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mTOR-sensitive translation: Cleared fog reveals more trees
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ABSTRACT
Translation is fundamental for many biologic processes as it enables cells to rapidly respond to stimuli
without requiring de novo mRNA synthesis. The mammalian/mechanistic target of rapamycin (mTOR) is a
key regulator of translation. Although mTOR affects global protein synthesis, translation of a subset of
mRNAs appears to be exceptionally sensitive to changes in mTOR activity. Recent efforts to catalog these
mTOR-sensitive mRNAs resulted in conflicting results. Whereas ribosome-profiling almost exclusively
identified 50-terminal oligopyrimidine (TOP) mRNAs as mTOR-sensitive, polysome-profiling suggested that
mTOR also regulates translation of non-TOP mRNAs. This inconsistency was explained by analytical and
technical biases limiting the efficiency of ribosome-profiling in detecting mRNAs showing differential
translation. Moreover, genome-wide characterization of 50UTRs of non-TOP mTOR-sensitive mRNAs
revealed 2 subsets of transcripts which differ in their requirement for translation initiation factors and
biologic functions. We summarize these recent advances and their impact on the understanding of mTOR-
sensitive translation.

Abbreviations: eIFs, Eukaryotic translation initiation factors; mTOR, mammalian/mechanistic target of rapamycin;
RPF, ribosome protected fragments; RNAseq, RNA-sequencing; TOP, terminal oligopyrimidine; UTR, untranslated
region; TSS, transcript start site; NanoCAGE, nano cap analysis of gene expression
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Selective regulation of mRNA translation via the
mTOR pathway

Gene expression is modulated at multiple levels including
transcription, mRNA-splicing, -export, -stability, -translation
and protein-stability.1 Each regulatory layer contributes to the
repertoire and levels of expressed proteins. Modulation of
mRNA-translation and/or protein-stability allow cells to rap-
idly adjust their proteomes in response to external and inter-
nal cues without altering mRNA levels.2,3 As a result, protein
levels do not always reflect steady-state mRNA abundance.4-7

Moreover, it is thought that only a fraction of all cellular
mRNA is translated at a given moment.8-10 Indeed, although
still highly debated,11 mRNA translation has been suggested
to modulate protein levels to a similar extent as transcription
and has therefore emerged as a principal post-transcriptional
mechanism affecting the proteome.6,12 Consistently, transla-
tional control plays central roles in pivotal biologic processes
including control of the immune system, cell proliferation and
development; and diseases including cancer.13,14 Common to
these contexts is that mRNA translation is selectively modu-
lated to alter synthesis of specific subsets of proteins which
are required to mount an optimal response to a variety of

stimuli; and when dysregulated can lead to a wide array of
pathologies.13 Thus, deciphering mechanisms by which trans-
lation efficiencies of individual mRNAs are reprogrammed in
response to stimuli and/or in normal vs. dysfunctional cells is
crucial for a more complete understanding of many biologic
phenomena.

mRNA translation can be divided into 4 phases – initiation,
elongation, termination and ribosome recycling.15 To date, the
best described examples of modulation of translational efficien-
cies occur at the rate-limiting initiation step, i.e. the efficiency
of ribosome recruitment to mRNA.16 In mammals initiation is
facilitated by multiple eukaryotic translation initiation factors
(eIFs) including the eIF4F complex. eIF4F recruits mRNA to
the ribosome and consists of the mRNA cap binding subunit
eIF4E, the scaffolding protein eIF4G and the DEAD box RNA
helicase eIF4A.16 The mechanistic/mammalian target of rapa-
mycin (mTOR) complex 1 (mTORC1) stimulates assembly of
the eIF4F complex by phosphorylating and inactivating the 4E-
binding proteins (4E-BP1, 2 and 3) which otherwise prevent
eIF4E:eIF4G interaction and thereby eIF4F complex assem-
bly.17-21 Although eIF4E is required for cap-dependent transla-
tion of all nuclear-encoded mRNAs, some transcripts are
dramatically more sensitive to changes in eIF4E levels and/or
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availability.22-29 Such mRNAs are commonly referred to as
”eIF4E-sensitive” and encode key proteins which stimulate pro-
liferation (e.g. cyclins, ODC1, c-MYC) and survival (e.g., BCL-2
family members), many of which have been implicated in can-
cer.22-26 eIF4E-sensitive translation is in part mediated by long
and complex 50 untranslated regions (UTR).30 These mRNAs
have a higher requirement for eIF4A helicase unwinding activ-
ity as compared with other cellular mRNAs.30,31 eIF4A activity
is bolstered significantly within the eIF4F complex,32-34

whereby eIF4E acts as a rate limiting factor for eIF4F assem-
bly.30 eIF4E-sensitivity of the mRNAs with long and structured
50UTRs is therefore thought to stem from eIF4E-dependent
recruitment of eIF4A and stimulation of eIF4A’s activity.33

Accordingly, recent ribosome profiling studies in mammalian
cells revealed that eIF4A inhibitors preferentially suppress
translation of mRNAs that harbor long 50UTRs enriched in
complex structures, including G-quadraplexes,35-37 although
this was recently disputed for the class of eIF4A inhibitors
belonging to the rocaglate family.38 Intriguingly, in contrast to
mammals, yeast ded1 (ortholog of mammalian DDX3 helicase)
but not eIF4A appears to play a predominant role in stimulat-
ing translation of mRNAs with highly structured 50UTRs.39

Given the key role of the mTOR pathway and eIF4E in many
biologic contexts and human diseases including cancer, neuro-
logic diseases, diabetes and metabolic syndrome, there has been
a considerable interest in applying genome-wide approaches to
obtain a complete catalog of mRNAs that are sensitive to
changes in mTOR activity and thereby eIF4E availability.

Controversy regarding the repertoire of mRNAs showing
mTOR-sensitive translation

Three recent studies using pharmacological inhibitors of
mTOR (including the allosteric mTOR inhibitor rapamycin,
active-site mTOR inhibitors and the biguanide metformin,
which inhibits mTOR indirectly via AMP-activated kinase-
dependent and independent mechanisms) were performed to
catalog the transcriptome-wide set of mRNAs showing mTOR-
sensitive translation.40-42 Unexpectedly, these studies reached
radically different conclusions. Two studies using ribosome-
profiling suggested that mTOR almost exclusively regulates
translation of mRNAs harboring a 50 terminal oligopyrimidine
(50 TOP) motif.40,41 The TOP motif consists of a cytosine (C)
directly after the mRNA cap followed by a stretch of 4–15 pyri-
midines and is mainly found in mRNAs encoding for compo-
nents of the translational machinery including ribosomal
proteins, poly (A) binding protein (PABP) and eukaryotic elon-
gation factor 2 (eEF2).43 The mTOR-sensitivity of TOP
mRNAs was recognized over a decade ago,44 but this appeared
to be largely eIF4E-independent.44-46 In contrast, the conclu-
sion that TOP mRNAs would essentially be the only targets of
mTOR was unexpected, especially as translation of mRNAs
encoding growth, proliferation, survival and tumor-promoting
proteins, such as cyclins,47 ornithine decarboxylase (ODC1),48

vascular endothelial growth factor (VEGF)49 or c-MYC50 had
been shown to be sensitive to alterations in eIF4E levels, which
is a major mediator of mTOR-dependent translational control.
Moreover, the conclusion drawn by the 2 aforementioned stud-
ies,40,41 that the effects of mTOR on TOP mRNA translation is

chiefly mediated via 4E-BPs was in conflict with previously
reported findings which showed that TOP mRNA translation is
not eIF4E dependent.46 Moreover, a recent report revealed that
under conditions when mTOR signaling is modulated by physi-
ologic stimuli, TOP mRNA translation is regulated via an 4E-
BP-independent mechanism.45 Indeed, it appears that mTOR
regulates TOP mRNA translation via La-related protein 1
(LARP1).51,52 In stark contrast to ribosome-profiling studies,
polysome-profiling suggested that several non TOP mRNAs
including those that were previously identified as eIF4E-sen-
stive (e.g., cyclins, ODC1) exhibit mTOR-sensitive translation.
The cohort of mTOR sensitive mRNAs also contained those
encoding mitochondria related proteins.42 Indeed, modulation
of mitochondria related mRNAs by mTOR was further func-
tionally evaluated which revealed that the mTOR/4E-BP/eIF4E
axis coordinates energy expenditure by the mRNA translation
machinery with mitochondrial ATP production.53 In conclu-
sion, strikingly disparate catalogs of mRNAs that are translated
in an mTOR-dependent fashion were captured using ribosome-
vs. polysome-profiling, which suggested biases of these
approaches in the detection of mTOR-sensitive mRNAs.

Ribosome-profiling introduces biases in identification of
mTOR-sensitive translation

Because translational efficiency is primarily regulated at the ini-
tiation step, efficiently translated mRNAs are associated with
more ribosomes than inefficiently translated mRNAs leading to
more proteins being synthesized.54 This tenet underpins cur-
rent transcriptome-wide approaches to study changes in trans-
lational efficiency, including polysome- and ribosome-
profiling. During polysome-profiling efficiently translated
mRNAs (commonly those associated with more than 3 ribo-
somes) are isolated and quantified using DNA microarrays or,
more recently, RNA-sequencing (RNAseq). Polysome-profiling
therefore directly assesses changes in translation efficiency
from an “mRNA perspective,” by physically separating effi-
ciently and non-efficiently translated mRNA molecules by
ultracentrifugation on sucrose gradients (Fig 1A).54 During
ribosome-profiling, ribosome protected fragments (RPF), i.e.,
RNA fragments protected by the ribosome from RNase-medi-
ated degradation, are isolated and quantified using RNAseq
(Fig 1B).55 Thus, in contrast to polysome-profiling, ribosome-
profiling has a “ribosome perspective” wherein translational
efficiency is determined indirectly by counting the number of
RPFs from both efficiently and inefficiently translated mRNAs.
Although several factors affect the performance of ribosome-
profiling,56,57 this technique holds a great promise by providing
unprecedented single nucleotide resolution of ribosome posi-
tioning on the mRNA.58,59 In contrast, polysome-profiling does
not reveal ribosomal location on the mRNA, but it allows isola-
tion of intact mRNAs from the polysomes that can be further
studied (see 50UTR profiling below).

We recently showed that a key difference between poly-
some- and ribosome-profiling occurs when mRNAs that
exhibit different magnitudes in their changes in translational
efficiency are studied in parallel. For example, a treatment with
a pharmacological inhibitor may alter ribosome association of
a class of mRNAs from a mean of 4 to 2 ribosomes, while
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others may shift from 7 to 1 ribosomes. The differences in shifts
reflect intrinsic properties of these mRNAs and are thus not
expected to directly mirror their relative importance for the
biology or pathology studied. In ribosome profiling translation
efficiency is inferred indirectly based on the number of RPFs,
and therefore the size of the shifts in ribosome association will
result in directly proportional effects on fold-change estimates
(i.e., 2 vs 7-fold from the example above). This effect is much
less pronounced in polysome-profiling studies, as herein trans-
lation efficiency is estimated directly from mRNAs associated
with heavy polysomes (i.e., >3 ribosomes) (Fig. 1A-B).60 More-
over, mRNAs that show large shifts in translational efficiency
and are also very abundant will cause a seemingly global effect
on translation. As a result, changes in translation of mRNAs
that show less dramatic shifts in translational efficiency are
masked. This is because RNAseq applied during polysome- or
ribosome-profiling generates relative quantification, whereby
changes in translational efficiency are compared with the
‘mean change’ in global translation.61 Smaller fold-changes of
low abundant mRNAs will therefore be strongly down
weighted. Altogether, this indicates that ribosome-profiling is

biased toward detecting changes in translation of highly abun-
dant mRNAs that exhibit large shifts in polysome association
but is considerably less sensitive in identifying those mRNAs
with smaller shifts and lower abundance (Fig 1B).60

A prototypical example of a very abundant mRNA-class that
shows a large shift in translational efficiency upon changes in
mTOR activity are TOP mRNAs.43 Many other mRNAs, such
as those encoding for cyclins or mitochondria-related proteins,
show relatively smaller shifts and are expressed at a much lower
level as compared with TOP mRNAs.42,60 Thus, application of
ribosome profiling to conditions when these 2 mRNA popula-
tions change their translational efficiency at the same time
(high expression/big shift vs. moderate expression/moderate
shift) leads to preferential identification of TOP mRNAs
(Fig. 1B).60 These technical differences, together with the issues
related to sequencing depth discussed below, appear to explain
why ribosome profiling studies essentially only identified TOP
mRNAs as mTOR sensitive,40,41 while polysome profiling
revealed a more diverse set of genes including TOP and non-
TOP mRNAs (e.g., those encoding cyclins and mitochondria-
related proteins).42

Figure 1. Schematics illustrating properties underlying a bias toward identification of mRNAs that show large shift in translational efficiency as differentially translated
when applying ribosome-profiling. (A) Shown in gray is a model UV absorbance profile from a polysome-preparation where ribosome subunits (40S or 60S), monosomes
(80S) or polysomes (i.e., mRNAs associated with >1 ribosome) are separated on sucrose gradients by ultracentrifugation. In polysome-profiling, translational efficiency is
measured by quantifying the amount of mRNA that is efficiently translated (i.e., associated with >3 ribosomes, which is indicated by a pink dotted line). Transcripts differ
in their basal translational efficiency (green). Left panel represents TOP mRNAs that are associated with the heaviest polysomes and are thus more efficiently translated
than non-TOP mRNA (e.g., cyclin) which are associated with intermediate polysomes. Upon mTOR inhibition (blue), TOP mRNAs shift more dramatically than non-TOP
mRNAs (i.e., shifts are indicated by arrows). (B). In ribosome-profiling, the amount of mRNA fragments protected by ribosomes (RPFs) is quantified using RNAseq and com-
pared between conditions. This generates radically different fold-changes for TOP and non-TOP mRNAs, as the former are much more abundant and exhibit larger shifts.
Such fold-changes are directly proportional to the magnitude of the mRNA shifts leading to a bias favoring identification of TOP mRNAs as differentially translated. This
bias is more pronounced when fold-change based vs. statistical analysis is performed.60
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An additional source of bias in ribosome-profiling studies of
mTOR-sensitive translation40,41 likely stems from the sequenc-
ing depth. Optimal RNA sequencing depth allows reliable
quantification across all expression levels and conditions.62

When performing ribosome-profiling this is an important con-
sideration, as highly expressed genes that are also very effi-
ciently translated (e.g., TOP mRNAs) will dominate the
sequencing library and hence constitute a large proportion of
the RPF RNAseq reads. Sub-optimal RNAseq depth greatly
influences the signal to variance relationship (low number of
RNAseq reads is associated with increased noise in the data
set), preventing identification of differential translation for less
expressed, and less efficiently translated mRNAs.60 Indeed,
ribosome-profiling studies of mTOR-dependent translation
had relatively low sequencing depth and accordingly almost
exclusively detected effects on translation of the most abundant
cellular mRNAs including TOP mRNAs.40,41,60

Altogether, the disparity between the repertoires of mTOR-
regulated mRNAs observed between ribosome- and polysome-
profiling studies appears to stem from technical biases and
insufficient sequencing depth which limited detection of
mTOR-dependent changes in the translatome in studies which
used ribosome-profiling.

Profiling 50UTRs unraveled 2 distinct subsets of mTOR-
sensitive mRNAs encoding proteins with different cellular
functions

mRNAs exhibit different translational properties, which is in
part conferred by their 50UTR features.2,22,24,60,63,64 A number
of regulatory elements in 50UTRs are implicated in translational
control of gene expression including upstream open reading
frames (uORFs), stem loops (e.g., the iron-responsive element;
IRE) and internal ribosome-entry sites (IRESes) which allow
cap-independent translation (reviewed in Hinnebusch et al.30).
In addition, it is thought that the position of these regulatory
elements and/or structural features relative to the mRNA cap
or the initiation codon, as well as the length of the 50UTR play
a major role in determining translation efficiency (reviewed in
Hinnebusch et al.30). Analysis of 50UTRs, however, relies on
data repositories such as RefSeq and UCSC, which provide a
wealth of data and tools to understand the genomic contexts of
many species. These data repositories, thereby, offer a frame-
work to interrogate and interpret observed changes in transla-
tional efficiency in the context of e.g., 50UTRs. It is widely
thought, however, that these databases contain a repertoire of
50UTRs that may not necessarily reflect those that are expressed
in the cell of interest, thereby potentially leading to faulty con-
clusions about the role of 50UTRs in translational control. Sev-
eral initiatives to accurately pinpoint transcription start sites
(TSSs) including the FANTOM Consortium (The FANTOM
consortium and the RIKEN PMI and CLST [DGT] 2014) or
TSS-seq65,66 are currently ongoing but information is still miss-
ing for most cell lines and tissues, especially if one considers
that 50UTRs in the same cell line may be context dependent
due to e.g., stress induced alternative transcription site selection
or alternative splicing.67 Thus, for precise understanding of the
relationship between 50UTR features and translational control,
both TSSs and translational efficiency should be determined in

the same cell line. Importantly, ribosome-profiling does not
allow for such assessment, as the nuclease digestion degrades
both 50 and 30 UTRs of mRNA. In contrast, polysome-profiling
can be readily coupled with techniques such as Nano Cap Anal-
ysis of Gene Expression (nanoCAGE),68 an RNAseq library
construction method that allows nucleotide resolution mapping
of TSSs and, as a result, 50UTRs. Application of this approach
to mTOR-sensitive translation unveiled that nearly 30% of 50
UTRs were substantially shorter than those indicated in the
RefSeq database.60 Moreover, nanoCAGE revealed 2 distinct
non-TOP, mTOR-sensitive mRNA subsets: one whose mem-
bers harbor long 50UTRs encoding cell-cycle and survivaL-pro-
moting proteins and a second whose members have extremely
short 50UTR (< 30 nucleotides) encoding proteins with mito-
chondrial function. These 2 subsets could not have been sepa-
rated using current databases, as these suggested radically
different 50UTRs than the ones identified by nanoCAGE for the
subset of mitochondrial-related mRNAs with very short
50UTRs.60

The distinct subsets of mTOR-sensitive mRNAs require
different translation initiation factors and encode for
proteins participating in discrete cellular processes

The first subset of mRNAs with long 50UTRs identified by
nanoCAGE (including cyclins, BCL-2, MCL1, BIRC5) supports
the long-held idea that downstream of mTOR, changes in
eIF4E availability primarily affect mRNAs with long and com-
plex 50UTRs that critically depend on eIF4A activity for effi-
cient translation.30,31 In contrast, mitochondrial-related
mRNAs with short 50UTRs (such as ATP5O, ATP5G1,
NDUF6, UQCC2) do not seem to fit into this model.60 A subset
of mRNAs with short 50 UTRs harboring a Translation Initia-
tior of Short 50UTR (TISU) element (SAASATGGCGGC, in
which S is C or G) which is enriched for mRNAs encoding pro-
teins with mitochondrial functions, however, was previously
show to have eIF4E sensitive but eIF4A insensitive transla-
tion.69-71 Consistently, we revealed differential requirements of
the 2 mTOR-sensitive mRNA subsets: those with long 50UTR
are both eIF4E- and eIF4A-sensitive while those with short
50UTR are eIF4E-, but not eIF4A-sensitive. Surprisingly, this
sensitivity of short mRNAs appeared to be more dependent on
the length of the 50UTR than the presence of the TISU element.
Moreover, the dichotomy in eIF4A sensitivity between short
and long 50UTRs of mTOR-sensitive mRNAs appear to in part
account for the different responses to mTOR or eIF4A inhibi-
tors. mTOR inhibitors affect translation of mRNAs with both
very short (encoding for mitochondria related proteins) and
long (encoding for pro-survival proteins) 50UTRs60 which
reduces mitochondrial53 activity but concomitantly downregu-
lates energy consumption by the translation machinery result-
ing in metabolic dormancy and a cytostatic effect.42 eIF4A
inhibitors, on the other hand, display strong cytotoxic effect as
they reduce the translation of pro-survival mRNAs with long
50UTRs, without affecting the translation of short 50UTR
mRNAs encoding for proteins with mitochondrial function,
which leads to mitochondria dysfunction and apoptosis.60 In
addition, eIF4A inhibitors, unlike mTOR inhibitors, reduce
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autophagy which removes depolarized mitochondria, thereby
further bolstering their pro-apoptotic effects.60

Concluding remarks

In conclusion, analytical and technical biases should be taken
into consideration when performing transcriptome-wide analy-
sis of translational regulation. Moreover, the limitations of
databases for e.g., 50 UTRs can obscure significant findings due
to a lack in accuracy or lack of information for a specific experi-
mental model. Therefore, choosing the appropriate experimen-
tal methodology coupled with a tailored analysis can address
important gaps in knowledge pertinent to the regulation of
translation. Factors that limit these advances include subopti-
mal study design, lack of appropriate quality control and incor-
rect statistical methods - which are all inherent difficulties of
today’s science, and were in fact predicted to undermine sys-
tems biology approaches.72 Inappropriate strategies such as
limited replication which does not allow application of statisti-
cal methods, adopting analytical approaches to identify a set of
favorite genes that fit the hypothesis (i.e., cherry picking), or
simply a lack of understanding of data analysis methodology
can compromise validity of conclusions and study reproduc-
ibility.73 We have previously demonstrated that using the ratio
between polysome-associated mRNA or RPFs to cytosolic
mRNA (commonly denoted as translation efficiency or TE
score) for analysis of differential translation results in spurious
correlation thereby favoring false positive and negative find-
ings.74 Furthermore, we showed that using a fold-changes based
analysis is similarly inappropriate, especially when assessing
differential translation using ribosome-profiling.60 Nonetheless,
both approaches are commonly applied, thereby indicating the
lack of a consensus regarding optimal data analysis. Similarly, a
recent advance in quality evaluation of ribosomal profiling data
revealed factors pertinent to the validity of ribosome profiling
data that are also likely to skew the interpretation of the
results.56 Collectively, a consensus on guidelines for study
design, quality control and data analysis appears to be required
to improve translatome analysis, and thus to advance the
understanding of translation regulation in health and disease.
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