neutrophil count). The IPI was stratified 
into three groups: the good (score 0, LDH < normal and dNLR < 3), 
moderate (score 1, LDH ≥ normal or dNLR ≥ 3) and poor (score 2, LDH 
≥ normal and dNLR ≥ 3). 

Statistical analyses 

The chi-square test or Fisher’s exact test was performed as appro-
priate for categorical variables, and disease free survival (DFS) and 
overall survival (OS) were estimated by using the Kaplan-Meier method. 
DFS was calculated from the date of radical surgery to the date of death 
or adenocarcinoma relapse, whichever occurred first, in the 31 patients 
who underwent radical surgery. OS was defined as the time between 
surgery and death of any cause or last follow up in all 36 patients 
enrolled.  A Cox model was used for multivariate analysis. All statistical 
analyses were performed using SPSS 17.0 software. P<0.05 was regar-
ded as statistically significant. 

Results 

Baseline clinicopathological features of 36 HAS patients 

In the present study population, 31 patients underwent radical 
operation, and 5 patients received palliative resection. The baseline 
clinical and pathological characteristics are presented in Supplemen-
tary Table 1. Representative images of HAS, PD-L1 staining, itu-TILs 
and str-TILs are simultaneously shown in Fig. 1. 

The data revealed that HAS had a higher prevalence in the elderly (>
60 years, 22/36, 61.1%) male (30/36, 83.33%) cohort. Most tumors (33, 
91.67%) were located in the antrum and corpus of the stomach and only 
a few case tumors (3/36, 8.33%) were located in the gastroesophageal 
junction; among them, poorly differentiated tumors (32/36, 88.89%) 
with diameters less than 5 cm (26/36, 72.22%) represented the 
majority. 

According to the 8th edition of the UICC and AJCC staging guide-
lines, 8 patients (22.22%) were pathological tumor-node-metastasis 
(pTNM) stage I/II, and 28 (77.78%) were stage III/IV. In particular, 
29 patients (80.56%) had T3/4 tumors and 27 (75%) had lymph node 
metastasis. Not surprisingly, HAS was frequently accompanied by 
vascular invasion (29, 80.56%), and the liver was the most common site 
of the distant metastasis of HAS (3/4, 75%). AFP, a potential serum 
biomarker for HAS, was elevated in more than half of the patients (20/ 
36, 55.56%), and 10 patients (10/36, 27.78%) had a serum AFP level ≥
200 ng/ml. 

All present HAS cases were classified as the GS/CIN subtype, and the 
majority had TP53 mutations 

The expression patterns of prognostic markers and ICIs curative ef-
fect predicted molecular targets are summarized in Supplementary 
Table 2. Nine patients (25%) had PD-L1 positive (CPS = 1) tumors, 
although notably, no patients had higher scores. It is also noteworthy 
that none of the HAS patients showed EBER positive reactions, MSI-h 
status or POLE mutations. This could indicate that HAS is a unique 
subtype of GC with specific genetic alterations, and most cases of HAS 
should be assigned to GS/CIN subtypes according to TCGA criteria. 
Considering the clinical practicality of ACRG classification, we further 
stratified the HAS patients into TP53 + (12/36, 33.33%) and TP53- 
types (24/36, 66.67%), which suggested that at least part of HAS pa-
tients should be assigned to the MSS/TP53+ subtype. 

Regarding the expression level of TILs, positive str-TILs and itu-TILs 
were observed in 77.78% (28/36) and 86.11% (31/36) of the HAS pa-
tients, respectively. We used 20% as a cutoff limit in the present study, 
27.78% (10/36) and 41.67% (15/36) of the patients were accordingly 
determined to have a high expression pattern of str-TILs or itu-TILs, 
respectively. Additionally, the IPI scores of 36.11% (13/36) patients 
were good (score 0), those for 41.67% (15/36) patients were moderate 
(score 1), and those for 22.22% (8/36) of the patients were poor (score 
2). 

TP53 rather than PD-L1 was significantly associated with 
clinicopathological characteristics, but neither serve as a prognostic factor 
for HAS 

Statistical analysis revealed that the TP53 mutation cohort exhibited 
significantly more frequent lymph node metastases than the TP53 wild- 
type cohort (21 vs. 6, P = 0.036); correspondingly, the former group had 
a worse pathological stage (P = 0.009, Supplementary Table 3). Sub-
sequently, survival analysis demonstrated a trend toward better OS and 
DFS for patients with a TP53 + status, but these improvements were not 
significant (P = 0.15 or P = 0.32, Fig. 4.C. and F.). 

In contrast to the TP53 status, we did not observe any correlation 
between the CPS of PD-L1 and the clinicalpahtological characteristics of 
HAS (Supplementary Table 4). Although a portion of PD-L1 negative 
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patients tended to show better OS or DFS, the difference was not sig-
nificance (P = 0.62 or P = 0.93, Figs. 2.A. and 3.A.). 

itu-TILs rather than str-TILs was associated with TNM stage and prognosis 
of HAS 

After stratification by TIL accumulation site, itu-TILs was not asso-
ciated with tumor invasion depth, lymph node metastasis or vascular 
invasion, but lower itu-TILs was significantly associated with higher risk 
of lymph nodal metastasis and advanced TNM stages (P = 0.019, P =
0.046, Supplementary Table 5). Unexpectedly, the degree of str-TILs 
showed no association with any clinicopathologic characteristic (Sup-
plementary Table 6). Correlation analysis further confirmed the posi-
tive relationship between advanced TNM stage and lower itu-TILs (P =
0.03, F = 5.18, R2=0.105), but not with str-TILs (P = 0.118, F = 2.572, 
R2 = 0.07). 

Kaplan-Meier analysis explicitly showed that the higher itu-TILs 
group exhibited a more favorable prognosis (P = 0.02, Fig. 2.B.), the 
higher str-TILs group demonstrated a similar OS advantage but without 
significant difference (P = 0.17, Fig. 2.C.). Additionally, both the higher 
itu-TILs group and the higher str-TILs group showed a trend towards 
improved DFS, however this difference did not achieve statistical sig-
nificance (P = 0.09, P = 0.14, respectively, Fig. 3.B. and C.). 

Better IPI indicated improved prognosis in the HAS cohort 

The index of systemic immune inflammation has been demonstrated 
to reflect the efficacy of ICIs and targeted therapy in a variety of human 
cancers [18,19]. We further performed an exploratory retrospective 
study in the HAS cohort. Fisher’s exact analysis revealed that the cohort 
with a better IPI score may have a lower vascular invasion rate than the 
poor score group (P = 0.044, 1 sided or P = 0.073, 2 sided; 

Supplementary Table 7). 
Survival analysis further revealed that a better IPI score was asso-

ciated with an improved OS (IPI score 0 vs. 1/2, P = 0.02; score 0 vs. 1, P 
= 0.02 score 0 vs. 2, P = 0.04; score 1 vs. 2, P = 0.54; Fig. 2. D–F.). A 
similar association between a better IPI score and a prolonged DFS was 
also found (IPI score 0 vs. 1/2, P = 0.03; score 0 vs. 1, P = 0.03; score 0 
vs. 2, P = 0.02; score 1 vs. 2, P = 0.42; Fig. 3. D–F.) 

Further stratified analysis indicated that compared with the plasma 
LDH concentration, the dNLR level was more relevant to clinicopatho-
logical characteristics and prognosis in HAS patients. Specifically, a 
better dNLR level was simultaneously associated with well differentia-
tion (P = 0.04) and a decreased lymph node metastasis ratio (P = 0.04, 1 
sided or P = 0.055, 2 sided; Supplementary Table 8). In contrast, the 
LDH concentration did not correlate with any parameter in the present 
analysis. As shown in Fig. 4, the estimated median survival time in the 
LDH high or normal group was 26 or 37 months, respectively, (P =
0.29), in contrast, the lower dNLR group (< 3) had obviously improved 
prognosis (mean overall survival time, 62.2 months vs. 23.2 months, P 
= 0.01) than patients with poor dNLR score (> 3). Furthermore, a lower 
dNLR score (P = 0.03), but not normal LDH concentration (P = 0.33), 
favored longer DFS in patients who received radical surgery. 

Univariate and multivariate survival analysis of prognostic factors 

At the time of the present study, 51.61% (16/31) of the patients had 
disease recurrence and 55.56% (20/36) of the patients died. Univariate 
and multivariate analyses were performed to evaluate the prognostic 
factors affecting DFS and OS. 

Univariate analysis (Table 1) showed that lymph metastasis (P =
0.038), TNM stage (P = 0.02), itu-TILs (P = 0.046) and IPI score (P =
0.039) were significantly associated with OS, however, only TNM stage 
(P = 0.035) and IPI score (P = 0.031) were independent prognostic 

Fig. 1. Typical image of pathological staining. 
The representative photomicrographs of 
hematoxylin-eosin staining picture of HAS (A), 
the tumor composed of large polygonal eosin-
ophilic hepatocellular carcinoma like cells, 
identically pathogenic manifestation was also 
observed in C. and D. Representatively immu-
nohistochemical staining of PD-L1 positive 
expression in HAS (B). Typical hematoxilin and 
eosin staining of itu-TILs (C) and str-TILs (D). 
Original magnification × 200, magnified pic-
ture × 400, scale bar represents 50 µm.   
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factors for OS in Cox regression multivariate analysis. 
IPI status (P = 0.029) and dNLR (P = 0.01) were closely associated 

with DFS in univariate analysis, however, the multivariate analysis 
failed to further confirm the statistical significance (Table 2). 

Discussion 

Despite the lack of comprehensive knowledge of the molecular cy-
togenetic features, most HAS patients receive regimens identical to those 
for common GC patients [1,2]. As such, the identification of predictive 
and prognostic factors to optimize the therapeutic protocol is therefore 
of crucial importance for patients suffering this highly heterogeneous 
malignancy. Checkpoint blockade immunotherapy, especially the 
PD-1/PD-L1 targeting regimen has recently revolutionized the treat-
ment for GC [20,21], but the clinical features of HAS patients who could 
potentially benefit from this therapy remain controversial. 

Although indicators including CPS, EBV, MSI-h and POLE/POLD1 
mutations are very promising predictive markers for GC tumor response 
to ICIs therapy, the relationship between these markers and the thera-
peutic effect remains controversial [22,23]. Similar to a previous study 
[24], we did not find any influence of PD-L1 expression on the prognosis 
or clinical characteristics. Additionally, the positive status of EBV and 
MSI-h was extremely low [7] to meet the requirements for practical 
applications in the HAS cohort. A meaningfully retrospective study also 
suggested BRCA2 alteration as a potential biomarker associated with 
response to ICIs [25], however due to the interference of medication and 
the lack of prospective data [26], the specific roles and the screening 
value of BRCA1/2 in immunotherapy for GC patients remains unchar-
acterized. These current findings indicated that the screening of 

biomarkers to predict the treatment response and selecting suitable 
candidates for ICIs have become a priority in the HAS cohort. 

HAS is primarily categorized into the GS/CIN subtypes, and the majority 
of HAS patients have P53 mutation 

Molecular classification and biomarker prediction are attractive ap-
proaches for revealing tumor pathological characteristics, and further 
facilitating the development of genome guided personalized therapy. 

TCGA categorized gastric adenocarcinoma into EBV (9%), MSI 
(21%), genomically stable (GS, 20%) and chromosomal instability (CIN, 
50%) phenotypes [9]. Additionally, the Asian Cancer Research Group 
(ACRG) classified GC into MSI (23%), MSS with intact p53 
(MSS/TP53+, 36%), MSS with p53 mutations (MSS/TP53-, 26%) and 
MSS with epithelial-mesenchymal transition (MSS/EMT, 15%) [10]. 
These novel molecular classifications recognized the subtype with 
dismal prognosis (GS and MSS/EMT) and further detected the potential 
therapeutic targets. 

Deviating from the proportions of each subtype in TCGA classifica-
tion, all HAS patients (36/36, 100%) in the present study should be 
categorized into GS/CIN subtypes, and this proportion is significantly 
higher than that of common GC (69%) [9]. It is generally believed that 
cumulative epigenetic alterations lead to the more frequent occurrence 
of an MSI status in older patients, but we did not observe the same 
pattern in HAS patients. Compared with our research, previous findings 
showed that 94% of cases of HAS belonged to GS/CIN [7]. 

Notably, GS and CIN GC are generally considered to have poor 
therapeutic response to ICIs treatment, however, ICIs combined 
chemotherapy seems to function well in the clinical practice of HAS 

Fig. 2. Higher itu-TILs and lower IPI score, rather than PD-L1 and str-TILs, predicted improved overall survival in HAS patients although a minority of PD-L1 
negative patients tended to show a better OS, yet without any statistical significance (A). Higher itu-TILs (B) rather than str-TILs (C) predicted a better OS. Simi-
larly, better (lower) IPI score represented favorable prognosis (D), and the statistical difference was more evident with the IPI score decreasing (E and F). All 36 
patients were included in the OS analysis. 
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treatment [11]. A portion of HAS patients with TP53+ status may be one 
of the plausible explanations for this particular phenomenon, and these 
patients would be likely to exhibit a good response to ICIs therapy. The 
subtypes from TCGA or ACRG classification may have some overlap in 
molecular-pathological characteristics, for instance, the similarities be-
tween MSS/TP53+ and EBV, MSS/TP53- and CIN, MSS/EMT and GS 
subgroups [22,27]. 

Taking into consideration the clinical practicality of ACRG classifi-
cation and the facilitation of P53 detection, we further stratified the HAS 
patients into TP53 + (33.33%, 12/36) and TP53- types (66.67%, 24/ 
36), which suggested that at least some HAS patients should be assigned 
to the MSS/TP53+ subtype. GC patients with wild type TP53 generally 
have plentiful intratumoral lymphocyte infiltration [28], which is 
associated with favorable prognosis and increased ICIs sensitivity. 
Recently, an in vivo study further corroborated that the TP53 is a 
favorable condition for T cell infiltration and checkpoint therapy [29]. 
Likewise, the present study also observed an improved survival trend in 
patients with wild-type TP53 status, and the potential high mutation 
rate and TILs in MSS/TP53+ might be the underlying mechanisms for 
improved survival and further suggest the rationality of ICIs therapy in 
appropriated HAS patients. 

itu-TILs can be used as prognostic indicators for HAS patients 

TILs is a major manifestation of the host immune response against 
tumor progression, and it is considered as an immunotherapeutic 
signature that could guide personalized ICIs therapy [30]. The tumor 

microenvironment has been divided into 4 types based on the presence 
of TILs and PD-L1 expression [31], GS and CIN GC were classified into 
II/III subtypes (cold non-inflamed microenvironment) with poor re-
sponders to PD-1/PD-L1 blockade therapy. From this perspective, only 
EBV and MSI GC have been widely recognized as immunogenic tumors 
and appropriate candidates for ICIs [32]. However, our study charac-
terized partial HAS tumors that exhibited higher TILs status (41.67% 
with itu-TILs, and 27.78% with str-TILs), and higher itu-TILs was 
significantly correlated with better pTNM staging and prognosis. These 
results suggested that some HAS patients may benefit from ICIs therapy. 
Although TILs has demonstrated the capability to be an effective pre-
dictive parameter for ICIs in multiple tumor types [33,34], until now 
there has been no consensus on the specific assessment and exact pre-
dictive value for TILs in GC [35], and such limitations restrict their 
practical application in HAS patients. Therefore, further exploration for 
reliable and economic indicators to optimize the therapeutic protocol of 
HAS is warranted. 

IPI and dNLR are convenient and economical prognostic markers for HAS 
patients 

The systemic immune inflammation index has been confirmed as a 
prognostic factor in multiple cancers [22]. Inflammatory responses have 
been verified to participate in the initiation and progression of malig-
nancies, and are even directly correlated with the status of circulating 
GC cells [36]. In the present study, although the IPI index only has a one 
sided statistical correlation with vascular invasion, significant and 

Fig. 3. Better IPI score, but not PD-L1 and TILs, predicted improved disease free survival in HAS patients PD-L1 expression was not associated with the DFS of HAS 
patients (A). Patients with higher itu-TILs and str-TILs denoted a possibility of better DFS, however, the trend did not reach statistical significance (B and C). Similarly 
with predictive role in OS, better (lower) IPI score was significantly associated with longer DFS (D), and the statistical difference was more meaningful with the IPI 
score decreasing (E and F). 31 patients received radical resection were included in the DFS analysis. 
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inverse correlation with OS and DFS was observed, and the P value 
tended to increase with a higher IPI score. More meaningfully, the 
central component of the IPI, dNLR had a more significant statistical 
correlation with PFS and OS. As in a the previous study [18], we also 
considered that dNLR is more effective as a measure of immune system 
rather than LDH. 

Neutrophils were not only conversely associated with OS, PFS and 
DFS [37], but also predicted a less favorable response to immunotherapy 

in various tumors [38], and served as oncogenic factors that can even 
induce acquire immunosuppressive and tumor progression [39]. A 
higher dNLR is a potential hallmark of deficient cell mediated immunity 
and systemic inflammation, which may underlie the promotion of 
angiogenesis, DNA alteration and tumor proliferation [40]. Elevated 
baseline NLR was associated with worse ORR, PFS and OS in patients 
received PD-1/PD-L1 blockade therapy [41]. In a GC cohort, elevated 
NLR prior to and during treatment with nivolumab was associated with 

Fig. 4. dNLR, instead of LDH level and TP53 status, simultaneously associated with overall survival and disease free survival in HAS patients patients with normal 
dNLR (< 3) showed improved OS and DFS than the patients with elevated dNLR (> 3) (A and D). Although the patients with normal LDH level (B and E) and wild 
type TP53 (C and F) showed a certain degree of improvement in OS (B and C) and DFS (E and F), unfortunately, the differences did not research statistical significant. 
All 36 patients were included in the OS analysis, 31 patients received radical resection were included in the DFS analysis. 

Table 1 
Multivariate analysis for overall survival in all 36 HAS patients.   

Univariate analysis Multivariate analysis  

P HR 95% CI P HR 95% CI 
AGE ≤60 vs. > 60 0.942 1.038 0.382–2.818    
SEX M vs. F 0.130 0.209 0.028–1.587    
Differentiation 0.957 0.961 0.219–4.205    
Tumor location 0.334 0.481 0.109–2.120    
Tumor size 
> 5 cm vs. ≤ 5 cm 

0.688 0.807 0.284–2.296    

T1 + 2 vs. T3 + 4 0.591 1.410 0.402–4.939    
N0 vs.N1–3 0.038 0.116 0.015–0.892    
TNM 

III + IV VS. I + I 
0.020 5.846 1.326–25.765 0.035 5.730 1.129–29.091 

Vascular invasion 0.116 0.027 0.001–2.433    
AFP 0.177 0.423 0.121–1.476    
PD-L1 expression 0.602 0.756 0.264–2.166    
itu-TILs 0.046 2.884 0.990–8.396    
str-TILs 0.320 1.778 0.572–5.526    
IPI score 0.039 0.264 0.075–0.933 0.031 0.218 0.055–0.867 
dNLR 0.038 0.326 0.113–0.941     
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worse prognosis [42]. In addition, there is argument that the combina-
tional score of local and host tumor immune response (TILs and NLR) 
could more precisely stratify patients with stage III colon cancer [43], 
but this potency have not been validated in the current and previous 
studies [44,45], the prognostic stratification approach merit further 
investigation in larger samples. The present analysis explicitly showed 
that the IPI and/or dNLR are potential predictive factors for HAS pa-
tients, and can even guide the development of individualized treatment 
plans. 

In summary, the present study verified the molecular typing of HAS, 
and further explored the predictive and prognostic value of a series of 
immune checkpoint related indicators. As mentioned above, portion of 
the enrolled patients were potentially appropriate candidates for ICIs, 
although the vast majority of HAS patients should be categorized into 
the GS/CIN subtype. Moreover, the composite assessment of the 
expression status of TP53, TILs and IPI may demonstrate the potential of 
reliable and economic indicators to optimize therapeutic protocols for 
HAS patients. Naturally, more clinical and laboratory evidence with 
standardized methods and larger populations is needed to verify the 
above standpoint. The present study has contributed to the integrated 
knowledge and provided a new perspective for patient stratification in 
HAS cohorts. 
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