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Abstract 

Background:  Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of 
these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year 
in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after 
pulmonary exposure.

Methods:  Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 
0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spray‑
ing (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice.

Results:  DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a signifi‑
cant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg 
DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The 
development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher 
(p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, 
bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg 
DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated 
with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, 
both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered 
DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by 
which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans.
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Background
Carbon nanotubes (CNTs) are composed of concentric 
one-atom thick graphene cylinders and have a wide range 
of applications [1]. The ability to manipulate the lengths 
and the number of graphene cylinders that compose 
CNTs has allowed the production of specific CNTs with 
different lengths and thicknesses, and these differences 
result in different CNTs having different physical proper-
ties. In general, CNTs are divided into two types single-
walled carbon nanotubes (SWCNT) and multi-walled 
carbon nanotubes (MWCNTs) with double-walled car-
bon nanotubes (DWCNT) sometimes being considered 
a distinct class of MWCNT. Multi-walled carbon nano-
tubes can be divided into two general subtypes, tangled 
and straight.

The very light weight of CNTs make them easily air-
borne and inhaled. Consequently, the possibility that 
CNTS may exhibit foreign body toxicity in the airways 
and pleura is of concern [2–7]: also see Hansen and Len-
nquist 2020 [8]. Harmful fibrous particles like asbestos 
are known to induce fibrosis and cancer through chronic 
unresolved inflammation characterized by inflammatory 
cell accumulation and production of reactive oxygen and 
nitrogen spices (ROS & RNS) that can damage DNA and 
through repeated cycles of tissue damage and repair fix 
potentially transforming mutations into daughter cells 
[9–15].

Despite the widespread production and use of CNTs 
very few in vivo studies with a duration of 18 months or 
more have been carried out to assess the toxicity and car-
cinogenicity of these materials in experimental animals 
[16–24]. At the time of this writing, IARC has evaluated 
only MWCNT-7 as carcinogenic in experimental animals 
and as being possibly carcinogenic in humans (Group 
2B). All other CNTs had inadequate evidence in experi-
mental animals for carcinogenicity and they were not 
classifiable as to their carcinogenicity to humans [11].

We have established that instillation of insoluble test 
materials, such as CNTs, into the rat lung every other 
day over the course of 2 weeks (8 doses in total) results 
in distribution of the test material throughout each of 
the lung lobes [25]: we refer to this instillation pro-
cedure as intratracheal intrapulmonary instillation 
(TIPS). Using TIPS, we assessed the toxicity and car-
cinogenicity of MWCNT-N, MWCNT-7, MWCNT-A, 

and MWCNT-B in long term studies. The thick straight 
MWCNT-N (40 layers) induced both lung tumors and 
malignant pleural mesotheliomas [23]; MWCNT-7 
(more than 40 layers) induced malignant pleural meso-
theliomas [20]; a thin tangled MWCNT, referred to as 
MWCNT-B, (15 layers) induced lung tumors [22] and 
MWCNT-A (very thick 150 layers) was shown to be a 
likely lung carcinogen [22].

However, very little is known about the in vivo toxic 
effect of DWCNTs. The only available results are short 
term studies in mice and our short term study in rats. 
Crouzier et  al. found inflammatory reactions in mice 
6, 24, and 48  h after a single intranasal instillation of 
1.5  mg/kg DWCNT (1.2–3.5  nm diameter, 1–10  μm 
length) [26]. Tian et  al. found that in mice inflamma-
tory lesions were not resolved after a 7  day observa-
tion period after a single intratracheal instillation of 
50  μg DWCNT (3.5  nm diameter, 1–10  μm length) 
[27]. Sager et al. reported that mice administered 40 μg 
DWCNT (1–2  nm diameter, < 5  μm length) by phar-
yngeal aspiration had developed alveolitis and lung 
fibrosis 56  days after administration of the DWCNT 
[28]. O’Shaughnessy et  al. exposed mice to DWCNT 
by whole body inhalation at a dose of 10.8 mg/m3, 4 h/
day for 5 days. DWCNT caused inflammation and tis-
sue injury to the lung which was resolved 2 weeks after 
the end of exposure [29]. El-Gazzer et  al. adminis-
tered DWCNT (1–3  nm diameter, due to the tangled 
nature of the fibers the length could not be measured) 
and MWCNT-7 (55.5 ± 12  nm diameter, 6.5 ± 2.4  μm 
length) by TIPS to rats. Six weeks after administra-
tion the degree of pulmonary and pleural toxicity 
induced by MWCNT-7 was much higher than that 
induced by DWCNT. DWCNT caused more exten-
sive granulation tissue formation encapsulating the 
fibers than MWCNT-7 [30]. In mice and rats, admin-
istration of DWCNT by instillation or pharyngeal 
aspiration resulted in inflammation that lasted up to 
6 weeks (rats) to 8 weeks (mice), while mice exposed to 
DWCNT by inhalation developed inflammation during 
exposure, but 2 weeks after the termination of exposure 
the inflammation had resolved. Based on these findings 
we conducted the present long-term study to assess the 
chronic toxicity and carcinogenicity of DWCNT in the 
rat lung.

Conclusions:  Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce 
chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These find‑
ings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be 
ignored.

Keywords:  Double walled carbon nanotubes, Two-year study, Toxicity, Carcinogenicity, Rats
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Results
Interim and terminal sacrifices
Rats were divided into six groups: no treatment (27 
rats); rats administered vehicle alone (30 rats); rats 
administered 0.125  mg DWCNT (30 rats); rats admin-
istered 0.25  mg DWCNT (33 rats); rats administered 
0.5 mg DWCNT (30 rats); and rats administered 0.5 mg 
MWCNT-7 (30 rats). One untreated rat died prior to 
week 52 and was excluded from the study, therefore, the 
untreated group contained 26 rats. At week 52 an interim 
sacrifice was performed on 5 rats from the untreated, 
vehicle, 0.125  mg DWCNT, and 0.5  mg MWCNT-7 
group; 7 rats from the 0.25 mg DWCNT group; and 6 rats 
from the 0.5 mg DWCNT group. Rats found dead after 
week 52 underwent terminal necropsy and rats found 
moribund after week 52 and rats surviving to the end of 
the study underwent terminal sacrifice. The final termi-
nal sacrifice was performed at 104 weeks on rats from the 
untreated (17 rats), vehicle (17 rats), 0.125 mg DWCNT 
(18 rats), 0.25 mg DWCNT (20 rats) and 0.5 mg DWCNT 

(16 rats) groups. In the MWCNT-7 group, 16 rats were 
found moribund or died due to mesothelioma prior to 
the end of week 90. Therefore, in order to collect pleural 
lavage fluid the remaining 9 rats in this group underwent 
final terminal sacrifice at week 91. In addition, in the six-
teen MWCNT-7 treated rats that were found moribund 
or died due to mesothelioma there was extensive invasion 
of the lungs by the mesotheliomas, making evaluation of 
proliferative lesion development (other than mesothe-
lioma) in these rats unreliable. Therefore, only the nine 
MWCNT-7 treated rats that survived for 91 weeks were 
evaluated for the parameters shown in Table 3. Through-
out this report, terminal sacrifice refers to sacrifices 
performed after week 52 and final sacrifice refers to the 
terminal sacrifices performed at weeks 91 and 104.

Characterization of the test substance
Representative SEM and TEM images of DWCNT and 
MWCNT fibers in suspension, prior to TIPS admin-
istration, are shown in Fig.  1, and fiber lengths and 

Fig. 1  Characterization of test materials in suspension. A shows scanning electron microscopy images of (a) DWCNT and (b) MWCNT-7 fibers and B 
shows transmission electron microscopy images of (a) DWCNT and (b) MWCNT-7 fibers
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diameters are presented in Table  1. DWCNT are thin 
and tangled and MWCNT are relatively thick and 
straight. Prior to TIPS administration, DWCNT fib-
ers had a mean diameter of 14.32 ± 10.04  nm, and 
DWCNT recovered from lung tissue at 104 weeks had a 
mean diameter of 15.10 ± 13.99 nm. The lengths of the 
DWCNT fibers could not be measured due to the tan-
gled nature of the fibers. Prior to TIPS administration, 
MWCNT fibers had a diameter of 76.49 ± 31.14  nm 
and a mean length of 8.79 ± 4.41 um. MWCNT recov-
ered from lung tissue at 91  weeks had a diameter of 
69.42 ± 23.76 nm and a mean length of 8.45 ± 5.29 μm. 
The size of the DWCNT and MWCNT-7 fibers recov-
ered from the lung tissue at 104  weeks and 91  weeks, 
respectively, was not significantly different from 
the size of the fibers in suspension prior to TIPS 
administration.

Biodegradation of DWCNT and MWCNT‑7 in vitro
DWCNT and MWCNT-7 were added to cultures of 
RAW cells, a mouse macrophage cell line, or to plates 
without cells. Plates were then incubated for 5  days. 
The effective lengths of the DWCNTs incubated with-
out (control) and with RAW cells were estimated using 
far infrared absorption. The absorption peaks of both 
samples were observed around 20  cm−1 and the peak 
shift after incubation was within experimental error: 
this indicates that the changes in effective length 
between the controls and the DWCNTs incubated with 
RAW cells were below detectable limits and that the 
DWCNTs were not measurably damaged by incubation 
with RAW cells for 5 days (data not shown).

Macroscopic findings
The lungs of rats treated with 0.125, 0.25, and 0.5  mg 
DWCNT and 0.5 mg MWCNT-7 showed grayish discol-
oration throughout all lung lobes. The parabronchial and 
mediastinal lymph nodes of the DWCNT treated rats 
were dark gray, and the parabronchial and mediastinal 
lymph nodes of the MWCNT-7 treated rats were entirely 
black.

Incidence of proliferative lesions and survival
No significant differences in the average survival time was 
observed between the untreated group (102 ± 6  weeks), 
the vehicle group (99 ± 10  weeks), the 0.125  mg/rat 
DWCNT group (99 ± 8 weeks), the 0.25 mg/rat DWCNT 
group (101 ± 7  weeks), and the 0.5  mg/rat DWCNT 
group (100 ± 4 weeks).

Table  2 shows the incidences of proliferative lesions 
at 52  weeks. No lung tumors were found in any of the 
rats sacrificed at 52  week. One rat in the MWCNT-7 
group developed a malignant pleural mesothelioma. 
The incidences of bronchioloalveolar hyperplasia (BAH) 
were significantly higher in the DWCNT 0.25  mg (5/6) 
(p < 0.05) and 0.5 mg (6/7) (p < 0.05) groups compared to 
the vehicle group (0/5). BAH in the DWCNT 0.25 and 
0.5 mg groups was also significantly higher (p < 0.05) than 
in the MWCNT-7 group (1/7).

Table 3 shows the incidences of proliferative lesions 
that developed in the untreated, vehicle, and DWCNT 
treated rats that survived beyond 52 weeks and in the 
MWCNT-7 treated rats that survived for 91  weeks: 
as noted above, the MWCNT-7 rats that died prior 
to 91  weeks due to mesotheliomas had extensive 
invasion of the lungs by the mesotheliomas, making 

Table 1  Size of DWCNT and MWCNT-7 fibers in the vehicle before dosing and at weeks 104 and 91

a Not available (unable to measure DWCNT fiber length because of agglomerate formation)

Length before dosing Length at 104 & 91 weeks Diameter before dosing Diameter at 104 
and 91 weeks

DWCNT NA a NA a 14.32 + 10.04 nm 15.10 + 13.99 nm

MWCNT-7 8.79 + 4.41 μm 8.45 + 5.29 μm 76.49 + 31.14 nm 69.42 + 23.76 nm

Table 2  Incidence of proliferative and neoplastic lesions at 52 weeks

*Difference from Vehicle group: p < 0.05
# Difference from MWCNT-7 group: p < 0.05

No lung tumors were found in any of the rats sacrificed at 52 wk

Untreated Vehicle DWCNT
0.125 mg/rat

DWCNT
0.250 mg/rat

DWCNT
0.500 mg/rat

MWCNT
0.500 mg/rat

Number of rats examined 5 5 5 7 6 5

Bronchiolo-alveolar Hyperplasia (BAH) 0 0 2 5*,# 5*,# 1

Pleural Mesothelioma 0 0 0 0 0 1



Page 5 of 21Saleh et al. Particle and Fibre Toxicology           (2022) 19:30 	

evaluation of proliferative lesions other than meso-
thelioma in these rats unreliable. Therefore, only 
the nine MWCNT-7 treated rats that survived for 
91 weeks were evaluated for the parameters shown in 
Table  3. There was an increase in both bronchioloal-
veolar adenomas (BAA) and bronchioloalveolar carci-
nomas (BAC) in the DWCNT groups compared with 
the vehicle control group. However, the development 
of carcinomas in the lungs of rats treated with 0.5 mg 
DWCNT (4/24) was not quite statistically higher 
(p = 0.0502) than the vehicle control group (0/25). 
On the other hand, the incidence of total lung tumors 
(BAA + BAC) in the DWCNT 0.5 mg group (7/24) was 
significantly higher (p < 0.05) than the vehicle group 
(1/25). At the final sacrifice at 91 weeks, three rats had 
developed lung tumors (BAA + BAC), which has sta-
tistical significance compared to the vehicle control 
group (1/25). The incidence of malignant pleural mes-
othelioma in the MWCNT-7 group (16/25) was signifi-
cantly higher (p < 0.001) than the vehicle group (0/25): 
this is not shown in Table  3. One rat in the 0.25  mg 
DWCNT group and one rat in the 0.50  mg DWCNT 
group also developed mesotheliomas, however, both of 
these mesotheliomas developed in the visceral pleura 
and as discussed below are unlikely to be relevant to 
human mesothelioma development. Two rats, one in 
the 0.125  mg DWCNT group and one in the 0.50  mg 
DWCNT group, also developed malignant peritoneal 
mesotheliomas, however, aged male Fischer 344 rats 
are prone to developing spontaneous peritoneal mes-
otheliomas [31]. Figure  2 shows typical lesions that 
developed in these rats. Other tumors including leuke-
mia, pituitary tumors, mammary tumors, and scrotal 
malignant mesotheliomas were not treatment related.

Histopathological evaluation
Table  4 shows pathological parameters at 52  weeks 
and Table 5 shows pathological parameters at the final 
sacrifice. Histopathological observation at 52  weeks 
and at the final sacrifice showed that DWCNTs were 
mostly phagocytosed by groups of macrophages form-
ing foreign body granulation tissue (Fig.  3), and at 
both time points granulation tissue was significantly 
increased in all treated groups compared to the vehicle 
group. Granulation tissue was also significantly higher 
in the DWCNT 0.25 and 0.5  mg groups compared to 
the MWCNT-7 group at week 52 and in the DWCNT 
0.5  mg group compared to MWCNT-7 group at the 
final sacrifice. In contrast to DWCNT, MWCNT-7 fib-
ers were commonly observed in free macrophages and 
some fibers were observed free in the alveolar space 
(Fig.  3). Both DWCNT and MWCNT-7 fibers were 
found in the parabronchial and mediastinal lymph 
nodes (Fig. 4).

Immunohistochemical evaluation showed that at 
52  weeks and at the final sacrifice, the CD68 positive 
macrophage count was significantly increased in all 
treated groups compared with the vehicle group (Tables 4 
and 5). The macrophage count was also significantly 
increased in the DWCNT 0.25 and 0.5 mg groups com-
pared to the MWCNT-7 group at both time points. Fig-
ure  5A shows CD68 immunostaining of vehicle, 0.5  mg 
DWCNT, and 0.5 MWCNT-7 lungs at the final sacrifice.

PCNA indices in the lung at 52  weeks are shown in 
Table 4. PCNA indices of alveolar cells in the rats admin-
istered DWCNT were not different from the controls at 
week 52. In contrast, PCNA indices of alveolar cells in the 
rats administered MWCNT were significantly increased 
compared to the controls at week 52.

Table 3  Incidence of proliferative lesions at the terminal sacrificea

a In the MWCNT-7 group, 16 animals died from malignant mesothelioma after 52 weeks and before 91 weeks. Because of the invasion of the lungs by the 
mesotheliomas, these animals could not be accessed for development of BAH, BAA, or BAC or the site of mesothelioma development, and therefore, are not included 
in Table 3
b The malignant pleural mesothelioma developed in the visceral pleura
* Significantly different from the vehicle group: p < 0.05 and 0.001

Untreated Vehicle DWCNT
0.125 mg/rat

DWCNT
0.250 mg/rat

DWCNT
0.500 mg/rat

MWCNT
0.500 mg/rat

Rats examined 21 25 25 26 24 9a

Bronchiolo-alveolar hyperplasia (BAH) 4 4 1 4 0 1

Bronchiolo-alveolar adenoma (BAA) 1 1 3 2 3 1

Bronchiolo-alveolar adenocarcinoma (BAC) 0 0 1 2 4 2

BAA + BAC 1 1 4 4 7* 3*

Malignant pleural mesothelioma 0 0 0 1b 1b 0

Malignant peritoneal mesothelioma 0 0 1 0 1 0
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PCNA indices at the final sacrifice are shown in 
Table  5 and Fig.  5B shows PCNA immunostaining of 
vehicle, 0.5  mg DWCNT, and 0.5 MWCNT-7 lungs at 
the final sacrifice. The PCNA index of alveolar cells was 

significantly increased in all treated groups compared 
with the vehicle group. The visceral and parietal pleu-
ral mesothelial PCNA indices were not increased in any 
of the DWCNT groups compared to the controls. The 

Fig. 2  Representative preneoplastic and neoplastic lesions. A Bronchiolo-alveolar hyperplasia, B Bronchiolo-alveolar adenoma, C 
Bronchiolo-alveolar adenocarcinoma, and D Malignant pleural mesothelioma

Table 4  Cell proliferation and inflammation related parameters in the lung tissue at 52 weeks

*,**,***Difference from the Vehicle group at p < 0.05, 0.01, 0.001, respectively
#,## Significantly increased compared to MWCNT-7 at p < 0.05, 0.01 respectively

Untreated Vehicle DWCNT
0.125 mg/rat

DWCNT
0.250 mg/rat

DWCNT
0.500 mg/rat

MWCNT
0.500 mg/rat

Granulation tissue
count/cm2 mean ± S.D

1.1 ± 0.35 2.4 ± 1.2 98.8 ± 31.0*** 189 ± 32.5***,# 404.4 ± 88.8***,# 65.4 ± 11.8**

Macrophage count/cm2 mean ± S.D 1.45 ± 0.23 6.93 ± 1.47 21.72 ± 4.2*** 33.01 + 6.4***,# 49.1 + 5.79***,# 15.88 ± 5.79**

Alveolar cell
PCNA index %

10.77 ± 3.00 18.10 ± 8.65 16.51 ± 7.85 17.81 ± 7.40 25.85 ± 4.74 44.52 ± 7.55 **

CCL2 pg/mg lung protein mean ± S.D 3.30 ± 0.28 3.65 ± 0.44 16.69 ± 4.65*** 23.36 + 4.33***,# 22.37 + 3.7***,# 9.49 ± 0.98***

CCL3 pg/mg lung protein mean ± S.D 6.82 ± 0.56 8.19 ± 0.73 40.32 ± 10.4** 69.09 + 7.84***,# 135.57 + 11***,## 24.86 ± 8.4*
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visceral and parietal pleural mesothelial PCNA indices 
were significantly higher in the MWCNT-7 group com-
pared to the vehicle group and to the DWCNT groups.

Pulmonary collagen deposition at the final sacrifice 
is shown in Table  5, and Fig.  5C shows Masson’s tri-
chrome staining of vehicle, 0.5  mg DWCNT, and 0.5 
MWCNT-7 lungs at the final sacrifice. Fibrotic changes 
with increased deposition of collagen in the alveolar wall, 
parabronchial areas, and within the granulation tissues 
were observed in the DWCNT and MWCNT-7 groups. 
Pulmonary collagen deposition was significantly higher 
in the 0.5  mg DWCNT and MWCNT-7 groups com-
pared to the vehicle control group.

Subpleural collagen deposition at the final sacrifice is 
shown in Table  5, and Fig.  6 shows Masson’s trichrome 
collagen staining of visceral and parietal pleura. Sub-
pleural collagen deposition was somewhat increased in 
the visceral pleura but not in the parietal pleura of the 
0.5  mg DWCNT group, and overall subpleural collagen 
deposition was not significantly increased in the 0.5 mg 
DWCNT group compared to the controls. MWCNT-7 
treated rats had increased collagen deposition at both the 
visceral and parietal pleura, and overall subpleural colla-
gen deposition was significantly higher in the MWCNT-7 
group than the vehicle controls and the 3 DWCNT 
groups.

The levels of CCL2 and CCL3 in lung tissue at 52 weeks 
and the final sacrifice are shown in Tables  4 and 5. The 
levels of both CCL2 and CCL3 in lung tissue at both 
52 weeks and the final sacrifice were significantly higher 
in all treated groups compared with the vehicle con-
trol group. The CCL2 and CCL3 levels in the DWCNT 
0.25 and 0.5  mg groups were significantly higher than 
the MWCNT-7 group at both 52 weeks and at the final 
sacrifice.

Lung fiber burden at 52 weeks and the final sacrifice
The lung fiber burden at 52 weeks and the final sacrifice 
is shown in Fig.  7. At 52  weeks, the amounts of DWC-
NTs in the lungs were proportional to the initial dose 
administrated. Lung fiber burden decreased from week 
52 to the final sacrifice, however, more than 1% of the ini-
tially instilled fibers remained in the lung 104 weeks and 
91 weeks after instillation of DWCNT and MWCNT-7, 
respectively, and both DWCNT and MWCNT-7 were 
readily detectable in lung tissue sections at the final sacri-
fice (see Figs. 3 and 5), indicating that DWCNT as well as 
MWCNT-7 was biopersistent in the rat lung.

Electron microscopic observation
At 104 weeks, DWCNT agglomerates were mostly found 
engulfed by groups of macrophages forming granulation 

Table 5  Cell proliferation and inflammation related parameters of the lung tissue at the final sacrificea

a In the MWCNT-7 group, 16 animals died from malignant mesothelioma after 52 weeks and before 91 weeks. Because of the extensive invasion of the lungs by the 
mesotheliomas, these animals could not be assessed for the parameters shown in Table 5. Therefore, only the values obtained from the nine MWCNT-7 treated rats 
that survived for 91 weeks are shown in Table 5
b Results are expressed as the percentage area of pulmonary collagen deposition/total alveolar tissue area
c Results are expressed as the percentage area of subpleural collagen deposition/total pleural tissue area

*,**,***Significantly increased from the Vehicle at p < 0.05, 0.01, 0.001 respectively
#,## Significantly increased compared to MWCNT-7 at p < 0.05, 0.01 respectively
$ Significantly increased in compared to DWCNT groups: p < 0.01

Untreated Vehicle DWCNT
0.125 mg/rat

DWCNT
0.250 mg/rat

DWCNT
0.500 mg/rat

MWCNTa

0.500 mg/rat

Granulation Tissue
count/cm2 mean ± S.D

0.9 ± 0.3 1.3 ± 0.6 50.9 ± 5.2** 118.9 ± 68.8*** 365.1 ± 81.7***,# 94.9 ± 35.3**

Macrophage count/cm2

mean ± S.D
54.6 ± 16.4 75 ± 23.0 361.8 ± 53.4*** 502.8 ± 59.1***,# 479.1 ± 48.2***,# 314.7 ± 91.6***

Alveolar
PCNA index %

3.62 ± 1.7.3 4.48 ± 1.88 8.83 ± 4.28* 18.54 ± 7.35** 21.27 ± 10.57**# 14.10 ± 10.29**

Visceral pleural
PCNA index %

0.20 ± 0.28 0.36 ± 0.26 0.44 ± 0.17 1.40 ± 1.23 1.32 ± 0.72 15.20 ± 13.22**$

Parietal pleural
PCNA index %

2.00 ± 0.43 2.30 ± 0.66 2.00 ± 0.712 1.90 ± 0.77 2.60 ± 0.28 23.75 ± 32.56***$

Pulmonary Collagen deposition %b 13.04 8.50 13 18.15 20.47* 27*

Subpleural Collagen deposition % c 4.20 2.25 5.50 4.45 16.87 64.20***$

CCL2 ng/mg lung protein
mean ± S.D

0.77 ± 0.3 1.6 ± 0.87 6.67 ± 2.44*** 8.40 ± 1.73***,# 10.74 ± 1.94***,## 5.20 ± 1.6***

CCL3 ng/mg lung protein
mean ± S.D

0.58 ± 0.27 0.55 ± 0.16 0.71 ± 0.16*,# 0.75 ± 0.21*,# 0.74 ± 0.19*,# 0.52 ± 0.12
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tissue with multinucleated giant cells (Fig.  3). Figure  8 
is a TEM image of irregular tangled DWCNT fib-
ers in a multinucleated giant cell. Figure  9 is an SEM 
image of numerous thin DWNCT fibers engulfed by a 

single macrophage. In contrast, TEM and SEM images 
of MWCNT-7 treated rats sacrificed at 91 weeks primar-
ily showed single MWCNT-7 fibers or small bundles of 
MWCNT-7 fibers associated with macrophages (Figs.  8 

Fig. 3  Lung sections of rats administered 0.5 mg DWCNT at 52 weeks (A) and 104 weeks (B). The majority of the DWCNT is encapsulated in 
granulation tissue (arrows). The boxed areas are higher magnifications using a polarized lens showing DWCNT fibers. Lung sections of rats 
administered MWCNT (0.5 mg) at 52 weeks (C) and 91 weeks (D). MWCNT-7 can be seen encapsulated inside granulation tissue. In contrast to 
DWCNT, free macrophages phagocytosing MWCNT-7 fibers are a common feature. The boxed areas are higher magnifications using a polarized lens 
showing MWCNT fibers in free macrophages

Fig. 4  Mediastinal lymph nodes of rats administered 0.5 mg DWCNT (A) or 0.5 mg MWCNT-7 (B). Both fibers are shown to translocate from the 
alveoli to the mediastinal lymph nodes
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and 9). MWCNT-7 fibers were also found free in the 
alveolar space (Fig.  9). Importantly, MWCNT-7 fibers 
could also be seen penetrating the macrophage cell mem-
brane (Fig. 9).

DNA adductomes formation in the lung tissue
Additional file 1: Fig. S1 shows adductome maps of rats 
at 52  weeks. The relative peak areas and the number of 
peaks are given for each group. There were no significant 
differences in either peak area or the number of peaks 
between any of the groups. No adducts specific to any of 
the treated groups were found.

HMBG1 levels in the pleural lavage fluid at the final 
sacrifice
HMGB1 is a serum marker for mesothelioma [32–35]. 
HMGB1 is released from mesothelial cells when they 
undergo necrosis induced by exposure to asbestos fib-
ers [32, 36], and the released HMGB1 is involved in 
malignant transformation [34, 36–39]. Therefore, the 

PLF of rats with malignant mesothelioma is expected 
to contain elevated levels of HMGB1. At the final sacri-
fice, the PLF levels of HMGB1 were not elevated in the 
DWCNT treated rats, but were significantly elevated 
(p < 0.001) in the MWCNT-7 treated rats (Fig.  10): 
untreated (0.34 ± 0.08  ng/ml), vehicle (0.43 ± 0.24  ng/
ml), 0.125  mg DWCNT (0.35 ± 0.12  ng/ml), 0.25  mg 
DWCNT (0.30 ± 0.09  ng/ml), 0.5  mg DWCNT 
(0.71 ± 0.48), and 0.5  mg MWCNT-7 at 91  weeks 
(1.91 ± 1.19  ng/ml). Notably, HMGB1 levels were not 
elevated the pleural lavage fluid of the 0.5 mg DWCNT 
treated rat that developed visceral pleural meso-
thelioma (0.52  ng/ml); the rat treated with 0.25  mg 
DWCNT that developed visceral pleural mesothelioma 
was found dead and therefore pleural lavage fluid could 
not be collected from this rat. As discussed below, the 
pleural mesotheliomas that developed in the DWCNT 
treated rats are unlikely to be relevant to human meso-
thelioma development.

Fig. 5  A shows CD68 immunostaining of lung tissue from rats in the (a) Vehicle, (b) 0.5 mg DWCNT, and (c) 0.5 mg MWCNT-7 groups at the final 
sacrifice. B shows PCNA immunostaining of the lung tissue from rats in the (d) Vehicle, (e) 0.5 mg DWCNT and (f) 0.5 mg MWCNT-7 0.5 groups at the 
final sacrifice. C shows Masson’s trichrome collagen staining of lung tissue from rats in the (g) Vehicle, (h) 0.5 mg DWCNT, and (i) 0.5 mg MWCNT-7 
groups at the final sacrifice
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Discussion
This is the first long-term, 2-year in vivo study to assess 
the toxicity and carcinogenicity of DWCNTs in the 
rat lung. Rats were untreated or administered vehi-
cle or 0.125 mg, 0.25 mg, or 0.5 mg DWCNT per rat or 
0.50 mg MWCNT-7 per rat: MWCNT-7 was used as the 

reference material. We found that DWCNTs were biop-
ersistent in the rat lung and induced chronic inflamma-
tion, and that the 0.50 mg group developed lung fibrosis 
and lung tumors (see Tables  1, 3, and 5). At 52  weeks, 
rats in the 0.25  mg and 0.50  mg groups had signifi-
cantly elevated levels of hyperplasia in the lung, and at 

Fig. 6  A shows Masson’s trichrome collagen staining of the visceral pleura of rats from the (a) Vehicle, (b) DWCNT 0.5 mg, and (c) MWCNT-7 0.5 mg 
groups at the final sacrifice. Panel B shows Masson’s trichrome collagen staining of the parietal pleura of rats from the (a) Vehicle, (b) DWCNT 0.5 mg, 
and (c) MWCNT-7 0.5 mg groups at the final sacrifice
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104 weeks one rat in the 0.125 mg DWCNT group, 2 rats 
in the 0.25 mg DWCNT group, and 4 rats in the 0.50 mg 
DWCNT group had developed adenocarcinomas (see 
Tables 2 and 3). While these incidences were not statisti-
cally significant compared to the vehicle controls, which 
did not develop adenocarcinomas, the apparent dose 
response agrees with the possibility that in this study the 
DWCNT fibers that were tested may have had carcino-
genic potential. In addition, the incidence of total lung 
tumors, bronchiolo-alveolar adenoma and bronchiolo-
alveolar carcinoma combined, was significantly higher 
in the 0.5  mg DWCNT group compared to the vehicle 

Fig. 7  Lung tissue fiber burden at 52 and final sacrifice. **p < 0.01 
versus DWCNT (0.5 mg)

Fig. 8  A shows a TEM image of a rat lung treated with DWCNT (0.5 mg) showing several very thin curved fibers (arrow and at higher magnification 
in the boxed area) in a multinucleated giant cell. B shows a TEM image of rat lung treated with MWCNT-7 (0.5 mg) showing rigid fibers in the 
cytoplasm of an alveolar macrophage. Inset shows an enlarged view of an MWCNT-7 fiber in the macrophage cytoplasm

Fig. 9  A shows an SEM image of numerous thin DWCNT fibers (arrow) engulfed by a macrophage. B shows an SEM image of a rigid MWCNT-7 fiber 
penetrating through the cell membrane of a macrophage (arrow). Free MWCNT-7 fibers were also observed in the alveolar space
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controls (see Table 3). Overall, these results indicate that 
the possibility that DWCNTs are carcinogenic cannot be 
ignored and that further long-term studies to assess the 
in  vivo toxicity and carcinogenicity of DWCNT should 
be carried out.

It is notable that two rats administered DWCNT devel-
oped malignant pleural mesothelioma (see Table 3). The 
development of this tumor is rare in rats: the Japan Bio-
assay Research Center historical control data shows that 
approximately 1 of 1000 rats spontaneously develop 
malignant pleural mesothelioma and a retrospective 
review by Tokarz et al., 2021, identifies spontaneous pri-
mary pleural mesothelioma developing in approximately 
1 of 2000 male F344 rats [40]. This suggests that develop-
ment of these tumors is biologically significant. However, 
the PLF of the rats administered DWCNT did not have 
elevated levels of HMGB1. In contrast, the PLF of the 
rats administered MWCNT-7 did have elevated levels of 
HMGB1 (see Fig. 10). HMGB1 is released from mesothe-
lial cells when they undergo necrosis induced by expo-
sure to asbestos fibers [32, 36], and the released HMGB1 
is involved in malignant transformation [34, 36–39], 
suggesting that rats developing fiber-associated pleural 
mesothelioma would be expected to have elevated levels 
of HMGB1 in their PLF. In addition, HMGB1 is a serum 
marker for mesothelioma in humans [32–35], suggest-
ing that HMGB1 is also released from cells in patients 
with advanced mesothelioma. Therefore, the PLF of rats 
with either developing or advanced malignant pleural 
mesothelioma would be expected to contain elevated 
levels of HMGB1, as is the case for the rats administered 
MWCNT-7. The absence of elevated levels of HMGB1 
in the groups administered DWCNT suggests that these 
lesions were not associated with fibers in the pleural cav-
ity. Another notable point is that the pleural mesotheli-
omas that developed in the DWCNT administered rats 
developed in the visceral pleural. Fiber-associated pleural 

mesotheliomas are induced by fibers that are retained in 
the pleural cavity. These fibers are retained at the parietal 
pleura as they are carried by the pleural fluid that flows 
out of the pleural cavity through the stomata present in 
the parietal pleura, and consequently, fiber-associated 
pleural mesotheliomas initially develop in the parietal 
pleura [41–46]. This also suggests that development of 
visceral mesothelioma in the DWNCT administered rats 
was not due to DWCNT fibers present in the pleural cav-
ity. Finally, it is well known that the visceral pleura in rats 
is thin, consisting of the pleural mesothelial layer and a 
basement membrane lying directly over the alveoli (see 
Fig.  6A), while in humans the visceral pleura has sub-
stantial submesothelial connective tissue. Consequently, 
in rats, but not in humans, interactions occurring in the 
lung alveoli adjacent to the visceral pleura could affect 
visceral pleural mesothelial cells, making the mechanism 
of visceral mesothelioma induction in rats not applicable 
to humans. Therefore, development of pleural mesothe-
lioma in the visceral pleura coupled with the absence of 
elevated levels of HMGB1 in the PLF of the rats adminis-
tered DWCNT support the premise that development of 
pleural mesothelioma in the DWCNT treated rats in the 
current study is not biologically relevant to humans.

Two rats also developed malignant peritoneal mesothe-
lioma. However, aged male Fischer 344 rats are prone to 
developing spontaneous peritoneal mesotheliomas [31]. 
Therefore, the low incidence of these mesotheliomas sug-
gests that they are not treatment related.

Another notable result in the present study is the appar-
ently low incidence of lung tumors in the MWCNT-7 
treated rats: 2 rats developed lung carcinomas and 1 
rat developed a lung adenoma. However, it needs to be 
noted that 16 rats in this group died before the end of the 
study due to mesotheliomas, and therefore, the incidence 
of lung tumor development in rats surviving to the final 
sacrifice of this group of animals at 91 weeks (9 rats) was 
numerically higher than in the DWCNT groups. Nota-
bly, an incidence of 2 carcinomas and 3 lung tumors in 
9 rats is identical to the incidence of carcinomas and 
lung tumors in a two year inhalation study by Kasai et al. 
[17]. In the Kasai et al. study, 11 carcinomas and 16 lung 
tumors developed in 50 male rats exposed to 2  mg/m3 
MWCNT-7 for 2  years. A low incidence of lung tumor 
development (0 rats) accompanied by a high incidence 
of mesothelioma development was also observed in a 
previous study in which rats administered MWCNT-7 
by TIPS died before the end of the study period due to 
mesothelioma [20]. Therefore, tumor development in rats 
treated with MWCNT-7 in the present study was similar 
to that reported previously.

The DWCNT fibers used in the present study formed 
tangled agglomerates: agglomerate is used as defined 

Fig. 10  HMBG1 levels in the pleural lavage fluid at the final sacrifice. 
***p < 0.001 versus vehicle. $p < 0.05 versus DWCNT (0.5 mg)
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by Walter 2013 [47]. Agglomerate formation is a known 
characteristic of CNTs [48, 49]. In the atmosphere of the 
working environment, CNTs are usually found as aggre-
gates or agglomerates and rarely as single fibers [2, 50]. 
DWCNT agglomerates deposited beyond the ciliated 
airways were not completely moved out of the lung or 
broken down by alveolar macrophages (see Table  1 and 
Fig. 7). It is well known that persistence of CNTs in the 
lung induces inflammation [2, 48, 49, 51, 52]. In our ear-
lier study, at 6 weeks after administration of DWCNT to 
rats mild inflammation was observed and granulomas, 
which are an inflammatory sequestration response [53, 
54], containing DWCNT fibers had developed [30]. In 
the present study, biopersistence of the DWCNT fibers 
in the rat lung induced persistent inflammation: at 52 and 
104  weeks macrophage count, CCL2 and CCL3 expres-
sion, and granuloma formation was significantly elevated 
in the lungs of all DWCNT treated rats (Tables 4 and 5). 
Chronic inflammation is a hallmark of cancer [55–58] 
and at 52  weeks hyperplasia was observed in the lungs 
of the 0.25 and 0.50  mg DWCNT treated rats and at 
104  weeks the alveolar PCNA index was elevated in all 
DWCNT treated rats and tumor incidence was signifi-
cantly increased the rats administered 0.5 mg DWCNT.

Fibrosis is characterized by the excess accumulation of 
the extracellular matrix (ECM) in response to non-resolv-
ing chronic inflammation [51, 52, 59–61]. Pulmonary 
fibrosis can impair lung function resulting in morbidity 
and mortality in humans [51, 59, 62]. During the chronic 
response to biopersistent CNTs, granulomas containing 
CNTs and characterized by local accumulation of acti-
vated macrophages serve as fibrogenic foci [59]. In our 
study, at 52 and 104 weeks all three groups of DWCNT 
treated rats had significant amounts of granulation tis-
sue, increased macrophage counts, and elevated levels 
of CCL2 and CCL3, indicating the presence of activated 
macrophages, in the lung. Figure 5 shows collagen depo-
sition at the fibrogenic foci formed by granulomas con-
taining DWCNT and MWCNT-7 fibers. At 104  weeks 
elevated collagen deposition in the lung was observed 
in rats administered 0.25 and 0.50  mg DWCNT, and in 
the rats administered 0.50  mg DWCNT collagen depo-
sition was significantly higher than the vehicle controls. 
In addition, fibrosis can be associated with tumorigenesis 
[52, 63], and in our study, the rats administered 0.50 mg 
DWCNT had significantly elevated collagen deposition 
and a significantly increased tumor incidence.

An important point regarding the results of the present 
study is how DWCNT can be tumorigenic in the rat lung 
but thin tangled CNTs do not induce the development of 
mesotheliomas, even when injected into the peritoneal 
cavity at relatively high levels [18, 19, 21]. One likely fac-
tor is the reported role of HMGB1 in the development 

of mesotheliomas [34, 36–39]. Interaction of rigid fib-
ers with mesothelial cells can result in cytotoxicity 
and release of HMGB1 from the cell, and the released 
HMGB1 can promote malignant transformation [34, 
36–39]. In contrast, thin tangled CNTs are reported to be 
less cytotoxic to mesothelial cells [64], and consequently, 
thin tangled fibers could be considerably less carcino-
genic to mesothelium than rigid fibers.

As discussed above, the DWCNT fibers used in this 
study displayed characteristics typical of biopersistent 
fibers. As it is highly likely that individual DWCNT fibers 
would be phagocytosed and removed from the lung by 
alveolar macrophages, the biopersistence and subsequent 
induction of chromic inflammation, fibrosis, and tumo-
rigenesis were the result of the agglomerates formed by 
the fibers. Since CNTs are typically found as aggregates 
of agglomerates and not as single fibers in the workplace 
[2], agglomerate formation by the DWCNT fibers used in 
the present study is not unexpected. Therefore, this char-
acteristic must be taken into consideration when assess-
ing the toxicity of CNTs, especially thin CNTs.

Occupational exposure to CNTs rage from less than 
1  μg/m3 to several μg/m3 [65–68]. Using an exposure 
of 1  μg/m3, and an alveolar surface area of 0.4  m2 for a 
Fisher 344 rat and 102 m2 for a human [69] and a 7% dep-
osition rate in humans (Figs.  6–6 & 6–7 [70]) a human 
would have to inhale 1,820  mg DWCNT to acquire the 
same DWCNT burden as a rat instilled with 0.5  mg 
DWCNT. Given a minute ventilation rate of 20  L/min 
for a human doing light work (https://​doi.​org/​10.​1016/​
0273-​2300(92)​90040-G), in an environment contain-
ing 1  μg/m3 DWCNT, 1,820,000  μg DWCNT would be 
inhaled by an unprotected human worker in approxi-
mately 91,050,000  min or approximately 1,517,500  h. 
This is obviously much longer than a working lifetime. 
However, the lung toxicities of fibers differs in rats and 
humans. For asbestos, the only type of fiber for which a 
direct comparison can be made for lung toxicities of rats 
and humans, the lung tissue burden of crocidolite asbes-
tos that caused a carcinogenic response in rats (1250 fg/
μg dry lung tissue weight) was 6000 times higher than in 
humans (0.2  fg/μg dry lung tissue weight) [71, 72]: it is 
reasonable that rats have stronger lung defenses to dusts 
than humans as rats are exposed to dusts much more 
than humans and short-lived rats will be exposed to fib-
ers for a much shorter period than long-lived humans 
allowing ras to tolerate much higher fiber loads than 
humans. This difference in the carcinogenic response 
of rats and humans to respired fibers suggests that it is 
possible for a worker to inhale a potentially toxic level of 
DWCNT in the workplace. Notably, the 2013 report by 
the national Institute for Occupational safety and Health 
Current Intelligence Bulletin 65 states that given the 

https://doi.org/10.1016/0273-2300(92)90040-G
https://doi.org/10.1016/0273-2300(92)90040-G
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known adverse respiratory effects of CNTs in animals, 
all types of CNT and CNF (carbon nanofibers) should 
be considered an occupational respiratory hazard (see 
Sect.  4 Conclusions—Hazard and Exposure Assessment 
in [73]).

One limitation of the present study is that poorly solu-
ble particles (PSPs) of low toxicity can have toxic effects 
in the rat lung. Toxic effects occur when pulmonary 
macrophage clearance of the particles is impaired due 
to an excessive particle load in the lung: impaired clear-
ance due to an excessive particle load is known as parti-
cle overload and the condition is known as lung overload. 
However, instillation of 0.5  mg PSPs into the rat lung 
does not result in an excessive particle load in the lung. 
For example, administration of 0.5 mg of rutile-type nano 
TiO2 (r-nTiO2) particles by TIPS did not result in parti-
cle overload in the rat lung: rats administered 0.25  mg 
and 0.5 mg r-nTiO2 by TIPS did not develop any lesions 
or clinical signs related to the instilled particles [74]. 
However, in that study the r-nTiO2 was cleared from 
the lungs while in the present study, the DWCNT fibers 
were not cleared from the lungs. Therefore, it is possi-
ble that biopersistence of DWCNT in the rat lung could 
be viewed as particle overload. Another point concern-
ing particle overload is that the mechanism associated 
with the toxic effects mediated by particle overload are 
chronic inflammation, fibrosis, and tumorigenesis [75], 
and this mechanism is the same mechanism by which 
fibers generate toxic effects in the lung (summarized in 
Fig. 4.2 in [10]). One proposal regarding particle overload 
in rats and humans is that in humans, but not rats, par-
ticles are transferred into interstitial sites where they do 
not interact with macrophages, thereby averting chronic 
inflammation, fibrosis, and tumorigenesis (Fig. 4 in [75]). 
However, interstitialisation of PSPs may not apply to 
DWCNT agglomerates. A defining characteristic of par-
ticle overload induced tumorigenesis is that it is gener-
ally specific to rats [75]. Therefore, to further investigate 
the toxicity and carcinogenicity of DWCNT in the lung, 
toxicity and carcinogenicity of DWCNT needs to be 
assessed using a second test animal, such as mice, [76]: 
Notably, IARC accepts evidence of tumorigenicity in two 
animal species as sufficient evidence of carcinogenicity in 
experimental animals [77].

The present study has two other limitations. While 
we show that the possibility that respired DWCNT is a 
toxic to humans cannot be ignored, our study does not 
have unambiguous evidence that the DWCNT fibers 
we tested are carcinogenic in rats. However, after dem-
onstrating the possibility that DWCNT fibers are toxic 
to the rat lung, a future study with a larger number of 
animals in the DWCNT groups can be performed. The 
third limitation is that administration of a test substance 

by instillation can be used for hazard identification and 
hazard ranking, but instillation cannot be used for risk 
characterization [78]. Therefore, if DWCNTs are identi-
fied as toxic in experimental animals, inhalation studies 
to characterize DWCNT risk need to be done.

Importantly, the response of the rat lung to particle 
overload should not be interpreted as indicating that the 
rat is not suitable for use in inhalation studies that test 
the toxicity of respirable particles. As stated by Bos et al., 
2019, "Unless available data clearly point out otherwise, 
rat pulmonary toxicity including lung inflammation and 
tumour formation, needs to be considered relevant for 
human hazard and risk assessment" [79].

A final point regarding this study is how instillation 
studies using rats compare with inhalation studies. Instil-
lation bypasses the upper respiratory tract, allowing 
pulmonary deposition of test material without nasal fil-
tering, and instillation delivers a high amount of the test 
material to the lungs as a single bolus. Not unexpectedly, 
a primary difference between instillation and inflamma-
tion is that acute effects, such as acute inflammation, are 
higher in rats administered test substances by instillation 
compared to rats exposed to test substances by inhalation 
[80–83]. Another difference is that exposure by inhala-
tion results in build up of the inspired material through-
out the period of exposure. In contrast, administration 
by instillation results in the test material being depos-
ited in the lung at the beginning of the study, allowing 
material-associated processes to proceed for the entire 
study period (Sect. 3.4 in [84]). In the case of MWCNT-7 
induced mesothelioma, in the inhalation study conduced 
by the Japan Bioassay Research Center, at the end of 
the 2  year inhalation exposure to 2  mg/m3 MWCNT-7 
resulted in accumulation of 1.8 mg fibers in the lungs of 
male rats and 1468 fibers in the pleural area and meso-
thelial hyperplasia [17], while in the study by Numano 
et  al. 2019 [20], instillation of 1.5  mg MWCNT-7 per 
rat, which is approximately the same level of MWCNT-7 
that accumulated in the lungs of male rats exposed to 
2  mg/m3 MWCNT-7 by inhalation, the rats developed 
mesotheliomas. As argued by the authors, this suggests 
that if the study by JBRC could have been extended by 
an additional 12–18  months, inhalation exposure to 
MWCNT-7 would have resulted in the development of 
mesothelioma. However, most studies that compare the 
effects of administration by instillation and inhalation 
conclude that the toxicity of test substances administered 
by these two methods are similar. Two studies directly 
compared the pulmonary toxicity of MWCNTs admin-
istered by instillation and inhalation, and both studies 
found that both methods of administration resulted in 
similar pulmonary toxicities [85, 86]. Several other stud-
ies that administered nanoparticles using instillation and 
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inhalation also found both methods resulted in similar 
pulmonary toxicities [81, 82, 87–92]. Importantly, instil-
lation of 2 mg potassium hexatitanate or 1 mg zinc oxide 
nanoparticles or 0.5  mg rutile type nano-TiO2 per rat 
did not result in pulmonary toxicity [74, 93, 94], indicat-
ing that reasonable amounts of poorly soluble materials 
can be instilled into the rat lung without inducing parti-
cle overload associated pulmonary toxicity. Therefore, as 
stated by Oberdörster and Kuhlbusch, 2018, instillation 
studies are appropriate for hazard identification and haz-
ard ranking, although instillation studies are not appro-
priate for hazard characterization [78].

Conclusions
This is the first 2-year study to assess the toxicity and car-
cinogenicity of DWCNTs after administration into the 
rat lung. DWCNT did not induce toxic or carcinogenic 
effects in the pleural cavity, which is in agreement with 
long-term 2-year studies that found that rigid but not 
thin tangled CNTs induced mesothelioma when injected 
into the peritoneal cavity [18, 19, 21]. However, DWCNT 
administered at a dose of 0.5  mg/rat did cause pulmo-
nary fibrosis and lung tumor development. This was most 
likely due to agglomerate formation by the fibers, result-
ing in biopersistence of the fibers in the lung and conse-
quent chronic pulmonary inflammation which in turn 
promoted pulmonary fibrosis and tumor development. 
These results indicate that assessment of the toxicity 
of thin CNTs should not be based solely on the physi-
ochemical characteristics of single fibers. In addition, 
the results of this study indicate that the possibility that 
DWCNTs may be toxic to humans cannot be ignored.

Methods
Nanomaterials
Two types of CNT were used in this study. DWCNT 
(brand name Tocana; Toray Industries,Inc., Tokyo, Japan) 
with an iron content below detectable limits and water 
content equal to 0.025% by weight (information provided 
by the company) and MWCNT-7 (Mitsui Chemicals Inc., 
Tokyo, Japan) with an iron content of 0.3% by weight [95]. 
Table 6 shows the water and iron content of the fibers.

Animals
Nine-week old male F344 rats were purchased from 
Charles River Japan Inc. (Yukohama, Japan). The ani-
mals were housed in the Center for Experimental Ani-
mal Science of Nagoya City University Medical School, 
maintained on a 12 h light–dark cycle, and received Ori-
ental MF basal diet (Oriental Yeast Co., Tokyo, Japan) 
and tap water ad libitum. The experimental protocol was 
approved by the Animal Care and Use Committee of 
Nagoya City University Medical School, and the research 

was conducted according to the Guidelines for the Care 
and Use of Laboratory Animals of Nagoya City Univer-
sity. The experiment was started after a 2-week acclima-
tion and quarantine period.

Experimental design
A total of 180 rats 11  weeks old were divided into six 
groups: Group 1 (26 rats) no treatment; Group 2 (30 
rats) vehicle (saline with 0.5% Pluronic F-68: Sigma-
Aldrich Merck); Group 3 (30 rats) DWCNT (0.125 mg/
rat); Group 4 (33 rats) DWCNT (0.25 mg/rat); Group 5 
(30 rats) DWCNT (0.5  mg/rat); and Group 6 (30 rats) 
MWCNT-7 (0.5  mg/rat): MWCNT-7 was used as the 
reference material. One rat in group 1 died before the 
52  week interim sacrifice and was removed from the 
study, therefore, group 1 had 26 rats. Rats were admin-
istered the test solutions by TIPS as previously described 
[74]. Briefly, rats were anesthetized with 3% isoflurane 
and administered 0.5 ml vehicle or test material suspen-
sions (15.6 μg, 31.25, or 62.5 μg of test material in 0.5 ml 
vehicle) using a micro sprayer (series IA–1B Intratracheal 
Aerosolizer Penn-century, Philadelphia, PA). Rats were 
administered one dose every other day over a 15-day 
period (8 administrations for total doses of 0.125, 0.25, or 
0.5 mg DWCNT per rat and 0.5 mg MWCNT per rat). 
The amount of DWCNT administered to the rats was 
approximately equivalent to or less than the doses used 
in the studies by Crouzier et al., Tian et al., Sager et al., 
and El-Gazzar et al. [26–28, 30]. The dose of MWCNT-7 
was one third the amount of MWCNT-7 that caused 
mesothelioma in rats in a previous study [20]. At week 
52 an interim sacrifice was performed on 5 rats from the 
Untreated and Vehicle groups, 5 rats from the DWCNT 
0.125  mg/rat group, 7 rats from the DWCNT 0.25  mg/
rat group, 6 rats from the DWCNT-0.5  mg/rat group, 
and 5 rats from the MWCNT-7 group. All animals found 
moribund after 52  weeks underwent terminal sacrifice. 
Because of the loss of 16 animals by the end of week 90 
in the MWCNT-7 group, final terminal sacrifice of the 
remaining 9 animals in this group was performed at week 

Table 6  Iron and water content of DWCNT and MWCNT-7 
before dosing

a Information provided by Toray the manufacturer company
b Sakamoto et al. 2018[95]
c Not available

Iron content (wt%) Water 
content 
(wt%)

DWCNT 0a 0.025a

MWCNT-7 0.3b NA c
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91. Final terminal sacrifice of the untreated, vehicle, and 
DWCNT treated rats was at week 104. Final sacrifice 
refers to the terminal sacrifices performed at weeks 91 
and 104.

Preparation of the test materials
Test materials were weighed and dispersed in tert-butyl 
alcohol by sonication for 10  min and stored frozen at 
−20 °C. Shortly before administration, the T-butyl alco-
hol was removed using an Eyela Freeze Drying machine 
(FDU-2110; Tokyo Rikakikai Co., Ltd., Tokyo, Japan), and 
the DWCNT and MWCNT-7 were suspended in saline 
containing 0.5% Pluronic F-68 (PF68, Sigma-Aldrich 
Merck) at 31.25, 62.5, and 125  μg/ml. After suspension 
in Saline + PF68, test materials were sonicated for 2 min 
four times at 3000 rpm using a polytron PT 1600E bench 
top homogenizer (Kinematika AG, Lattau, Switzerland). 
Immediately prior to administration, the suspensions 
were sonicated for 30 min using a Tomy Ultrasonic dis-
ruptor, UD-211, equipped with a TP-040 micro tip (Tomy 
Seiko Co., Ltd., Tokyo, Japan) at a power setting of 4.

Characterization of the test materials before and after TIPS 
administration
After sonication, described above, and before adminis-
tration to the rats’ lungs, 20 μl of each test material sus-
pension was placed on a micro grid membrane pasting 
copper mesh (EMS 200-Cu, Nisshin EM Co., Ltd., Tokyo, 
Japan) for measurement of DWCNT and MWCNT-7 
prior to TIPS administration. For measurement of 
DWCNT and MWCNT-7 in the lungs of rats at 52 and 
at the final sacrifice weeks after instillation about 1 gm of 
paraformaldehyde fixed lung tissue was digested as pre-
viously described [96]. Briefly, tissues were incubated in 
Clean 99-K200® (Clean chemical Co., Ltd., Ibraki, Japan) 
overnight or until complete dissolution of lung tissues. 
The digested solution was then centrifuged at 12,000 rpm 
for 30 min and the supernatant was discarded. The pel-
let was resuspended in distilled water and sonicated by 
a short burst (approximately 2–3  s) from a microson 
ultrasonic cell disruptor (Misonix Incorporated).. The 
pellet was collected by centrifugation and washed two 
more times. After a final centrifugation, the pellet was 
resuspended in 200  μl of distilled water and the speci-
mens were collected on EMD MilliporeTM Polycarbon-
ate Membrane Filters (Millipore, Tokyo, Japan). Fibers 
were viewed by SEM (Field Emission Scanning Electronic 
Microscope; Hitachi High Technologies, Tokyo, Japan) at 
5–10  kV and TEM (Transmission electron microscope; 
EDAX, Tokyo, Japan) at 15–50 K. Photos were analyzed 
by NIH image analyzer software (NIH, Bethesda, Mary-
land, USA). At least 200–300 fibers of each type of CNT 
were measured.

In vitro biodegradation
DWCNT and MWCNT-7 fibers were added to cultures 
of RAW cells, a mouse macrophage cell line, and to plates 
without cells (control). Cultures were incubated over-
night with the CNTs at 37 °C in a humidified incubator. 
The cells were washed twice with PBS to remove materi-
als not associated with the cells. Control plates were not 
handled. The cultures were then incubated for an addi-
tion 4 days. After 5 days incubation with CNTs, culture 
media was removed from the RAW cell cultures, and 
the cells were washed twice with PBS to remove materi-
als not associated with the cells. The cells were then har-
vested and the CNTs recovered from the cells. For the 
control plates, the CNTs were collected from the cell-free 
culture media. The collected CNTs were measured using 
far-infrared absorption to estimate the effective CNT 
length [97].

Electron microscopic viewing of fibers in lung tissues
For high magnification viewing, H&E stained slides were 
immersed in xylene to remove the cover glass, dried, 
and processed for SEM (Model S Field Emission SEM; 
Hitachi High Technologies, Tokyo, Japan). For ultrafine 
viewing, a small piece of paraformaldehyde fixed lung tis-
sue was imbedded in epoxy resin and processed for TEM 
(EDAX, Tokyo, Japan).

Measurement of DWCNT and MWCNTs in the lung
Measurement of the amount of CNT fibers in the lung 
tissue was performed as described previously [23, 96].

Tissue sample collection and histopathological 
examination
At necropsy, blood samples were collected via the 
abdominal aorta under deep isoflurane anesthesia and 
serum samples were stored at −  80  °C. Organs, includ-
ing lung, liver, kidney, spleen, brain, heart, and testes 
were examined for any macroscopic lesions. The trachea, 
esophagus, lymph nodes (including mediastinal lymph 
nodes), diaphragm including the diaphragmatic region of 
the parietal pleura were examined macroscopically and 
then processed and examined histopathologically.

The 4 right lobes of the lung of each rat were excised 
at necropsy, frozen in liquid nitrogen, and sored at − 80 
degrees for further biochemical analysis. The remain-
ing left lung was inflated and fixed with 4% paraform-
aldehyde solution in phosphate-buffered saline (PBS) 
adjusted to pH 7.3 and processed for light microscopic 
examination. H&E stained tissue sections were evalu-
ated by two board-certified Pathologists of the Japanese 
society of Toxicologic pathology, Drs. Hiroyuki Tsuda 
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and Satoru Takahashi, and diagnosis of hyperplasia, 
adenoma, adenocarcinoma, and mesothelioma was done 
according to the INHAND criteria [98].

PCNA staining of deparaffinized slides processed for 
antigen retrieval and blockade of endogenous peroxidase 
activity was performed as previously described [99]. For 
each lung specimen more than 1000 pulmonary epithe-
lial cells and more than 500 visceral pleural and parietal 
pleural mesothelial cells were counted blindly in random 
fields. All nuclei showing brown staining of more than 
half of the nucleus were considered to be positive.

To determine the degree of inflammation the number 
of macrophages per cm2 of lung tissue was determined: 
Deparaffinized slides processed for antigen retrieval and 
blockade of endogenous peroxidase activity were incu-
bated with PBS containing 5% BSA and 5% goat serum 
for 1  h, then incubated with the macrophage marker 
anti-CD68 (BMA Biomedicals, August, Switzerland) 
diluted 1:2000 in PBS containing 1% BSA and 1% goat 
serum over- night at 4 °C. After overnight incubation, the 
slides were incubated with secondary antibody (Nichirei 
Biosciences, Tokyo, Japan) for 1 h, visualized with DAB 
(Nichirei Bio- sciences, Tokyo, Japan), and counter-
stained with hematoxylin. Light microscopic images rep-
resenting at least one cm2 from each lung were used to 
determine the density of the macrophages in the lungs.

Collagen deposition in lung tissues and visceral and 
partial pleura was quantified in light microscopic images 
of lung tissues and pleural sections stained with Mas-
son’s Trichrome (Abcam, Tokyo, Japan) using NIH 
image analyzer software (NIH, Besthesda, Meryland, 
USA): ten individual images were captured from 2 lung 
and 3 diaphragm sections from 3 rats per study group. 
Thresholding using pre-defined RGB criteria for collagen 
deposition was performed. This allowed collagen to be 
differentiated from alveolar tissue or pleural tissue. The 
surface area of fibrosed tissue was measured. Total lung 
alveolar and pleural tissue surface areas were measured 
individually by thresholding using predefined RGB crite-
ria for lung alveolar and pleural tissues. The results are 
expressed as the percentage area of pulmonary collagen 
deposition per tissue surface area.

HMGB1 ELISA
At the final necropsy pleural lavage fluid collection 
was done for all rats as previously described [99]. High 
mobility group box protein 1 (HMGB1) was measured 
using a rat HMGB1 ELISA kit (Arigo Biolaboratories; 
ARG81310) according to the manufacturer’s instructions.

CCL2 and CCL3 ELISA
Frozen right lung tissue samples (approximately 100 mg) 
were thawed and rinsed 3 times with ice-cold PBS and 

homogenized in 1  mL tissue protein extraction reagent 
(Thermo Scientific, Rockford, IL, USA) containing 1% 
(v/v) protease inhibitor cocktail (Sigma-Aldrich Merck). 
The homogenates were centrifuged at12000 g for 5  min 
at 4  °C. Protein content of the supernatant was meas-
ured using the BCA Protein Assay Kit (Pierce Biotech). 
The levels of CCL2 and CCL3 in the supernatant were 
measured using a Rat MCP-1/CCL2 ELISA Kit (Sigma-
Aldrich Merck; RAB0058) and a CCL3 ELISA Kit (LSBio; 
LS-F5526) according to the manufacturers’ instructions.

Detection of DNA adductomes in the lung tissue
Rat lung DNA was extracted by Gentra® Puregene cell 
and tissue kit (Qiagen). The DNA (50 μg) was digested by 
incubation at 37 °C for 12 h in 300 μl of 5 mM Tris–HCl 
(pH7.4) containing 50 units of DNaseI, 1 unit of Nucle-
ase P1, 2 units of alkaline phosphatase, and 0.225 units 
of phosphodiesterase. After digestion, internal standards 
(100  pmol of 2′,3′-dideoxyinosine and 2′,3′-dideoxy-
adenosine) were added to the DNA hydrolysates. The 
hydrolysates were filtered through Amicon Ultra 3  kDa 
centrifugal filters (Sigma-Aldrich Merck; Z677094), and 
500  μl of methanol was added to the purified samples. 
After centrifugation and removal of the methanol, resid-
ual methanol was removed by evaporated in vacuo. DNA 
residues were dissolved in 100  μl of 50% methanol, and 
10 μl of sample was subjected to LC/MS.

UHPLC-TOF–MS analyses was performed with a Shi-
madzu UHPLC Nexera X2 system (Shimadzu) using a 
Synergi Hydro-RP column (2.5  μm, 100  mm × 2  mm, 
Phenomenex) and Triple TOF 5600 + (SCIEX) with 
an electrospray ionization device running in the posi-
tive ion mode. The detector conditions were as fol-
lows: ion spray voltage at 5500 V, source temperature of 
350 °C, ion source gas 1, 60 psi, ion source gas 2 60 psi, 
declustering potential 80  V, collision energies of 45  V, 
and collision energy spread 15  V. Nitrogen was used as 
the collision gas. DNA adducts were detected using the 
MRMHR mode. This strategy was designed to detect the 
neutral loss of 2′-deoxyribose from positively ionized 
2′-deoxynucleoside adducts by monitoring the samples 
with [M + H]+ → [M + H-116]+ transitions[100]. In the 
mobile phases used for LC-TOF–MS analyses, solvent A 
consisted of a 0.1% (v/v) solution of formic acid in water 
and solvent B consisted of a 0.1% (v/v) solution of for-
mic acid in acetonitrile. The DNA adducts were eluted 
from the column using a linear gradient, which started 
at 95% solvent A and 5% solvent B, and progressed to 
100% solvent B over a period of 10 min. The system was 
then eluted with 100% solvent B for 10 min before being 
returned to the initial conditions over a period of 10 min 
to allow for the equilibration of the column. The system 
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was operated at a constant flow rate of 0.2 ml/min for all 
of the analyses.

Statistical analysis
Survival rates were analyzed using the Kaplan–Meier 
method. The incidences of bronchioloalveolar hyperpla-
sia, bronchioloalveolar adenoma, bronchioloalveolar car-
cinoma, and total lung tumor incidences were analyzed 
for difference from vehicle controls using GraphPad’s 
Fisher’s extract test (one-sided for comparison of treated 
rats to the vehicle controls and two-sided for compari-
son of DWCNT and MWCNT treated rats), and con-
tinuous data was analyzed using GraphPad’s QuickCals 
t-Test Calculator. All data are expressed as mean ± stand-
ard deviation. p-values < 0.05 were considered to be 
significant.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12989-​022-​00469-8.

Additional file 1: Figure S1. Adductome maps of rats at 52 weeks. The 
relative peak areas and the number of peaks are given for each group. 
There were no significant differences in either peak area or the number 
of peaks between any of the groups. No adducts specific to any of the 
treated groups were found.
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