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Changes in serum or plasmametabolomemay reflect gut microbiota dysbiosis,

which is also known to occur in patients with prediabetes and type 2 diabetes

(T2DM). Thus, developing a robust method for the analysis of microbiota-

dependentmetabolites (MDMs) is an important issue. Gas chromatography with

mass spectrometry (GC–MS) is a powerful approach enabling detection of a

wide range of MDMs in biofluid samples with good repeatability and

reproducibility, but requires selection of a suitable solvents and conditions.

For this reason, we conducted for the first time the study in which, we

demonstrated an optimisation of samples preparation steps for the

measurement of 75 MDMs in two matrices. Different solvents or mixtures of

solvents for MDMs extraction, various concentrations and volumes of

derivatizing reagents as well as temperature programs at methoxymation

and silylation step, were tested. The stability, repeatability and reproducibility

of the 75 MDMs measurement were assessed by determining the relative

standard deviation (RSD). Finally, we used the developed method to analyse

serum samples from 18 prediabetic (PreDiab group) and 24 T2DM patients

(T2DM group) from our 1000PLUS cohort. The study groups were

homogeneous and did not differ in age and body mass index. To select

statistically significant metabolites, T2DM vs. PreDiab comparison was

performed using multivariate statistics. Our experiment revealed changes in

18 MDMs belonging to different classes of compounds, and seven of them,

based on the SVM classification model, were selected as a panel of potential

biomarkers, able to distinguish between patients with T2DM and prediabetes.
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Introduction

The worldwide prevalence of type 2 diabetes mellitus

(T2DM) has risen over the past two decades (Sobczak et al.,

2019) and currently, this metabolic disease is a serious public

health problem (Fikri et al., 2020). There is an increasing

evidence that alterations in gut microbiota (GM) (Lin et al.,

2017; Moon et al., 2018; Chen et al., 2019), apart from genetic

(Mojsak et al., 2021) and life style factors (Ericson et al., 2018),

are important for the development of metabolic diseases.

Changes in the gut microbiome composition lead to an

imbalanced gastrointestinal habitat which promotes abnormal

production of metabolites, inflammatory status, glucose

metabolism alteration and even insulin resistance (IR) (Tanase

et al., 2020). Particularly, various microbiota-dependent

metabolites (MDMs) (Han et al., 2021), such as short–chain

fatty acids, branched–chain fatty acids, amino acids (AAs),

branched–chain amino acids (BCAAs), bile acids, tryptophan-

derived metabolites, and others (Mojsak et al., 2022; Zhou et al.,

2022) have been reported to be closely associated with IR (Menni

et al., 2022), prediabetes (Dorcely et al., 2017; Gar et al., 2018)

and T2DM (Sobczak et al., 2019; Fikri et al., 2020; Gu et al., 2020;

Mojsak et al., 2021).

Metabolomics is a high–throughput approach enabling a

global analysis of metabolites in biological systems.

Untargeted metabolomics has led to many discoveries of

microbiota-dependent metabolic pathways and metabolites

linked to host diseases (Moon et al., 2018; Tanase et al., 2020;

Mojsak et al., 2022). Consequently, determination of MDMs can

be essential for the early diagnosis of T2DM (Mojsak et al., 2022).

Among mass spectrometry (MS)–based analytical platforms, gas

chromatography (GC–MS) and liquid chromatography (LC-MS)

are the most popular analytical techniques used for the

separation of MDMs (Chen et al., 2019; Eylem et al., 2022).

Compared to LC, GC has a considerably better chromatographic

resolution. It is also a highly reproducible and sensitive analytical

technique, able to detect a wide variety of MDMs such as AAs,

fatty acids (FAs), carbohydrates (CARBs) and sterols related to

microbiota and T2DM, that would otherwise need several

separations in LC-MS (Heaney, 2020). Additionally,

reproducible molecular fragmentation patterns of GC-MS

make it one of the most reliable tools for exploring

metabolites (Papadimitropoulos et al., 2018). Considering all

above-mentioned reasons, GC-MS was used in this study.

MDMs are found in a variety of biological samples such as

feces, urine, serum or plasma (Chen et al., 2019). According to

Chen et al. (2019), plasma and serum are non–invasively

obtained biomatrices and analysis of their metabolome may

reflect the changes in the metabolome of the whole organism

(Kiseleva et al., 2021), including changes in MDMs composition

(Vernocchi et al., 2016). Additionally, both of these blood-

derived samples have been used in many GC-MS

metabolomics studies related to the development of T2DM

(Lin et al., 2017; Chen et al., 2019). Visconti et al. (2019),

proved that many species of GM showed association with

blood metabolites, suggesting important effects on host

systemic metabolism.

Although GC-MS is a powerful tool to detect MDMs, GC-MS

profiling of such metabolites in biofluid samples constitutes an

analytical challenge (Mojsak et al., 2022). In order to extend the

coverage of MDMsmeasured with GC-MS, selection of a suitable

solvent for the protein precipitation or extraction (He et al., 2021)

and a transformation of analysed metabolites into more volatile

forms through the derivatisation process, is required

(Moldoveanu and David, 2018). Many solvents like ACN

(Mojsak et al., 2021), MeOH (Trygg et al., 2005) or mixtures

of solvents such as: ACN:isoProp:H2O (v:v:v; 3:3:2) (Fiehn, 2016;

Kiseleva et al., 2021); MeOH:H2O (v:v; 9:1) (Malm et al., 2016),

MeOH:isoProp:H2O (v:v:v; 3:3:2) (Kiseleva et al., 2021) or

MeOH:EtOH (v:v; 1:1) (Szeremeta et al., 2021) are commonly

used in metabolomics studies. A choice of proper solvent(s) is

important, in the study of Fiehn (2016) it was confirmed that the

use of hydrophilic, lipohilic and medium–polarity solvents

demonstrated high analytical precision and comprehensiveness

of the extracted metabolome. There are a few studies comparing

the utility of different solvents, however, the variety of

investigated mixtures was not that wide (Trygg et al., 2005;

He et al., 2020; Eylem et al., 2022). To the best of our

knowledge, there is a lack of methodological articles

comparing the performance of these solvents and their

mixtures for the preparation of serum or plasma samples for

the GC-MS analysis of 75 MDMs.

Out of several available derivatisation methods (Moldoveanu

and David, 2018), methoxymation (MeOx) followed by silylation

(SIL) is the most commonly used (Fritsche-Guenther et al.,

2021). According to Fiehn (2016) and Eylem et al. (2022),

prior to SIL, MeOx is necessary to protect carbonyl groups of

aldehydes and ketones in reducing sugars from the cyclization

process, as well as to stabilize α–keto acids against

decarboxylation (Zarate et al., 2016). The degree of

completion of this process is associated with the concentration

and volume of methoxamine HCl in pyridine, as well as

incubation time and temperature used during the

derivatisation process (Bekele et al., 2014; Moros et al., 2017).

The most frequently reported incubation time and temperature

for MeOx of biofluid metabolites are 30–90 min at 37–70°C or

16 h at room temperature (RT) (Fiehn, 2016; Beale et al., 2018),

whereas the volumes of methoxamine HCl in pyridine used are

between 10 and 40 µl (with the concentration range of 15–40 mg/

ml) (Miyagawa and Bamba, 2019). As for the MeOX process, the

main factors determining the outcomes of the GC–MS analysis

are the volume of SIL reagent as well as the incubation time and

temperature (Eylem et al., 2022).

To the best of our knowledge no thoroughly optimized

method, which includes the impact of popular solvents and

derivatisation conditions for profiling of 75 MDMs present in
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human plasma and serum has been presented so far. For this

reason, we performed a side–by–side comparison of different

serum and plasma samples preparation procedures composed of

solvent-based simultaneous protein precipitations with

metabolites extraction and two-step derivatisation, MeOx

followed by SIL, focusing on MDMs. Based on the signal

intensity and its relative standard deviation (RSD), the

methodology for sample preparation and analysis was

optimized to obtain the best possible method for the analysis

of MDMs. Metabolites were classified as MDMs based on the

scientific reports (Lin et al., 2017; Org et al., 2017; Martin et al.,

2019; Visconti et al., 2019; Wan et al., 2020; Gojda and Cahova,

2021; Tan et al., 2021) and Human Metabolome Database

(HMDB) (HMDB, 2020) (http://www.hmdb.ca accessed, on

20 April 2022). Finally, we used the developed biofluids

preparation method to analyse serum samples of patients with

prediabetes and T2DM.

Material and methods

Reagents

The following reagents and standards were used: MilliQ®

water (Millipore, Billerica, MA, United States), heptane

(Sigma–Aldrich, Steinheim, Germany), pyridine

(Sigma–Aldrich, Steinheim, Germany), O–methoxyamine HCl

(Sigma–Aldrich, Steinheim, Germany) and MSTFA (N-Methyl-

N-trimethylsilyl-trifluoroacetamide) with 1% TMCS

(Trimethylchlorosilane) (Pierce Chemical Co., Rockford, IL,

United States). 4–nitrobenzoic acid (4–NBA) and stearic acid

methyl ester (C18:0 methyl ester) (Sigma–Aldrich, Steinheim,

Germany) were used as internal standards (ISs) for GC–MS.

Individual stock solutions of 4–NBA (IS1) were prepared at the

concentration of 25 ppm, then stored at −4°C, whereas methyl

stearate (IS2) were prepared at the concentration of 20 ppm, then

stored at −20°C. Two standards mixtures for GC–MS, one

containing grain fatty acid methyl esters (FAME) (C8:0—C22:

1, n9) and another standard mix with mixture of n–alkanes (C8:

C40) were purchased from Supelco (Bellefonte, PA,

United States).

Optimization of sample preparation for
GC–MS analysis

At the optimization stage, plasma and serum samples, as well

as all tested combination of parameters, were analysed in separate

sequences. Three replicates were used for each optimized

condition. In the batches tested samples were analysed

together with quality control samples (QCs) and blank

samples. Firstly, 50 μl of pooled human plasma or serum were

extracted with 150 µl of ACN, ACN:isoProp:H2O (v:v:v; 3:3:2),

MeOH:H20 (v:v; 9:1) MeOH:isoProp:H2O (v:v:v; 3:3:2) and

MeOH:EtOH (v:v; 1:1) in order to evaluate the performance

of different extraction solvents. Subsequently, a two–step

derivatisation: 1) MeOX with 20 µl O–methoxyamine HCl in

pyridine (15 mg/ml, for 30 min at 37°C) followed by 2) SIL with

20 µl MSTFA containing 1% TMCS (for 30 min at 37°C) was

performed.

To optimize the protocol for two-step derivatisation process,

firstly, we tested different concentrations (10–40 mg/ml, in the

volume of 10 μl) and then volumes (10–50 µl) of methoxyamine

HCl in pyridine, adjusted to 120 μl with heptane containing IS2.

After that, we examined the effects of derivatisation temperature

and time of the reaction. For MeOx, the derivatisation

temperature was set to 37°C or 70°C, and the derivatisation

time was set to 30 min, 60 min or 16 h at RT [30 min at 37°C

(P1), 1 h at 70°C (P2), 16 h at RT (P3) and 1 h at 70°C followed by

16 h at RT (P4)]. In the first part of the experiment, SIL

conditions were fixed at 30 min and 37°C. Then, when SIL

step was being optimized, the derivatisation temperature of

37 and 70°C (for 30 and 60 min each) was evaluated. Finally,

the optimized method was applied to the analysis of the clinical

samples.

Clinical samples preparation

Serum (50 µl) was deproteinised with 150 µl (MeOH:H20, 9:

1, v:v) (1:3, −20°C) containing IS1, followed by two–step

derivatisation: 1) MeOX with O—methoxyamine HCl in

pyridine (30 mg/ml, RT, 16 h) followed by 2) SIL with

MSTFA containing 1% TMCS (70°C, 1 h). Subsequently,

sample preparation for QC samples was performed as

described above for clinical samples. Preparation of a blank

was conducted following the same procedure, but using only

solvents. Six QC samples were injected to equilibrate the

analytical platform before clinical samples were analysed to

ensure that reproducible data was acquired. In each batch,

FAMEs, mixes of n-alkanes, blank and six QC samples were

injected at the beginning of the batch, and one QC sample were

injected after every eight sample injections. At the end of the

batch, one QC sample and blank were injected again.

Metabolic fingerprinting was performed using GC system

(series 7890B) equipped with an 7693A autosampler and a Mass

Selective Detector 7000D (Agilent Technologies, Palo Alto, CA,

United States). One µl of the derivatised serum sample with ISs

was injected into a DB–5MS capillary GC column (30 m ×

0.25 mm × 0.25 µm) using helium as a carrier gas at a

constant gas flow of 1.0 ml/min. The injector temperature was

set to 250°C and the split ratio to 1:10. The temperature gradient

program started at 60°C, was held for 1 min, followed by a

subsequent increase in temperature to 320°C at a rate of 10°C/

min. The GC–MS transfer line, filament source and the

quadrupole temperature were set to 280, 230, and 150°C,
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respectively. The electron ionisation source was set to 70 eV, and

the mass spectrometer was operated in the full scan mode,

applying a mass range from m/z 50 to 600 at a scan rate of

1.38 scan/s.

Untargeted GC–MS data analysis

The deconvolution and identification were performed using

Mass Hunter Quantitative Unknowns Analysis software

(B.07.00, Agilent), alignment with Mass Profiler Professional

software (version 13.0, Agilent) and peak integration using

Mass Hunter Quantitative Analysis software (version B.07.00,

Agilent). The identification was performed mainly based on the

accurate mass and product ion spectrum matching against

in–house library of 100 authentic standards as well as Fiehn’s

and NIST 14 libraries. Prior to the statistical analysis, clinical

sample areas were normalised by IS abundance in order to

minimise the response variability coming from the

instrument. Finally, data were filtered based on the coefficient

of signal variation (CV) in QC samples, considering values lower

than 30% as acceptable.

In order to perform the differential analysis of the

metabolomics data, the variables were then filtered as

proposed by Godzien et al. (2015). Missing values were

replaced by k–means nearest neighbour (Armitage et al.,

2015) using the in–house built scripts for MATLAB

7.10 R2010a (MathWorks Inc., Natick, MA, United States)).

Sample collection

For the first step of optimization, plasma and serum samples

were collected from the same individuals. For plasma samples,

blood was collected to S-Monovette K3EDTA tubes

(SARSTEDT, Germany) and plasma was obtained after

centrifugation at 15,400 x g for 10 min at 4°C. For serum

samples, blood was collected to S-Monovette tubes containing

clot activator and tubes were stored in the vertical position at RT

for 60 min to allow the formation of a clot. Afterwards, tubes

were centrifuged in a horizontal rotor (swing–out head) for

10 min at 1,300 x g at RT. After centrifugation, serum or

plasma fraction was transferred to Eppendorf tubes and stored

at −80°C until the day of analysis. All the procedures were

approved by the Local Ethics Committee of the Medical

University of Bialystok (Permit No. R–I–002/193/2019). All

donors signed informed consent.

For this experiment, 24 individuals with T2DM and 18 with

prediabetes were selected from the 1000PLUS cohort, gathered

between 2014 and 2017 by the Department of Endocrinology,

Diabetology and Internal Medicine, Medical University of

Bialystok, Poland (Maliszewska et al., 2019). Ethical approval

for the study was obtained from the local Ethics Committee at

the Medical University of Bialystok, Poland (R–I–002/290/

2008/2009, R–I–002/35/2014, and APK.002.239.2022). The

presence of T2DM based on the dysglycemia diagnostic

criteria of the Diabetes Poland was confirmed or excluded

using glucose concentration measurements during an oral

glucose tolerance test (OGTT) at 0 and/or 120 min

(Diabetology, 2018). Table 1 presents the median and the

range of the anthropometric measurements and biochemical

parameters. Presented p-value was calculated using the

Mann–Whitney U-test.

Repeatability, reproducibility and stability
of 75 MDM measurements

In order to identify the optimal conditions the following

criteria were taken into account 1) repeatability, 2) the peak

intensities of individual metabolites 3) the total intensity (TI)

of all metabolites. Finally, reproducibility and stability were

determined. We used the relative standard deviation (RSD)

(defined as the [(standard deviation)/(mean) × 100]) of

metabolite abundance for evaluation of the consistency of

metabolites measurement using a GC–MS platform. A

commonly accepted maximum tolerance of RSD for

GC–MS in metabolomics studies is 30% (Koek et al.,

2011). The stability, repeatability and reproducibility of

the analysis of 75 MDMs measurement were assessed by

calculating RSD of the GC-peak area. To test the

repeatability, 50 replicates (n = 50) of human plasma and

serum were analysed using optimal parameters. To test the

reproducibility, 10 quality control samples (n = 10) (plasma

or serum samples) were analysed over three batches (s = 3)

within the scope of a biological study, i.e., realistic conditions

(Supplementary Table S2). To test the stability, the plasma or

serum samples were re–injected after 8, 24, 36, and 48 h

(Supplementary Table S3).

Statistical analysis

To select statistically significant metabolites between the

PreDiab and T2DM groups multivariate statistics using an

orthogonal projections to latent structures discriminant

analysis (OPLS–DA) was used. Statistically significant

metabolites were chosen based on the predictive loading value

[p (corr)] and variable importance in the projection (VIP) value.

Validation of the OPLS–DA models was performed by

cross–validation using the leave 1/3 out approach as described

previously (Ciborowski et al., 2012). Multivariate statistics was

performed in SIMCA−P + 13.0.3.0 (Umetrics, Umea, Sweden).

For statistically significant metabolites, the receiver operating

characteristic (ROC) analysis was conducted in

MetaboAnalyst 5.0.
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Results

Optimization step

Initially, based on the literature review (Lin et al., 2017; Org

et al., 2017; Martin et al., 2019; Visconti et al., 2019; Wan et al.,

2020; Gojda and Cahova, 2021; Tan et al., 2021) and information

provided in HMDB (www.hmdb.ce, access on 20th April 2022) we

prepared a database of MDMs and metabolites involved in

pathways impacted by GM (Supplementary Table S1). Then,

we performed GC-MS analyses of pooled plasma or serum

samples to check which MDMs are present in these two

matrices. As a result, we observed 335 and 348 raw peaks in

plasma and serum, respectively. After data pretreatment

(deconvolution, alignment, data normalization and filtering),

102 entities were obtained for both matrices, 85 metabolites

could be identified taking into account several derivatives from

one metabolite for some AAs and CARBs. Finally, we chose

75 MDMs, representing different analytical classes, with RSD

below 30% in both plasma and serum samples (Supplementary

Table S1).

Selection of extraction solvent

To select the best solvent for protein precipitation and

extraction of plasma and serum samples, four widely used

mixtures of solvents: AcN:isoProp:H2O (v:v:v; 3:3:2) MeOH:

H2O (v:v; 9:1); MeOH:isoProp:H2O (v:v:v; 3:3:2), MeOH:

EtOH (v:v; 1:1) (hereinafter referred to as solvents) and ACN

alone were tested. In the Figures 1, 2 we present repeatability and

intensity (A-plasma, B-serum) obtained for MDMs

measurement after the extraction with five combinations of

solvents in both matrices. MeOH:H2O mixture (v:v; 9:1) and

MeOH:isoProp:H2O mixture (v:v:v; 3:3:2) were selected as the

best extraction solvents for both types of samples. The intensity

of the signals for these two solvents were comparable but the

extraction using MeOH:H2O mixture (v:v; 9:1) had better

repeatability, and for this reason this solvent was chosen for

the next step of optimization. In plasma samples extracted with

MeOH:H2O mixture (v:v; 9:1), 21 MDMs had RSD below 20%

and 51 below 10%. However, the RSD of 40 and 23 of all detected

MDMs in serum were in the range of 0.5%–8.5% and 10.1%–

19.7%, respectively. Additionally, the metabolite signals from

ACN, MeOH:isoProp:H2O (v:v:v; 3:3:2) and MeOH:EtOH (v:v,

1:1) in both matrices had a wider range of RSD and a larger

number of MDMs in the RSD range of 30%–40% and above 40%

than those obtained with other extraction solvents.

In the next step, we compared the impact of different

concentrations and volumes of MeOx on the derivatisation

process (see Figure 3). For MeOx, a solution of

O–methoxyamine HCl in pyridine was employed. First, we

compared six commonly used concentrations of

O–methoxyamine HCl in pyridine (15, 20, 25, 30, 35, and

40 mg/ml, in the volume of 10 μl for both matrices, adjusted

to 120 µl with heptane containing IS2). In plasma samples, the

intensity of the majority of detected metabolites (46 from 75)

increased with the elevated concentration of O-methoxyamine

HCl in pyridine up to 30 mg/ml, with some exception for AAs

(alanine (Ala), isoleucine (isoLeu), serine, methionine (Met),

cysteine (Cys), aspargine, glutamine (Glu) and tyrosine). The

intensity of this metabolites decreased when the concentration of

O-methoxyamine HCl was higher than 30 mg/ml. In serum

samples we observed the highest intensity at the MeOx

TABLE 1 Characteristics of the studied group (median and range).

Clinical parameters PreDiab N = 18 T2DM N = 24 P–value

Age [years] 56.39 (37.36–70.96) 62.5 (41.16–69.20) 0.146

Female/Male 8/10 11/13

BMI [kg/m2] 33.55 (23.66–47.05) 32.51 (21.25–49.35) 0.219

Fasting glucose 0 min [mg/dL] 110 (101–121) 131 (138–171) 0.0018

Glucose 120 min [mg/dL] 126 (72–190) 206 (160–229) 0.0001

Insulin [µU/mL] 126 (72–190) 16.35 (4.73–58.81) 0.880

HbA1c [%] 5.8 (5.10–6.40) 6.15 (5.3–7.7) 0.0057

LDL cholesterol [mg/dL] 105.1 (53.6–221.6) 93.8 (60.4–213.40) 0.348

Total cholesterol [mg/dL] 181 (125–284) 173.5 (138–310) 0.723

HDL cholesterol [mg/dL] 49.70 (29–125) 52 (36–88) 0.319

Triglyceride [mg/dL] 107 (33–229) 124.5 (44–232) 0.875

HOMA–IR 4.30 (2.80–10.40) 5.20 (1.10–20.00) 0.479

HOMA–B 112.00 (71.00–216.00) 85.00 (19.00–277.00) 0.112

BMI, body mass index; HbA1c, glycated hemoglobin A1c; LDL cholesterol, high-density lipoprotein cholesterol; HDL cholesterol, high-density lipoprotein cholesterol; HOMA-IR,

homeostasis model assessment for insulin resistance; HOMA-B, homeostasis model assessment for beta (β) cell function, p-value—difference between control and T2DM (based on the

Mann–Whitney U test). PreDiab-subjects with prediabetes, T2DM-subjects with T2DM.
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reagent concentration of 30 mg/ml, higher concentrations

resulted in similar intensity of metabolites with exception for

creatinine (Cre) and AAs (Ala, phenylalalnine, Met and

threonine (Thre). The intensity of these AAs decreased when

the concentration ofMeOx increased. TI of testedMDMs was the

highest at the concentration of 30 mg/ml in serum samples. In

plasma samples, the concentration of 25 mg/ml yields slightly

higher TI of MDMs than 30 mg/ml but for the optimization, we

have chosen universal concentration of 30 mg/ml of

O-methoxyamine HCl in pyridine for two tested matrices. For

chosen MeOX concentration the lowest median RSDs of 9.2%

and 6.4% (Table 2) was indicated for plasma and serum,

respectively. For the selected concentrations, RSD below 20%

was found for 58 plasma and 71 serum metabolites.

Subsequently, we tested five different MeOx volumes

(10 μl, 20 μl, 30 μl, 40 μl, and 50 μl, all at 30 mg MeOx per

mL pyridine concentration) (see Table 3) with the same

volume of reagent for SIL (MSTFA with 1% TMCS),

adjusted to 120 µl with heptane containing IS2. The TI of

peaks area increased with the larger volume of tested reagent

(Figure 3). We observed the highest TI for 30 and 50 µl for

serum and plasma, respectively. The best repeatability (≤20%
of RSD) for the majority of detected MDMs was obtained for

the volume of 30 µl of the O–methoxyamine HCl in pyridine

in both tested matrices. In plasma samples, the median RSD

was much higher for 10 and 20 μl as compared to other values

(32.5% for 10 μl, 29.2% for 20 μl, and 10.1%–12.6% for

30–50 μl). In serum samples, the median RSDs for all tested

volumes were in the range of 5.0%–11.1%. Additionally, it was

observed that lysine (Lys) and ascorbic acid were not detected

while using the volume of 10 and 20 μl MeOx in both matrices,

while 5–hydroxy–L–tryptophan was only detected in plasma

samples, regardless the volume of MeOx. Due to the fact that

reproducibility for volumes of 30 and 40 µl in serum was

similar (RSDs for 68 and 65 metabolites ≤20% (RSD); median

RSD 7.9 and 7.8%, respectively), the TI of all MDMs was the

highest for 30 μl, for the next step of the optimization we

chosen this volume of MeOx for both matrices.

FIGURE 1
Comparison of obtained RSDs for all detected metabolites extracted with different solvents from plasma (A) or serum (B).
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In the next step we compared the effect of different conditions,

i.e. time and temperature for MeOx process. We tested four

common programs: 30 min at 37°C (P1), 1 h at 70°C (P2), 16 h

at RT (P3) and 1 h at 70°C followed by 16 h at RT (P4). Obtained

results are presented in Tables 4, 5. Repeatability for all metabolites

was similar for all tested conditions in plasma samples, the RSDs for

more than 70 MDMs were below 20%, while median RSD varied

from 4.3 to 7.6%. In serum samples, we observedmore differences in

RSD values for tested conditions. The median RSDs were in the

range from 9.4 to 18.5% for all tested programs. The RSD values

were above 20% for more than 30 MDMs when the results for all

tested programs were compared with an exception for MeOx

process conducted for the program P3. The RSDs values were

above 30% for 10 metabolites and the medium RSD for this

condition was the lowest (9.4%). We observed differences in the

intensities of themetabolites in testedmatrices. The highest intensity

for themajority of detectedMDMs (53 from 75) was observed when

program P3 was used in both matrices, the results obtained for

program P2 were similar. In plasma samples, the lowest intensity

was observed for more than 50 MDMs, whereas in serum samples

for 48 MDMs, when the program P1 was used. In the case of valine

(Val) and leucine (Leu) derivatisation, two chromatographic peaks

were observed in plasma, namely Val 1TMS and Val 2TMS, Leu

1TMS, and2 TMS. The peak areas of mentioned metabolites were

found to increase with longer reaction time. Similarly, derivatisation

of glycine (Gly) was confirmed by the presence of two

chromatographic peaks (Gly 2TMS and 3TMS). In this case, the

peak area of Gly 3TMS was elevated with the increasing reaction

time and temperature from 37°C, 30 min to 70°C, 1 h and finally

70°C 1h, 16 h (RT). However, in case of acetoacetate, which was

confirmed by the presence of acetoacetate 2TMS and 3TMS, the

intensity of 3TMS derivative decreased with longer reaction time. In

serum samples we observed the same relation for AAs (Val, isoLeu,

proline, Lys) and two CARBs, i.e. mannose and glucose. The

intensity of the 3TMS derivative of these metabolites increased

when temperature and time increased. We also observed that

disaccharides were incompletely methoximated at 37°C for

30 min (P1), as we noticed significant peak broadening caused by

multi peaks, which was not observed at 70°C.

As the last optimization parameter, we tested the impact of

different incubation temperatures and time of SIL process. Our

first observation (based on Figure 3) was that the TI of all tested

FIGURE 2
Comparison of intensity of all detected metabolites extracted with different solvents from plasma (A) or serum (B).
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metabolites was higher in serum than in plasma, whereas when we

compared the TI of MDMs in different conditions for both

matrices, we observed that the TI was the highest for program:

70°C for 60 min, and the TI was comparable for the program

performed at 37°C for 60 min. In serum samples, the median RSD

was the highest (10.2%) when 37°C at 60 min program was used,

the lowest median RSD (5.7%) was achieved when 70°C for 60 min

program was tested. Additionally, this program was favorable for

AAs and organic acids (OrgAs) for which repeatability of

individual metabolites was the lowest. According to the results

obtained for plasma samples we observed that amedian RSDs were

similar for all programs (4.9%–5.4%). Derivatisation of carboxylic

acids, such as pyruvic, glyceric as well as lactic acid proceeded

significantly better when 37°C for 30 min program was used,

whereas derivatisation of the majority of AAs and FAs

proceeded significantly better when 70°C for 60 min program

was used. Additionally, at this conditions we did not observed

the two chromatographic peaks for Ala and Val in both matrices,

what proves that derivatisation was complete. Finally, due to the

fact that comparable median RSDs were obtained for SIL at 70°C

for 1 h for both matrices (5.3% and 5.7% for plasma and serum,

respectively), we chose this program for the GC–MS analysis.

FIGURE 3
Effect of tested conditions on plasma and serum samples for all tested metabolites on the TI.

TABLE 2 Comparison of different concentration of the O–methoxyamine HCl in pyridine (mg/ml) based on the repeatability of 75 MDMs detected in
both types of samples, in the table was presented number of MDMs with RSD for plasma/serum ≤10%–30% and above 30%.

RSD (%) 15 20 25 30 35 40

mg/mL

Number of MDMs (plasma/serum)

≤ 10 2/25 16/36 20/53 39/42 30/52 25/7

≤ 20 1/29 24/20 24/12 18/27 20/8 22/24

≤ 30 2/8 8/6 9/3 7/2 7/8 7/18

> 30 70/13 27/13 22/7 11/4 18/7 21/26

Median RSD [%] 84.3/14.7 18.6/11.0 16.4/6.7 7.2/6.4 14.2/9.0 14.0/25.1
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Repeatability, reproducibility and stability
of microbiota-dependent metabolites
measurements

Including 4 h of equilibrium, the analysis of 50 replicates

lasted about 35 h which is important as some of AAs are

unstable after 36 h. In plasma samples, the repeatability test

showed a median RSD of 12.6% ranging from 3.5% (lactic

acid) to 37.3% ornithine (Orn). In serum samples, the

repeatability test showed a median RSD from 4.6% (Thre)

to above 50% (for 5–hydroxy–L–tryptophan, Orn and aspartic

acid). In plasma samples, inter–batch median RSD across

three batches was 23.5%, whereas in serum samples,

inter–batch median RSD across three batches was 23.0%

(Supplementary Table S2). Our method showed a good

repeatability for compounds from different classes,

including AAs, CARB and OrgAs. The repeatability over a

long sequence (more than 50 injections at once) was in an

acceptable range.

Obtained results showed that the majority of metabolites

were stable even 48 h after the derivatisation with the median

RSDs range between 8.8% and 12.8% in plasma and 6.6%–9.4%

in serum. We observed that glutamine and benzoic acid were

already unstable after 8 h. However, some of MDMs were

observed as unstable after 36 h, e.g., two AAs and FAs in

plasma and four AAs in serum samples. (Supplementary

Table S3).

Comparison results for both matrices

When we took into account intensity of individual

metabolites (Supplementary Table S1), we observed that

the intensities of 30 MDMs tested in our study were at a

similar level in plasma and serum. For some metabolites we

observed better reproducibility for plasma samples (see

Supplementary Table S2). One third of measured

metabolites had a higher intensity in plasma samples (e.g.,

AAs: Glu, Orn, Cre, GA, and glycine), whereas, the intensity

of 22 metabolites was higher in serum samples mainly AAs

(e.g., Met, aspartic acid and Cys). The total intensity of all

tested metabolites was the higher in serum samples

(Figure 3).

Analysis of the clinical samples

Based on the above mentioned results, both matrices were

suitable for the analysis of MDMs, but the observed intensity

of most MDMs was relatively higher in serum samples. Due

to this fact, we chose serum samples for further analysis.

After data processing, 324 metabolic signals were detected.

Signal grouping and filtering processes rendered a total of

275 metabolites from which a group of 98 metabolites could

be identified taking into account several derivatives from one

metabolite for some AAs and CARBs. RSD value for

89 metabolites was below 30% (80 MDMs) in the QC

serum samples. To find metabolites discriminating

the studied groups, OPLS–DA model was built and

presented in Figure 4, additionally PCA plot was

presented in Figure 5.

Our experiment revealed changes in 18 MDMs. These

metabolites are mainly AAs, FAs, and CARBs (Table 6). In

TABLE 3 Comparison of different volume of the O–methoxyamine
HCl in pyridine (µl) based on the repeatability of 75 MDMs
detected in both types of samples, in the table was presented number
of MDMs with RSD for plasma/serum ≤10%–30% and above 30%.

RSD (%) 10 20 30 40 50

µl

Number of MDMs (plasma/serum)

≤ 10 9/35 29/54 39/52 35/44 8/47

≤ 20 9/26 28/15 22/14 25/20 5/16

≤ 30 12/7 6/3 6/4 8/3 26/2

> 30 45/7 12/3 8/5 7/8 36/10

Median RSD [%] 32.5/11.1 29.2/5.0 12.6/7.9 10.1/7.8 30.4/8.8

TABLE 4 Comparison of different MeOx conditions based on the repeatability of 75 MDMs detected in both types of samples, in the table was
presented number of MDMs with RSD for plasma/serum ≤10%–30% and above 30%.

RSD (%) 37°C, 30 min (P1) 70°C, 1 h (P2) 16 h, RT (P3) 1 h 70°C, 16 h RT (P4)

Number of MDMs (plasma/serum)

≤10 63/28 55/23 70/39 61/24

≤ 20 12/15 16/22 4/19 12/16

≤ 30 0/5 2/15 1/7 0/1

> 30 0/27 2/15 0/10 2/34

Median RSD [%] 4.5/15.9 7.6/18.5 4.3/9.4 5.7/17.5
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the OPLS–DA score plots, the PreDiab group and T2DM

group were discriminated from each other with the model

values of R(cum)
2 = 0.912 and Q(cum)

2 = 0.803. A cross–validation

results using the “leave 1/3 out” approach showed that excluded

samples were classified correctly in 94.5% ± 5.2%. Among the

statistically significant metabolites, alpha–hydroxybutyric acid

(α–HBA) (FC = 1.24), Leu (FC = 1.28), Glu (FC = 1.48),

tryptophan (Trp) (FC = 1.96), Cys (2.07) and stearic acid

(SA) (FC = 1.79) were increased, while Cre (FC = 0.76),

glutamic acid (GA) (FC = 0.65) and (Orn) (FC = 0.63)

decreased in T2DM compared to prediabetic patients.

Finally, in order to evaluate a potential of significant

metabolites to serve as biomarkers indicating T2DM

development in prediabetic patients, a multivariate receiver

operating characteristic (ROC) curves were obtained. ROC

analysis based on support vector machine (SVM) modeling

was employed to perform the automatic selection of the best

metabolites combination. ROC curves were constructed for the

selected 14 MDMs (Figure 6A) using the relative metabolite

contents of the experimental groups. For seven MDMs (out of

14) showing the best discriminatory power (Figure 6B) individual

ROC curves were built (Figure 6C).

FIGURE 4
OPLS–DA score plots illustrating discrimination between the two studied groups based on obtained GC-MS data.

TABLE 5 Comparison of different SIL conditions based on the repeatability of 75 MDMs detected in both types of samples, in the table was presented
number of MDMs with RSD for plasma/serum ≤10%–30% and above 30%.

RSD (%) (Plasma/serum) 37°C, 30 min 37°C, 60 min 70°C, 30 min 70°C, 60 min

<5 38/25 37/17 41/24 37/38

<10 20/21 28/22 22/21 22/14

<15 8/14 7/10 7/13 8/10

<20 5/8 ½ 4/9 3/3

>20 4/7 2/24 1/8 5/10

Median RSD [%] 4.9/7.8 5.4/10.2 5.0/7.8 5.3/5.7
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Discussion

Optimization of the sample preparation
step

Recent studies have indicated that GM are associated with

various metabolic diseases (Tanase et al., 2020). Most studies

used fecal samples as they can directly reflect the human GM

composition (Mojsak et al., 2022). However, an increasing

number of studies (Visconti et al., 2019) have revealed that

although the concentration of GM related metabolites in

circulation is far lower than that in feces, these metabolites play

an important role in modulating metabolism. Therefore, it is

essential to develop a comprehensive and efficient method for

analyzing MDMs in biofluid samples. Based on the literature

review, it was noticed that several protocols for the biofluid

sample preparation for metabolomics study based on GC–MS

are described (Drogan et al., 2015; Fiehn, 2016; Liu et al., 2017;

Org et al., 2017; He et al., 2021; Raczkowska et al., 2021), differing in

the type of solvent or derivatisation procedures used. Therefore, we

chose the most frequently used solvents and variables at the

derivatisation stage, then we optimized them in the context of

the MDMs in two matrices.

Selection of extraction solvents

Solvents are known to be one of the primary factors that affect

the number, type, and abundance of endogenous metabolites

detected in biological samples (He et al., 2021). The most widely

used protocol for global metabolomics is protein precipitation with

solvent using a plasma/serum–to–solvent ratio of 1–3 or 4. Cold

solvent is added to minimize the extent of enzymatic conversion of

metabolites and to improve protein precipitation (Sitnikov et al.,

2016). Therefore, in the first step of this study, we screened the effect

of five solvent variants, widely used in GC–MS–based

metabolomics. To the best of our knowledge, studies comparing

this type of solvent mix are still lacking. Sitnikov et al. (2016)

FIGURE 5
PCA plots illustrating classification of the two studied groups based on obtained GC–MS data.
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compared seven different extraction solvents but for LC–MS–based

metabolomics. Extraction using MeOH:EtOH, and MeOH

demonstrated the best repeatability in comparison to all other

methods regardless the LC–MS method employed. In our study,

we also observed the best results for MeOH but with the addition of

H2O in a ratio of 9:1. In the previous study presented by Jiye et al.

(2005) (Trygg et al., 2005), the use of MeOH:H2Omixture (v/v; 8:1)

in GC–MS–based metabolomics analysis of plasma samples

provided optimal results in terms of completeness, efficiency, and

reproducibility of extraction in comparison to other tested solvents

(EtOH, ACN, acetone, chloroform), which is consistent with our

findings. According to Can Eylem and coworkers (Eylem et al.,

2022), who studied the effect of five different solvents (acetone,

ACN, EtOH, MeOH, and H2O), the addition of water in the MeOH

extraction had a positive effect on the extraction of polarmetabolites,

resulting in higher peak areas.

Optimization of methoxymation and
silylation conditions

Based on the literature review (Moros et al., 2017; Miyagawa

and Bamba, 2019; Fritsche-Guenther et al., 2021), it was observed

that many factors at both stages (MeOx and SIL) contribute to

the reaction speed and completeness of derivatisation reaction

which may directly impact the repeatability and reproducibility

of sample analyses. Due to the degradation of metabolites, it is

difficult to obtain good repeatability during the batch

derivatisation, as the time between completing the

derivatisation process and GC analysis differ from sample to

sample (Miyagawa and Bamba, 2019). Despite this fact, several

attempts (Moros et al., 2017; Miyagawa and Bamba, 2019;

Fritsche-Guenther et al., 2021) have been made to improve

sample preparation procedure for GC–MS metabolomics. In

the research presented by Fritsche–Guanter and coworkers

(Fritsche-Guenther et al., 2021), different derivatisation

conditions were taken into account during optimization of the

protocol for fully automated and effective protein precipitation

and extraction of 42 metabolites from plasma, serum and liver

samples. It is known that results for manual and fully automated

methods differs, as presented by Zarate et al. (2016). In other

studies, researchers (Moros et al., 2017; Miyagawa and Bamba,

2019; Eylem et al., 2022) observed differences in response and

repeatability of metabolites due to the change of the parameters

of both derivatisation steps, and for this reason we optimized

method at both stages.

In order to reduce the number of derivatisation products,

MeOx–derivatisation was employed before TMS–derivatisation.

Different MeOx concentration–volume combinations were

reported for derivatisation of biofluid samples. In most

protocols (Moon et al., 2013; Org et al., 2017; Gar et al., 2018;

Sobczak et al., 2019; He et al., 2020; Mojsak et al., 2021), MeOx in

the volume of 50–125 μl and the concentration of 15–40 mg/ml is

added to dried extract. Based on the literature findings (Moros

et al., 2017; Miyagawa and Bamba, 2019; Engel et al., 2020; He

et al., 2020; Fritsche-Guenther et al., 2021; He et al., 2021), there

TABLE 6 Statistically significant changes for MDMs detected in serum. Metabolites checked in the Human Metabolome Database (HMDB) (http://
www.hmdb.ca access: 20th April 2022); rt, retention time (minutes); p (corr)—predictive loading values in the OPLS-DA, VIP—variable importance
in projection; CV, coefficient of variation of the metabolites in the QC samples; FC, fold change in the comparison (PreDiab vs. T2DM).

Metabolites HMDB rt p (corr) VIP FC CV in QC [%]

α–hydroxybutyric acid HMDB00008 7.8 0.63 1.38 1.24 3.9

Creatinine HMDB00562 13.5 –0.44 1.33 0.76 17.1

Cystine HMDB00192 20.7 0.39 1.89 2.07 15

Galactonic acid HMDB00565 18.3 –0.42 1.48 0.7 19.1

Gluconic acid HMDB00625 18.3 –0.42 1.6 0.67 20.2

Glutamic acid HMDB00148 13.2 –0.73 2.04 0.65 9.9

Glutamine HMDB00641 13.2 0.43 1.62 1.48 26

Glycerol 1–phosphate HMDB00126 15.8 –0.4 1.07 0.82 12.8

Kynurenine HMDB00684 20.1 –0.48 1.17 0.8 15

Leucine HMDB00687 10.1 0.69 1.58 1.28 9.8

Malic acid HMDB31518 12.6 –0.44 1.19 0.79 7

Mannose HMDB00169 17.4 0.67 1.19 1.17 27

Oleic acid HMDB00207 20.4 0.47 1.42 1.29 5.2

Ornithine HMDB00214 16.4 –0.55 1.75 0.63 12.5

Serotonin HMDB00259 22.4 0.53 1.9 0.45 20.8

Stearic acid HMDB00827 20.6 0.91 2.69 1.79 10

Trans–4–hydroxy–L–proline HMDB00725 13.1 0.52 1.63 0.56 19.7

Tryptophan HMDB00929 20.3 0.67 2.75 1.96 26.3
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is information on the effect of the MeOx concentration on the

derivatisation process. The concentration of MeOx reagent most

frequently reported in the literature is 20 mg/ml. In the research

presented by Eylem and coworkers (Eylem et al., 2022), a high

correlation between the response and MeOx concentration was

found, but details were not shown. For optimization, authors

used the concentration of 30 mg/ml, which is consistent with our

study, although the volume of MeOx was different. We chose the

concentration of 30 mg/ml due to better repeatability for both

matrices and relatively high intensity for most of the studied

metabolites. In the study presented by Fritsche–Guenter

(Fritsche-Guenther et al., 2021), but in fully automated

method of optimization, it was observed that the overall areas

of metabolites decreased around 30% with increasing

concentration of MeOx.

When we optimized a volume of O–methoxyamine HCl

solution in pyridine, the volume of MSTFA with 1% TMCS

was also changed to be equal to the volume of O–methoxyamine

HCl solution in pyridine. Such approach is used in many GC-

MS-based metabolomics studies on plasma or serum samples

(Moros et al., 2017; Raczkowska et al., 2021). On the other hand,

it was shown that efficient derivatisation can be obtained by

decreasing the amount of MeOx and increasing the amount of

SIL reagent (Fiehn, 2016). According to Miyagawa and Bamba

(Miyagawa and Bamba, 2019), who presented the comparison of

the results obtained with the use of various volumes of

O–methoxyamine HCl solution in pyridine, and MSTFA, it

was revealed that the peak areas of the number of metabolite

derivatives increased (mainly AAs) with the increase of the

volume of both reagents employed for the derivatisation,

which is consistent with our study. Bekele and coworkers

(Bekele et al., 2014) found a similar association between the

volume of MSTFA and the number of detected peaks.

Based on the literature review, the degree of completion of

the both MeOx and SIL reaction depends on reaction time and

temperature (Miyagawa and Bamba, 2019) and a lot of attention

has been paid to this step (Miyagawa and Bamba, 2019; He et al.,

2020). The most commonly accepted MeOx conditions include

either reaction in high temperature for short time or low

temperature for prolonged time. On the other hand,

incubation process provides the completion of MeOx;

however, it could also result in progressive degradation of

heat labile metabolites (Bekele et al., 2014). To maximize

coverage of metabolites in reproducible way, while minimizing

FIGURE 6
Discovery of a potential biomarker panel in T2DM by GC–MS untargeted metabolomics. (A) ROC curves and AUC values based on SVM
classification model for all statistically significant metabolites; (B)—plot of the most important and frequently selected variables during the panel
exploration analysis. (C)—ROC curves and AUC values based on SVM classification model for seven metabolites.
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chemical and physical degradation, compromises are inevitable.

The results obtained with different temperature conditions

differed depending on a particular metabolite, and in terms of

different classes of metabolites some trends were noticed. Higher

MeOx temperature is considered to enhance derivatisation

efficiency by increasing solubility of metabolites. Bekele and

coworkers (Bekele et al., 2014) reported that long term, low

temperature MeOx was favorable for organic acid and AAs, while

either long term low temperature or a short term high

temperature MeOx was favorable for α–keto acids. According

to Miyagawa and Bamba (Miyagawa and Bamba, 2019),

disaccharides were incompletely methoxymated at 37°C for

30 min which resulted in a significant peak broadening caused

by multipeaks, which was also observed in the presented study.

Shepherd et al. (Shepherd et al., 2007) reported that CARB

(glucose and fructose) were partially methoxymated at 30°C

for 45 min and sucrose was hydrolyzed to glucose and

fructose at 100°C when the process was longer than 45 min.

MeOx results at 37°C for minimum 60 min were better in terms

of glucose and maltose detection (Miyagawa and Bamba, 2019).

Sterols are often derivatized at 60–100°C, but Miyagawa and

Bamba observed transformation of these metabolites at 70°C

(Miyagawa and Bamba, 2019). Overall, repeatability was better

for all of the individual classes when incubation protocol was

performed at 60°C for 30 min. According to Pasikanti et al.

(Pasikanti et al., 2008), MeOx must be performed over a

relatively long period of time (up to 17 h) and/or at high

temperature to provide complete derivatisation. The same as

in the study presented by Musharraf et al. (Musharraf et al.,

2013), in which MeOx (16 h) was found to be the best in terms of

the number of metabolites, which is consistent with our findings.

Finally, we compared the conditions for the last step of

sample preparation—SIL. This is a classical derivatisation

method employed to introduce a silyl group to a metabolite

by replacing active hydrogen atoms (of carboxyl groups, amino

and hydroxyl groups) to generate stable, more volatile and less

polar metabolites. Several derivatisation reagents have been

applied for the derivatisation of endogenous metabolites. The

most popular reagents are MSTFA and BSTFA (N,O-Bis

(Trimethylsilyl) trifluoroacetamide), with or without the

catalyst, 1% (TMCS). Moros et al. (2017) demonstrated that

MSTFA with 1% TMCS was found to provide more repeatable

results and enable the detection of more derivatives compared to

BSTFA with 1% TMCS in plasma extracts. In the previous study,

Fiehn (2016) also confirmed that MSTFA was superior over

BSTFA in regard to the completeness of NH silylation of AAs and

amines, and for this reason we did not optimize SIL reagent and

chose MSTFA with 1% TMCS for optimization of other

derivatisation conditions.

Factors like temperature and time of SIL contribute to the

reaction speed and completeness of SIL process. Namely,

differences in metabolite peak areas of various derivatives

were observed in different biological matrices as a result of

changing the SIL time and temperature (Eylem et al., 2022).

The most frequently reported temperature and duration of SIL

for both matrices range between 30 and 70°C and 30–120 min

(Danielsson et al., 2012; Fiehn, 2016; Moros et al., 2017; Kiseleva

et al., 2021). Therefore, we compared SIL conditions (37°C and

70°C for 30 and 60 min, respectively) the most commonly used in

the metabolomics studies. Long term and high temperature SIL

was favorable for FAs and CARB. On the other hand, this

conditions had negligible effect on OrgAs and AAs. It is

difficult to adapt a unique SIL process at which all functional

groups would be derivatized because reaction kinetics differ

among functional groups. The ideal scenario would be if SIL

of every functional group of metabolites was completed at the

selection time. The completion of reaction without any

degradation effect for all metabolites remains a challenge. It

was proved that metabolites containing–OH, –COOH and

ketone groups were derivatized 5 h after the addition of

MSTFA whereas the derivatisation of–NH2 groups was still

progressing after a day, at which point, other products began

to degrade (Moldoveanu and David, 2018).

Multiple peaks are usually produced when this step of

derivatisation is incomplete. At 70°C for 60 min, we did not

observe multiple peaks for AAs such as Ala and Val in neither of

matrices, thus we assumed that a SIL process was completed.

Danielsson et al. (2012) observed, similarly to our findings, that

long incubation time is needed to complete a derivatisation

process. Furthermore, these results imply that long SIL

periods (>30 min) are needed to provide effective

derivatisation of slowly reacting metabolites. Two peaks were

found from the TMS derivatisation of sugars (e.g., glucose and

mannose), which was in accordance to the previously published

literature (Villas-Bôas et al., 2011; Zarate et al., 2016). Finally, we

chose 16 h at RT for methoxymation and 1 h at 70°C for SIL. It

was proved in the literature that a longer MeOx at low

temperature in combination with a high SIL temperature

provide a similar results to a short–time methoximation at a

high temperature in combination with a low SIL temperature

(Bekele et al., 2014), which is consistent with our findings. In

previously reported study it was found that MeOx (16 h) and SIL

(1 h) provide the best results in terms of the number of

metabolites (Musharraf et al., 2013).

Results of the comparison between both
tested matrices

There are metabolomics studies showing the differences

between serum and plasma metabolic profiles (Kaluarachchi

et al., 2018). Depending on the type, class or particular

metabolite, one matrix can be better than the other to

perform metabolomics analyses. In general, serum is favored

due to the slightly higher metabolites concentration compared to

plasma (Yu et al., 2011), which is consistent with our results
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taking into account TI (Figure 3). Deproteinization of serum

eliminates the volume fraction of proteins and distributes the

remaining small molecular weight constituents in a smaller

volume, thus making them more concentrated. On the other

hand, there are studies confirming that the level of some

metabolites are lower in serum compared to EDTA plasma

(Suarez-Diez et al., 2017; Sotelo-Orozco et al., 2021). It is

obvious that serum and plasma are similar in terms of some

characteristics and different in other, and these differences may

be important for bio specimen selection and metabolite

identification in metabolic phenotyping studies. Due to all the

above–mentioned factors, we have made the effort to perform a

comprehensive optimization for 75 MDMs in both matrices. As

far as we know, no comprehensively optimized method,

including the impact of most commonly used mixtures of

solvents and derivatisation conditions, for profiling of both

plasma and serum metabolites as MSTFA derivatives has been

presented thus far. The most considerable differences concern

AAs, associated with GM and T2DM development thus, the

optimization of the methods for both matrices is crucial. It has

been reported in previous optimization study (Moros et al.,

2017), that good repeatability, particularly for AAs is difficult

to achieve during batch derivatisation, as the time between the

completion of derivatisation reaction and GC analysis differs

from sample to sample. Optimisation of repeatable and

reproducible method for the quantification of MDMs was

essential because we applied this method for the analysis of

clinical serum samples to evaluate changes in MDMs related to

T2DM development.

Analysis of clinical samples

Many changes in gut composition have been reported in

T2DM patients and it was proved that GM may be a significant

environmental factor involved in the onset and progression of

T2DM (Tanase et al., 2020). Larsen et al. (2010) conducted one of

the first studies in humans comparing the GM between

individuals with T2D and healthy controls. This study

demonstrated that the phylum Firmicutes and the class

Clostridia were less abundant in the T2DM group compared

to the control group, whereas the class Betaproteobacteria was

more abundant in T2DM subjects and positively correlated with

plasma glucose level. In the same study (Pedersen et al., 2016) it

was shown that dysbiosis of GM impacts serum metabolome and

contributes to IR. Therefore, analysis of serum metabolome can

be potentially used for T2DM diagnosis, also in the context of

MDMs. Based on the literature review we proved that a variety of

biological markers detected in biofluids by GC-MS (Gar et al.,

2018; Adamska-Patruno et al., 2019; Mojsak et al., 2021) are

associated with T2DM. GC–MS–based metabolomics is a

powerful approach for studying pathophysiological processes

(Raczkowska et al., 2021), and has been used to identify

complex endogenous metabolic phenotypes in various diseases

(Zhang et al., 2020). For these reasons GC–MS was used to

identify the differences in serum samples between diabetic and

prediabetic subjects.

Several studies have indicated the influence of bacterial taxa

on lipid and FA levels in blood samples (Rooks and Garrett, 2016;

Org et al., 2017). The serum FAs profile is determined by host

endogenous FA metabolism (Baylin and Campos, 2006). Data

presented by Org and coworkers (Org et al., 2017) showed that

fasting serum monounsaturated and saturated FAs are strongly

associated with an increased abundance of Blautia andDorea and

decreased abundance of Coprococcus and Peptococcaceae. As it

can be seen in Table 6, we indicated statistically significant

changes in FAs (oleic acid (OA) and SA). Studies using

metabolic profiling support the importance of FAs in the

prediction of T2DM onset. It was confirmed that FA levels

were significantly higher in newly diagnosed (Lu et al., 2016;

Castro-Correia et al., 2017) and long–term monitored patients

(Spiller et al., 2018) with T2DM, what is in line with the results of

our research. Among all metabolites used for ROC analysis, SA

exhibited the highest AUC value (0.995) (Figure 6). An increased

concentration of serum SA plays a fundamental role in the

development of beta cell dysfunction and T2DM, as this FA is

the major contributor to lipotoxicity in beta cells (Vilas-Boas

et al., 2021). It was consistent with the findings of Lu et al. (2016)

and Zhao et al. (2017), who identified FAs as the most important

pathogenic factors for insulin resistance and T2DM.

Lipid oxidation may cause an increase of α–HB level, and we

indicated elevated level (FC = 1.24) of this metabolite in T2DM

group. It was confirmed that a high level of α–HB is common for

T2DM, and it was previously identified as a marker and predictor

of T2DM (Gall et al., 2010; Cobb et al., 2016; Vangipurapu et al.,

2019; Ferrannini et al., 2022). α–HBA is a byproduct of

α–ketobutyric acid synthesis, a product of AA catabolism

(Thre and Met) and glutathione anabolism (Cys formation

pathway) in hepatic tissue (Sousa et al., 2021). Trico and

coworkers (Tricò et al., 2017) has demonstrated that α–HBA

level increased in IR, potentially due to a metabolic overload

(through BCAA and free FAs) and oxidative stress (by the higher

intracellular NADH/NAD + ratio).

GM can promote the production and utilization of AAs,

which can be absorbed across the gut and accumulate in the

blood. Thus, the GM could influence serumAA levels (Shen et al.,

2021) (Supplementary Table S1). Subjects with IR also exhibit

proliferation of Prevotella copri and Bacteroides vulgatus, which

elevate the circulating levels of BCAAs (Li et al., 2017). AAs have

an important role in multiple pathophysiological processes

(Zhou et al., 2021). Disturbances in AA metabolism are

closely involved in the pathogenesis of T2DM. Several AAs,

including especially BCAAs and aromatic AAs, have been

shown to be associated with increased risk of T2DM

(Vangipurapu et al., 2019; Long et al., 2020). Pedersen et al.

(2016) suggested that intestinal microbiota could be an
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important source of increased levels of BCAAs and play a key role

in insulin resistance. In the presented study, in terms of BCAA,

differences in the level of Leu were observed. Leu serum

abundance was statistically higher in T2DM than in

prediabetic patients. Our results are in accordance with the

other findings showing significant association of BCAAs

(especially Leu) with T2DM (Lynch and Adams, 2014; Flores-

Guerrero et al., 2018; Gar et al., 2018; Holeček, 2018).

Elevation of BCAAs leads to accumulation of carnitines in

muscle, which induces oxidative stress and mitochondrial

dysfunction, thereby aggravates insulin sensitivity (Lynch and

Adams, 2014). As it was already shown (Hu et al., 2019; Mojsak

et al., 2021), lower level of Cre in serum, also observed in our study,

might reflect a lower amount of skeletal muscle thus fewer target

sites for insulin which may partially explain the pathogenesis of

T2DM associated with lower serum level of Cre. In the comparison

of PreDiab vs. T2DM_group, we also observed decreased level of this

metabolite in T2DM group. In the study presented by Agus and

coworkers (Agus et al., 2018), bacteria and fungi capable of

degrading Cre have been identified in the human colon.

Consequently, accurate determination of these metabolites can be

essential for the early diagnosis of T2DM.

Previous studies have suggested that several metabolites of the

kynurenine pathway are diabetogenic to humans, which is directly or

indirectly controlled by microbiota (Oxenkrug, 2013). Kynurenine

pathway, involved in Trp metabolism, was previously reported as

being upregulated in T2DM. Enzyme responsible for conversion of

Trp to kynurenine has been shown to be regulated by microbiota

(Agus et al., 2018). In our study, we observed statistically significant

changes in an essential AA—Trp (FC = 1.96) in prediabetic patients

in comparison to T2DM. Trp is also a precursor for serotonin

synthesis in the gut mucosa (Jenkins et al., 2016; Gao et al., 2020).

Interestingly, in our study, we observed elevated level of serotine,

associated with the increased risk of T2DM which is consistent with

previous findings (Yabut et al., 2019).

Org and coworkers (Org et al., 2017) showed the connection

between GM and Glu levels. Higher Glu levels in plasma were

significantly associated with higher bacterial abundance such as

Clostridales. Several species from unclassified Clostridales

positively correlated with glutamine concentrations. It was

revealed that Glu and GA are related to T2DM. In β–cells,
glutamine is transported by blood and accumulated in plasma,

then further converted to GA (Jenstad and Chaudhry, 2013).

Cheng et al. reported that plasma Glu, glutamate, and the Glu/

glutamate ratio were strongly associated with IR. GA

concentration is also one of the most important indicators of

diabetic retinopathy (Cheng et al., 2012).

To evaluate the utility of significant metabolites as potential

T2DM biomarkers, ROC curve analyses were performed (Figure 6).

The AUC of the combination of five AAs and two FAs revealed the

most powerful capability to discriminate between prediabetics and

T2DM patients. This combination might serve as a potential T2DM

indicator as it provides improved specificity compared to single

metabolite measurement. The diagnostic accuracy of these

metabolites could be further enhanced by combining it with

other routine diagnostic parameters such as FP glucose or HbA1c.

Conclusion

In the presented study, we focused on the comparison of

different sample preparation conditions including different

solvents for protein precipitation and two steps of derivatisation,

MeOx followed by SIL. We analysed two matrices (serum and

plasma) in the context of 75 MDMs. The comprehensive evaluation

of the results revealed that sample preparation with methanol with

the addition of water provided the most stable signals for MDMs.

Our results also suggest that a MeOx volume and concentration has

the greatest impact on repeatability and intensity, whereas

derivatisation reaction conditions mostly influence the reaction

speed and completeness of this process.

It is important to have a repeatable and reproducible method

for the determination of MDMs in blood-related samples, as it

can be used to study the role of such a metabolites in the

development of different diseases. In this study we applied

this method to analyze serum samples obtained from

prediabetic and T2DM patients. In total, 18 MDMs

discriminated T2DM patients from prediabetics. Seven of

them (SA, GA, Leu, Trp, Trans–4–hydroxy–L–proline, Orn

and OA), based on the SVM classification model, were

selected as a panel of potential biomarkers, able to distinguish

between patients with T2DM and prediabetes. As our findings

were derived from a small group, future validation of these results

in a large–scale cohort study is needed.
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