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Abstract: Pediatric spinal tumors are rare and account for 10% of all central nervous system tumors
in children. Onset usually occurs with chronic nonspecific symptoms and may depend on the intra-
or extradural neoplastic location. Meningiomas, schwannomas, and neurofibromas are the most
common intradural-extramedullary lesions, while astrocytomas and ependymomas represent the
majority of intramedullary tumors. The new molecular discoveries regarding pediatric spinal cancer
currently contribute to the diagnostic and therapeutic processes. Moreover, some familial genetic
syndromes can be associated with the development of spinal tumors. Currently, magnetic resonance
imaging (MRI) is the standard reference for the evaluation of pediatric spinal tumors. Our aim in this
review was to describe the imaging of the most frequent intradural intra/extramedullary pediatric
spinal tumors and to investigate the latest molecular findings and genetic syndromes.

Keywords: spine tumor; children; cancer predisposition syndromes

1. Introduction

Pediatric spinal tumors are relatively rare and account for 10% of all central nervous
system tumors in children [1–3]. Related to location, spinal neoplasms are divided into
extradural (two-thirds of cases), intradural-extramedullary, and intramedullary (one-third
of cases) lesions [3]. Extradural neoplasms have a variable origin and arise from bone, soft
tissues, and meningeal sheets; intradural-extramedullary neoplasms are usually menin-
giomas, schwannomas, and neurofibromas. Intramedullary cancers mainly include glial
tumors such as astrocytomas and ependymomas, which represent 90% of all intramedullary
neoplasms [4], but can also include gangliogliomas and hemangioblastomas.

Onset symptoms are often non-specific and include variable pain, loss of balance,
torticollis, progressive scoliosis, motor regression, and hydrocephalus [5]. Typical sensory
symptoms are linked to the involvement of the sensory fibers and sometimes represent the
onset of ependymomas due to their central location and their proximity to the spinotha-
lamic tract. On the other hand, deficit sphincter symptoms are related to a low spinal
medullary localization and can be caused by myxopapillary ependymoma due to its typical
lumbosacral location [1].

Magnetic resonance imaging (MRI) is the standard reference for the evaluation of
pediatric spinal tumors because it allows (i) neuraxis panoramic evaluation, (ii) detailed
anatomical study of the region of interest, (iii) radiological characterization of the tumor and
diagnostic hypothesis. An MRI evaluation includes pre- and post-contrast T1-weighted
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sequences, T2-weighted sequences, fat suppression sequences, “detailed study” with
heavily T2-weighted MR “cisternography” sequences, diffusion-weighted imaging (DWI),
and susceptibility-weighted imaging (SWI). Advanced neuroimaging methods, such as
diffusion tensor imaging (DTI), perfusion technique, spectroscopy, and functional imaging,
are not yet included in a “standard” spinal cord evaluation.

Computed tomography (CT) and radiographic imaging can be useful to evaluate bone
involvement and spinal stability in selected cases.

The advancement of molecular findings in pediatric central nervous system tumors
(CNS) provides additional information regarding the tumor subtypes and their biological
behaviors and patient outcomes. These novel findings help to reach a detailed diagnosis,
obtaining new therapeutic options by targeted drugs. These molecular advances have also
been described for spinal neoplasms.

Our aim in this review was to describe the imaging findings of the most frequent
intradural intra/extramedullary pediatric spinal tumors according to the World Health
Organization (WHO) 2016 revised classification [6] and to investigate the connection with
the latest molecular findings and genetic syndromes. It is also interesting to mention some
very rare spinal tumors that can be exceptionally diagnosed in children, such as the diffuse
leptomeningeal glioneuronal tumor (DL-GNT), due to its typical radiological aspect.

2. Gliomas and Mixed Neuronal–Glial Tumors
2.1. Gliomas

Astrocytomas are the most common pediatric intramedullary spinal tumors (approxi-
mately 60%) [1,2,7] and are frequently found in the first decade of life [3]. Among pediatric
low-grade gliomas (pLGGs), defined as World Health Organization (WHO) grade I or
II malignancies encompassing a wide array of histologies, the pilocytic histological sub-
type is commonly diagnosed in the first five years of life, while the fibrillary subtype
is found at age of 10, accounting for 75% and 7% of all intrinsic pediatric spinal can-
cer, respectively [3,8]. High-grade gliomas (HGGs), defined from the WHO as grade
III and IV, are very uncommon. Pilocytic astrocytoma is usually located at the cervi-
comedullary or cervicothoracic junction, and shows (i) “expansive” rather than “infiltrative”
features (Figure 1), with (ii) spinal cord parenchymal “epicenter”, (iii) eccentric growth, and
(iv) well-demarcated margins [3,7]. The swelling spine appearance could extend through
several vertebral segments (usually < 4) [7], up to being holocordal—in this case it is
important (but often complicated and not feasible) to distinguish between tumor and
neoplastic edema [3]. The neoplasm could be predominantly (i) solid (40% of cases),
(ii) necrotic cystic (60% of cases), or (iii) nodular cystic (Figure 2). Therefore, it could
appear (i) iso/hypointense in T1 and hyperintense in T2 or (ii) hyperintense in T1 and T2,
respectively [3]. The contrast enhancement is absent in 30% of cases [9] and, when present,
is variable and depends on the different components. However, it is less evident than that
of ependymomas [7]. Outcome of pLGGs depends on the extention of surgical resection
and the success of the therapies—sometimes it is difficult to have a complete total resection.
Near total resection is correlated with a 5-year progression free survival of up to 80% and
overall survival of up to 95% [7].

Infiltrative growth, non-demarcated margins, and dissemination through the cere-
brospinal fluid (CSF) are more typical in high-grade tumors. pHGGs account for about
0.2–1.5% [7] of all spinal astrocytomas and are more common in the cervical (Figure 3)
and thoracic tract, while localization in the medullary cone is more rare (3% of pediatric
spinal glioblastomas) [10,11]. The neoplasm usually shows inhomogeneous signal in
T1 and T2 sequences, inhomogeneous enhancement, and also bleeding and cysts [10]
(Figures 4 and 5). The pHGG’s prognosis remains bleak, with a mean survival of 12 months
after diagnosis and a range between 6–16 months [12].



Diagnostics 2021, 11, 1710 3 of 25
Diagnostics 2021, 11, x FOR PEER REVIEW 3 of 25 
 

 

 

Figure 1. Pilocytic astrocytoma in a two-year-old child. Sagittal T2-weighted (a) and post-contrast 

T1-weighted (b) images show intramedullary hyperintense mass with inhomogeneous contrast en-

hancement, respectively (arrowheads). There is perilesional spinal cord edema (arrow). 

 

Figure 2. Pilocytic astrocytoma in an eight-year-old child, including expansive mass and distinct solid cystic components at 

level D11-12. Sagittal T1-weighted (a), T2-weighted (b), and post-contrast T1-weighted (c) images demonstrate a cystic-like 

cranial component with evident and homogeneous enhancement (arrowheads) and a caudal solid component without 

enhancement (arrows). 

Infiltrative growth, non-demarcated margins, and dissemination through the cere-

brospinal fluid (CSF) are more typical in high-grade tumors. pHGGs account for about 

0.2–1.5% [7] of all spinal astrocytomas and are more common in the cervical (Figure 3) and 

Figure 1. Pilocytic astrocytoma in a two-year-old child. Sagittal T2-weighted (a) and post-contrast
T1-weighted (b) images show intramedullary hyperintense mass with inhomogeneous contrast
enhancement, respectively (arrowheads). There is perilesional spinal cord edema (arrow).
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Figure 2. Pilocytic astrocytoma in an eight-year-old child, including expansive mass and distinct solid cystic components at
level D11-12. Sagittal T1-weighted (a), T2-weighted (b), and post-contrast T1-weighted (c) images demonstrate a cystic-like
cranial component with evident and homogeneous enhancement (arrowheads) and a caudal solid component without
enhancement (arrows).
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Figure 3. High-grade glioma with H3K27M mutation in a thirteen-year-old child. Sagittal T2-
weighted (a) and post-contrast T1-weighted (b) images demonstrate swollen appearance of the
cervical cord characterized by T2 mild hyperintensity (arrow) and poor enhancement (arrowhead).
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Figure 4. Sagittal T2-weighted image (a), post-contrast T1-weighted (b), DWI (c; T10-T11) and
DSC (d). High-grade glioma with cervical–thoracic epicenter and holocordal involvement of the
spinal cord in a two-year-old child. The neoplasm is characterized by inhomogeneous enhancement.
Components with restricted diffusion (arrow) and increased rCBV (arrowhead) are shown.
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Figure 5. The same patient as in Figure 4 with high-grade glioma. Intraoperative ultrasound (transversal and longitudinal
planes) shows the dorsal solid (a,c) and cystic-like (b,d) components and the cystic/solid transition zone (e).

The genetic landscape of pediatric spinal tumors has been less studied than that
of intracranial localization: the involvement of KIAA1549–BRAF (v-raf murine sarcoma
viral oncogene homolog B1), BRAFV600E, PTPN11, H3F3A, TP53, FGFR1, and CDKN2A
deletion has been detected in pediatric spinal tumors [13,14]. One of the most studied
molecular alterations concerns LGG and it is KIAA1549-BRAF fusion that causes the
hyperactivation of the MAPK/ERK pathway.

It has been largely investigated and demonstrated that KIAA1549-BRAF-fused cere-
bellar pLGGs have a better prognosis compared to the ones not carrying the fusion; the
same evidence has been described for the spinal low-grade gliomas [13,15]. On the other
hand, the presence of BRAF fusion in the tumor suggests the potential use of target ther-
apy, such as MEK inhibitors [16], while the use of BRAF inhibitors are indicated and
useful when the BRAFV600 mutation is present [17]. However, the association between
KIAA1549-BRAF fusion and outcome has not yet been validated, as according to some
studies, this molecular alteration could not predict the prognosis [18]. Mutations in genes
encoding histone H3.1 (HIST1H3B) and H3.3 (H3F3A) have been considered as a hallmark
of diffuse midline gliomas. Instead, histonic mutations are also rarely found in pediatric
low-grade gliomas [19]; this concept is important in highlighting the pathological hetero-
geneity in gliomas and the overlapped genetic landscape between high- and low-grade
gliomas [13,20].

In the landscape of spinal pediatric LGG, clinical outcome can be related to type of
resection, age, and presence of metastasis: there is a known link between subtotal resection,
young age, and metastatic spreading at diagnosis with less event-free survival (EFS). A
primary management goal for pediatric spinal tumors is to extend long-term follow-up
because progression is possible even 10–20 years after diagnosis; for this reason, it is
important to expand our knowledge around these tumors [18].

Ganglioglioma, most common in the first five years of life, accounts for about 15%
of all intramedullary pediatric tumors [8]. These neoplasms, usually low-grade, may
be characterized by local recurrence, but very uncommonly by the risk of malignant
evolution (usually when both a BRAFV600E and a TP53 or CDNK2A/B deletion are
present) [21,22]. The cervical and thoracic tracts are more frequently affected, with holocord
involvement, related to slow growth [23]. The presence of calcifications is closely related
to the diagnosis of ganglioglioma [8], while solid components and cysts [1], as well as
edema and enhancement, are non-specific [24,25]. Due to relative rarity, few studies have
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focused on the molecular alterations of spinal gangliogliomas. The most common genetic
modification is the V600E mutation in the BRAF oncogene [26].

2.2. Diffuse Leptomeningeal Glioneuronal Tumor

DL-GNT is a rare neuronal–glial tumor that was first defined in 2016. It is more com-
mon in males, with a median age at diagnosis of 4–6 years [6], characterized by slow growth
and leptomeningeal dissemination. MRI may show different features, such as multiple
spinal and/or intracranial (i) leptomeningeal nodular lesions with diffuse sheet enhance-
ment (the most frequent findings), (ii) cystic-like leptomeningeal nodular lesions (T2 hyperin-
tensity), (iii) intraparenchymal lesions [27,28], (iv) an intraparenchymal spinal/intracranial
mass, and (v) nonenhancing cystic-like small intra-axial lesions (Figure 6) [27]. Differential
diagnoses include infections, leptomeningeal dissemination of other neoplasms, lympho-
proliferative diseases, and neurosarcoidosis (rare in pediatric age).
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Figure 6. Diffuse leptomeningeal glioneuronal tumor in a four-year-old child. Sagittal T2-weighted
(a) and post-contrast T1-weighted (b) images show multiple spinal and subtentorial cystic-like
leptomeningeal nodular lesions (arrows) with diffuse sheets enhancement (arrowheads).

The typical molecular landscape of DL-GNT is characterized by alterations leading to
an aberrant MAPK/ERK pathway, together with loss of chromosomal arm 1p (sometimes
with 19q co-deletion) [29]. The alteration of the MAPK/ERK pathway is most commonly
caused by fusion of KIAA1549-BRAF, but also NTRK1/2/3 and TRIM33:RAF1. Some
authors have hypothesized a classification in two molecular subgroups, which include
a DLGNT methylation class (MC)-1, characterized by lower median age (5 years), with
a more favorable prognosis. DLGNT (MC)-2 is identified by loss of chromosomal arm
1p together with gain of chromosomal arm 1q, with median age of 14 years and a worse
prognosis [29]. Survival in this subtype of pLGG is highly variable because the tumor
shows slow but disseminated growth and can cause secondary hydrocephalus, which
increases morbidity [30].
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3. Ependymomas

Ependymomas account for 30% of pediatric intrinsic spinal cancers [4] and are closely
related to a specific type of phacomatosis (genetic neurocutaneous disorders), that is type 2
neurofibromatosis (NF2), which can be in multiples. Usually, cervical ependymomas [4]
are characterized by (i) a central spinal epicenter, (ii) clear delimitation, and (iii) expansive
(and slow) growth rather than infiltrative [3,7]. MRI commonly reveals a T2 low-signal rim
at the caudal or cranial margins (the typical “cap sign” related to internal bleeding), vivid
enhancement with marked vascularization [31], and polar cysts rather than intratumoral [4]
(Figure 7). Nine distinct molecular subgroups of ependymomas have been identified, three
within each anatomical compartment within the CNS: supratentorial, posterior fossa,
and spinal cord. Within the spinal cord, the three distinct subgroups correspond to the
WHO histologic subtypes: myxopapillary ependymoma, subependymoma, and classic
ependymoma. Loss of chromosome 22q (NF2 locus) is a frequent finding; NF2 is a tumor
suppressor gene located at 22q12.2 and is the only known driver of spinal ependymoma
(30). Although rare, N-Myc amplification can occur in anaplastic ependymoma of the
spinal cord and is frequently associated with aggressive clinical behavior. CSF spreading is
possible, but is more frequent within this N-Myc subtype [32,33] and is associated with
poor prognosis among spinal ependymomas.
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Figure 7. Ependimoma in a six-year-old child. Sagittal T2-weighted (a) and post-contrast T1-
weighted (b) images show expansive lesion of the dorsal spinal cord with an enhancing solid nodular
component (arrowheads) and a cystic-like «polar» component (arrow). In this case the “cap sign” is
not clearly evident.

An intradural-extramedullary neoplasm, myxopapillary ependymoma (Figure 8), is
typically located in the lumbo-sacral region due to its origin in the filum terminale [34].
This subtype represents 13% of all spinal ependymomas and can also extend into the
neuroforamina, thus differential diagnosis includes extradural tumors [3].
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Figure 8. Myxopapillary ependymoma in a fourteen-year-old child located in the lumbo-sacral
region. Sagittal T2-weighted (a) and post-contrast T1-weighted (b) images demonstrate solid cranial
and caudal enhancing components (blue arrows) and a pseudocystic non-enhancing component
(arrowhead). The detail of the filum terminale is also highlighted (white arrow).

Outcomes in pediatric spinal ependymomas are related to the presence of dissemina-
tion, N-Myc mutation, and surgery: the 5-year survival is about 80% in cases of gross total
resection and 57% in cases of non-gross total resection [7,35].

4. Mesenchymal, Non-Meningothelial Tumors
4.1. Hemangioblastomas

As low-grade tumors with variable epicenters, hemangioblastomas are uncommon
in children. Neoplastic growth is slow and can be intramedullary (75% of cases), but also
intradural when tumors arise from nerve roots or extradural [1]. MRI usually shows a
tumor with (i) predominantly solid component and clear margins, (ii) rich vascular support,
and (iii) avid enhancement and sometimes cysts (Figure 9) and bleeding [7]. Before surgical
excision, it is useful to perform a medullary angiography to identify arterial feeders that
can be embolized. Hemangioblastomas are commonly found in patients with von Hippel-
Lindau (VHL) syndrome and findings of hemangioblastoma should prompt investigation
for VHL. Hemangioblastomas are formed by “stromal” cells (with VHL mutation) and
rich blood vessels (without VHL mutation). This evident angiogenesis is related to the
activation of angiogenetic factors (VEGF, HIF) in the stromal cells [36]. Surgical excision is
the treatment of choice and can be associated with a preventive embolization [7].
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cervical–dorsal junction. Sagittal T2-weighted (a) and post-contrast T1-weighted (b) images demon-
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After two years (c,d), the cystic component increased while the solid component remained stable. 
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Figure 9. Hemangioblastomas in a fifteen-year-old child with cystic solid components located in the
cervical–dorsal junction. Sagittal T2-weighted (a) and post-contrast T1-weighted (b) images demon-
strate the enhancing solid nodular components (arrows) and the cystic component (arrowhead).
After two years (c,d), the cystic component increased while the solid component remained stable.

4.2. Mesenchymal Chondrosarcomas

Mesenchymal chondrosarcomas (MSCs) are very rare pediatric intraspinal tumors.
Classical chondrosarcoma most frequently affects adults, while MCS affects children and
young adults, accounting for 2–10% of all chondrosarcomas [37]. Usually with skeletal
origin, MCS can also arise in other locations (25% of cases), such as the brain, meninges,
and spinal cord [38], with a preference for the thoracic tract. This tumor is characterized by
a potential aggressive course, metastasis, and poor prognosis, although the data on survival
are highly variable due to the rarity and the different locations [39]. The genetic hallmark
in pediatric extraskeletal MCS is the HEY1/NCOA2 fusion [40]. Due to the different site of
origin, mesenchymal chondrosarcomas can have different imaging characteristics. Tumors
may show inhomogoneous T2 hyperintensity and inhomogeneous enhancement, but these
features are related to the specific case. For all these features, the outcomes of pediatric
patients with mesenchymal chondrosarcomas are highly variable: some data report a
survival of 88.9% at 5 years associated with radio/chemotherapy treatment [39,41].

5. Meningiomas and Tumors of the Paraspinal Nerves

Pediatric schwannomas develop from Schwann cells and are rarely sporadic. They
account for 0.3% of intraspinal tumors [42] and are most commonly associated with NF2.
When their localization is the spine, they may arise from the intra- (more common) or
extradural tract of the spinal root with variable associated signs and symptoms, such as
bone remodeling. The most important feature is that the lesion usually shows expan-
sive (and non-infiltrative) growth relative to the nerve root, a well-defined capsule, and
a plane of cleavage [3]. In the T1- and T2-weighted sequences, the tumor appears iso-
/hypo-intense and iso-/hyper-intense, respectively, with homogeneous enhancement [3].
Differential diagnoses of spinal schwannomas are those of plexiform neurofibromas, which
are intradural-extramedullary tumors. With similar signaling and enhancement features,
neurofibromas differ from schwannomas in that they include both Schwann cells and
fibroblasts, have infiltrative rather than expansive growth towards the spinal root [3], and
could have a malignant evolution with rapid development [43]. Sometimes in neurofi-
bromas, it is possible to observe the “target sign” (central area of hypointensity in T2)
due to the high stromal component of collagen [43]. In pediatric patients with malignant
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peripheral nerve sheath tumors, the 5-year event-free survival (EFS) has been shown to be
around 52.9% and overall survival (OS) is around 62.1% [44].

Meningiomas, rare in children, make up only 3% of pediatric SNC tumors [45] and
are closely related to the diagnosis of NF2; it is estimated that 20% of NF2 patients harbor
spinal meningiomas. Meningiomas in NF2 are typically WHO grade 1, slow-growing,
benign tumors. When present, meningiomas in NF2 patients are often multiple, which
contributes significantly to morbidity and mortality. The “clear cell meningioma (CCM)”
(WHO grade II) is a typical pediatric/juvenile spinal meningioma and represents the
most common histological subtype of sporadic pediatric spinal meningioma [3]. They
are characterized by early local recurrence and cerebrospinal fluid metastasis. The World
Health Organization defines CCM as a grade II cancer. Its incidence rate in children is
higher than that in adults, who may manifest aggressive features such as recurrence and
CSF dissemination [46–49]. The MRI features include dural tail, isointensity in T1 and T2
compared to the spinal cord, clear margins, and homogeneous enhancement (Figure 10) [3].
Outcome is closely related to surgery: gross total resection is associated with a good clinical
outcome, while subtotal resection or partial resection could be associated with recurrence
or growth of the residual lesion with clinical progression even 60 months after the first
surgery (long-term recurrence) [50].

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 25 
 

 

the high stromal component of collagen [43]. In pediatric patients with malignant periph-

eral nerve sheath tumors, the 5-year event-free survival (EFS) has been shown to be 

around 52.9% and overall survival (OS) is around 62.1% [44]. 

Meningiomas, rare in children, make up only 3% of pediatric SNC tumors [45] and 

are closely related to the diagnosis of NF2; it is estimated that 20% of NF2 patients harbor 

spinal meningiomas. Meningiomas in NF2 are typically WHO grade 1, slow-growing, be-

nign tumors. When present, meningiomas in NF2 patients are often multiple, which con-

tributes significantly to morbidity and mortality. The “clear cell meningioma (CCM)” 

(WHO grade II) is a typical pediatric/juvenile spinal meningioma and represents the most 

common histological subtype of sporadic pediatric spinal meningioma [3]. They are char-

acterized by early local recurrence and cerebrospinal fluid metastasis. The World Health 

Organization defines CCM as a grade II cancer. Its incidence rate in children is higher than 

that in adults, who may manifest aggressive features such as recurrence and CSF dissem-

ination [46–49]. The MRI features include dural tail, isointensity in T1 and T2 compared 

to the spinal cord, clear margins, and homogeneous enhancement (Figure 10) [3]. Out-

come is closely related to surgery: gross total resection is associated with a good clinical 

outcome, while subtotal resection or partial resection could be associated with recurrence 

or growth of the residual lesion with clinical progression even 60 months after the first 

surgery (long-term recurrence) [50]. 

 

Figure 10. Gadolinium-enhanced T1-weighted image. Craniocervical junction meningioma (arrow) 

characterized by dural base, well-defined margins, and intense and homogeneous enhancement. 

Compression and anterior dislocation of the bulb and cervical cord are evident (arrowhead). 

Some authors suggest a complete clinical, radiological, and genetic evaluation in sin-

gle, apparently sporadic, cranial/spinal meningioma and schwannoma [42]. Beyond the 

NF2, the SMARCE1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of 

chromatin, subfamily E, member 1) gene mutation was found in young adults (16–24 

years) with meningioma. Heterozygous loss-of-function mutations in the SWI/SNF chro-

matin-remodeling complex subunit gene SMARCE1 play a key role in the pathogenesis of 

spinal meningiomas with clear cell histology [51]. Furthermore, in young people (1–15 

Figure 10. Gadolinium-enhanced T1-weighted image. Craniocervical junction meningioma (arrow)
characterized by dural base, well-defined margins, and intense and homogeneous enhancement.
Compression and anterior dislocation of the bulb and cervical cord are evident (arrowhead).

Some authors suggest a complete clinical, radiological, and genetic evaluation in
single, apparently sporadic, cranial/spinal meningioma and schwannoma [42]. Beyond the
NF2, the SMARCE1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of
chromatin, subfamily E, member 1) gene mutation was found in young adults (16–24 years)
with meningioma. Heterozygous loss-of-function mutations in the SWI/SNF chromatin-
remodeling complex subunit gene SMARCE1 play a key role in the pathogenesis of spinal
meningiomas with clear cell histology [51]. Furthermore, in young people (1–15 years), the
germline LZTR1-mutation is associated with the development of schwannomas, as well as
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that of SMARCB1, which, in the older age group, accounts for 25% of schwannomatosis
disease [42].

6. Embryonal Tumors

Embryonal tumors with spinal localization are very rare. In our opinion, among these,
it is useful to describe the atypical teratoid/rhabdoid tumors and embryonal tumors with
multilayered rosettes, which are rarely found in children.

6.1. Atypical Teratoid/Rhabdoid Tumor

Atypical teratoid/rhabdoid tumor (ATRT) is a rare brain tumor that is more com-
mon in children under 2 years of age and accounts for 1–2% of all pediatric brain neo-
plasms [51–53] with aggressive development and poor prognosis [53,54]. Intramedullary
spinal atypical teratoid/rhabdoid tumor (spATRT) origin accounts for 3.5% of all ATRTs,
and intradural-extramedullary and extradural cases have also been described. MRIs show
an inhomogeneous lesion and iso/hypointense in T1 and T2 due to the presence of solid
and/or cystic components, necrosis, and bleeding with heterogeneous enhancement [3,52].
There are three molecular subgroups based on DNA methylation, which include ATRT-
MYC, ATRT-SHH, and ATRT-TYR [55,56], but currently there is no recognized correlation
with localization, response to treatment, and prognosis due to the few cases of spATRT [57].
Moreover, the deletion or mutation of the SMARCB1 locus, a typical genetic alteration, was
detected [52,58,59]. Outcome of children with ATRT is poor and the median survival is
about 17 months [60,61].

6.2. Embryonal Tumor with Multilayered Rosettes

Embryonal tumor with multilayered rosettes (ETMR), C19MC-altered, is a rare and
aggressive, high-grade neoplasm, more common in infants (<3 years old) [62,63], with
an average survival of about 1 year [64]. Introduced in 2016, ETMR encompasses pre-
vious diagnostic entities, such as embryonal tumor with abundant neuropil and true
rosettes (ETANTR) [65], ependymoblastoma (EBL), and medulloepithelioma (MEPL) [6,66].
ETMRs have frequent brain localization (70% supratentorial; 30% infratentorial) and are
exceptionally pronounced in the spinal cord (<1%) [67]. MRIs show a large tumor with
restricted diffusion, cystic components, and heterogeneous pre-contrast signal and en-
hancement [68,69]. The genetic hallmark of this neoplasm is the C19MC amplification (90%
of all ETMRs), and it is possible to identify (in the rosette-forming cells) LIN28A-positive
immunostaining (RNA-binding protein) [69]. Half of the ETMR cases that do not show
C19MC amplification are characterized by biallelic DICER1 inactivation [67].

7. Genetic Syndromes

Some genetic syndromes are associated with the risk of developing central nervous
system (CNS) and extra-CNS tumors. They include: ataxia telangiectasia, Cowden syn-
drome, familial adenomatous polyposis, hereditary non–polyposis-related colorectal cancer,
Li-Fraumeni syndrome, Gorlin syndrome, multiple endocrine neoplasia type 1, tuberous
sclerosis complex, Turcot syndrome [70], and DICER1 syndrome [67].

In this context, there are few familial syndromes closely associated to the develop-
ment of spinal tumors. Gliomas may be related to neurofibromatosis type 1 (NF1). This
genetic syndrome has an incidence rate of 1 in 3000 people [71], caused by a germline
mutation in the NF1 gene. The diagnostic criteria for NF1 [72] are met in an individual
who does not have a parent diagnosed with NF1 if two or more of the following are
present: six or more café-au-lait macules over 5 mm in greatest diameter in prepubertal
individuals and over 15 mm in greatest diameter in postpubertal individuals, freckling
in the axillary or inguinal regiona, two or more neurofibromas of any type or one plexi-
form neurofibroma, optic pathway glioma, two or more iris Lisch nodules or two or more
choroidal abnormalities, a distinctive osseous lesion such as sphenoid dysplasia, anterolat-
eral bowing of the tibia, or pseudarthrosis of a long bone. NF1-gliomas are most commonly
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optic/chiasmatic/hypothalamic pilocytic astrocytomas; on the other hand, although un-
common, they can be diffusely infiltrating astrocytomas [73] and originate in the spinal
cord [74]. The most common spinal tumors in NF1 remain paraspinal neoplasms (and
in this case they are overall plexiform neurofibromas) (Figure 11), while intramedullary
tumors occur only in 2–6% of patients with NF1 [75]. “Spinal-NF1” refers to a particular
subgroup of patients who show multiple paraspinal tumors (and few skin lesions) as-
sociated with a large deletion on the NF1 gene [76]. Malignant peripheral nerve sheath
tumors occur in 2–10% of patients with NF1 and are very rare in the general population
(0.001%) [77]. New neurological symptoms/deficits, pain, changes in the growth and con-
sistency, compression of the locoregional areas, and bleeding of the neurofibroma are the
so-called “red flag” symptoms [78] suspected for aggressive evolution of the neurofibroma
(10% of cases [79]) or aggressive paraspinal neoplasm. Primary (related to dysplasia) and
secondary (related to the tumor growth) bony remodeling, scoliosis, dural ectasia, and
lateral meningocele are other spinal manifestations of NF1 [78]. In addition to the supra
and subtentorials, spinal UBOs (unidentified bright objects) can be observed.
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Figure 11. (a) Coronal «saturated» T2-weighted and (b) axial post-contrast «saturated» T1-weighted
images. Multiple neurofibromas (arrows) in a pediatric patient with NF1. The “target sign” (central
area of hypointensity in T2) can be observed (arrowheads).

On the other hand, the diagnosis of spinal ependymoma can be linked to neurofi-
bromatosis type 2 (NF2, 1 in 60,000 people [71,80], germ-line mutation in the NF2 gene).
Family heredity is recognized in half of the patients with NF2, while in the remaining
cases, a “de novo” mutation is hypothesized. NF2 may show schwannoma (typically bilat-
eral vestibular tumors) and cranial/spinal meningiomas and ependymomas [81]. Spinal
meningiomas are seen in approximately 20% of patients with NF2 [82,83] and often belong
to the fibrous variant [83,84]. In 50% of the patients, the NF2 manifestations occur from
the second decade of life; however, related to the type of genetic alteration, two clinical
subtypes are recognized. The Wishart phenotype (Figure 12) is associated with more severe
diseases, tumors onset before the age of 20, rapid progression, and truncating alterations in
NF2 gene, while the Gardner phenotype shows milder disease, later and slower onset of
tumors, and missense loss-of-function mutations in the NF2 gene [83,85].
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Figure 12. A detail of the lumbo-sacral spine in a twelve-year-old child with NF2 and Wishart
phenotype. Sagittal T2-weighted (a) and post-contrast T1-weighted (b) images show an expansive
intramedullary lesion of the cauda, hyperintense in T2 (arrows) with enhancement. These findings
are compatible with ependymoma in patient with NF2.

The diagnosis of spinal, retinal, or cerebellar hemangioblastoma may be closely related
to the von Hippel-Lindau (VHL) tumor syndrome (1 in 36,000 people [86,87]; germline mu-
tation in VHL gene). VHL is a cancer predisposition syndrome associated with benign and
malignant SNC/extra-SNC neoplasms. The most common tumors are hemangioblastomas,
endolymphatic sac tumors, pheochromocytomas, paragangliomas, renal tumors, and cystic
and pancreatic neuroendocrine tumors. Up to one-third of patients (10–30%) with VHL
develop spinal cord hemangioblastoma [36,59] and the symptoms may be due to bleeding.

To conclude, spinal tumors, especially in children, can be an indicator of a cancer
predisposition syndrome, such as NF1, NF2, and VHL syndrome. For this reason, in the
diagnostic setting of a pediatric spinal tumor, it is essential to perform an MRI of the entire
neuroaxis and a familial genetic evaluation.

8. Imaging Technique and Differential Diagnoses

Cancer predisposition syndromes (CPSs) differ from each other in relation to the site
of onset of the neoplasm, type of neoplasm, and involvement (or not) of the CNS. In this
setting, whole-body MRI is the preferred imaging modality for surveillance of pediatric
patients with CPSs, and the growing literature supports its importance in presymptomatic
cancer detection, but further studies are needed and the question is still open [88]. Nev-
ertheless, evaluation and follow-up of children with CNS tumor, not only in the CPSs, is
based on brain and spine MRI.

MRI is the standard reference for the evaluation of spinal tumors, surgical planning,
and surveillance during and after treatment. Entire neuroaxis imaging using contrast-
enhanced MRI should be performed on all patients with a spinal tumor to detect other
disease sites in addition to the primary spinal lesion (spreading metastases starting from
the spinal cancer) or an intracranial primary neoplasm. In the latter case, spinal lesion/s
can represent spinal disease dissemination starting from the brain, such as drop metastases.
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Currently, MRI protocol includes a standard pre-contrast study, such as sagittal (and
axial) T1 and T2 sequences (thickness: 3 mm) and axial, sagittal (and coronal) T1 sequences
after contrast [89]. In addition, heavily T2-weighted MR “cisternography” sequences
(e.g., CISS, “constructive interference in steady-state” and DRIVE, “3D driven equilib-
rium”), fat suppression sequences (T1- or T2-weighted), diffusion-weighted imaging (DWI),
3D volumetric sequences, and susceptibility-weighted imaging (SWI) can be used. The
3D-CISS sequence, characterized by a high spatial resolution, allows a detailed view
(Figures 13 and 14) of small components (for example spinal roots, cysts) with three-plane
visualization (isotropic sequence) [90]. SWI, related to the magnetic susceptibility of the
different tissue components, has a recognized role in the brain but its role is limited and not
standardized in the spinal cord [90]. In the brain, it is used to detect bleeding, calcifications,
iron, and deoxygenated hemoglobin; in the spine, its potential uses include the evaluation
of venous anatomy [91] and, therefore, the results of vascular malformation treatments [92]
and bleeding (potential use in ependymoma). Advanced neuroimaging methods, such
as diffusion-weighted imaging (DWI), can be useful techniques, mostly to increase con-
spicuity in the detection of spinal metastases. The DWI technique is based on the motion
of extracellular water molecules—the increase in the number of cells (neoplasms with high
cellularity) causes a reduction in the movement of extracellular water (decreased diffusion
of extracellular water; high cellularity = diffusion restricted) [93].
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Figure 13. Leptomeningeal dissemination related to medulloblastoma. CISS (a), post-contrast T1-weighted (b) and T2-
weighted (c) images show diffuse nodular appearance of the meningeal sheets (arrowheads). The panel demonstrates more
detail of the CISS (a) than the T2-weighted image (c).

Advanced techniques not yet standardized in clinical practice and protocols include
diffusion tensor imaging (DTI), perfusion technique, spectroscopy, and functional imaging.
Movement artefacts, due to the heart and lungs and the reduced size of the spinal cord
(compared to the cerebral hemispheres), limits the use of DTI and DWI. DTI can be useful in
the differential diagnosis between astrocytomas and ependymomas: in the first case, MRI
demonstrates involvement of the spinal cord fibers within the tumor, and in the second,
case shows dislocation of the fibers [94]. On the other hand, the relationship between tumor
and spinal cord fibers can help surgical planning. (i) Acute ischemic events and (ii) the
differential diagnosis between infectious and chronic inflammatory degenerative disease
are the main situations in which DWI plays a primary role [95].
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Figure 14. Another case of leptomeningeal dissemination related to medulloblastoma, in which the usefulness of the
CISS (a) is clear compared to post-contrast T1-weighted (b) and T2-weighted (c) images. Nodular appearance of the cauda
roots is evident (arrowheads).

In the spinal cord, a particular use of the dynamic contrast enhancement (DCE), the
most common perfusion technique, is to study extradural metastases, their vasculariza-
tion, and the possibility of endovascular treatment [96]. Although spectroscopy is rarely
included in a spinal cord protocol study, it may be useful in the differential diagnosis
between neoplasm [97] and inflammation, in amyotrophic lateral sclerosis, and in predict-
ing neurological outcomes for patients affected by cervical spondylotic myelopathy after
surgical treatment (the latter two in adult patients) [90,98]. Functional imaging (fMRI) is
currently for research purposes only.

Spinal tumors disrupt the balance between the spinal cord, cerebrospinal fluid (CSF),
and the spinal canal: intrinsic neoplasms cause expansion of the spinal cord, obstacles
to CSF flow, and, sometimes, bone remodeling, with associated signs and symptoms.
However, back pain and sensory and motor symptoms in a child are nonspecific symptoms
and must be investigated. The main differential diagnoses include infectious, inflammatory,
demyelinating, vascular diseases, “tumor-like” lesion, and “tumor-like” mass, in particular
when there is a spine signal alteration without swollen appearance (Figures 15–17). When
an MRI is performed, it can show a single (or multiple) focal or diffuse area of altered
medullary signal, usually T2 hyperintense, with or without (i) swollen appearance (tumor-
like appearance) of the spinal cord and (ii) enhancement—in these cases, acute transverse
myelopathy (ATM) should be considered between the differential diagnoses [99]. ATM
represents a set of diseases and includes idiopathic (idiopathic ATM or acute transverse
myelitis), compressive, post-infectious (subacute disseminated encephalomyelitis, ADEM),
viral, demyelinating (multiple sclerosis), ischemic, and autoimmune forms. It is very
useful to investigate for diagnosis: (i) previous traumatic events, to exclude spinal cord
mechanical compression; (ii) the time to onset, which is very short in spinal ischemic
vascular disease; (iii) recent medical history, which may include infection or vaccination
one or two weeks prior to onset symptoms in ADEM; and (iv) associated symptoms, such
as visual disturbances in multiple sclerosis [99]. Moreover, an MRI may show specific
findings, such as a typical vascular pattern in spinal ischemia and involvement of the white
matter of the brain and spinal cord in ADEM (widespread T2 hyperintensity) and multiple
sclerosis (usually multiple focal T2 hyperintensities) [99]. However, the idiopathic form is
a diagnosis of exclusion.
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Figure 15. Tumor-like appearance of a spinal “formation” in a six-year-old child. MRI was performed after a traumatic
event. Sagittal T2-weighted (a), fat suppression T1-weighted (b), fat suppression T2-weighted (c), axial T2-weighted (d),
and T1-weighted (e) images demonstrate intradural-extramedullary cystic-like formation with a fluid–fluid level (blue
arrows) and spinal cord dislocation. Traumatic deformation of the superior vertebral plateau is also evident (white arrows).
The definitive diagnosis was post-traumatic pseudomeningocele.
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Figure 16. Intradural-extramedullary cervical expansive lesion in a ten-year-old child. Axial fat
suppression T2-weighted (a), T1-weighted (b), DWI (c), fat suppression post-contrast T1-weighted
images (d) demonstrate hyperintense lesion (T1 images), hypointense in fat suppression T2-w image,
without diffusion restriction and enhancement. The diagnosis of lipoma is clear.
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Figure 17. Cystic-like appearance of a tumor on the spinal cord in a three-year-old child. MRI was
performed for headache. Sagittal T2-weighted image shows diffuse cervical–dorsal syringomyelia
(arrowheads) not related to a neoplasm but to Chiari 1 syndrome. Migration of the cerebellar tonsils
is evident (arrow).

In the context of an infectious inflammatory pathology, meningitis can have a “tumor-
like appearance” with particular radiological pictures. More frequently, bacterial infection
of the meningeal sheets is due to different age-related pathogens such as Streptococcus B
(more common in newborns), Haemophilus influenzae (young infants), pneumococcus, N.
Meningitidis, staphylococci (in older children), and, rarely, Mycobacterium tuberculosis.
Diagnosis is based on clinical and laboratory criteria, and imaging is useful in selected
cases when there is suspicion of complications. On MRI, the involvement of the meninges
causes enhancement of the pachi- and/or lepto-meninges, the surface of the spinal cord,
and the nerve roots [99]. Moreover, in intracranial tuberculosis, MRI can demonstrate
signs of meningitis but also tuberculomas and abscesses [100]. These findings represent
infectious leptomeningeal dissemination and, in some cases, the differential diagnosis from
tumor leptomeningeal involvement may be difficult based on imaging alone, especially
when there is a history of aggressive tumor of the CNS. Clinical condition, laboratory tests,
lumbar puncture, and response to antibiotic or antiviral therapy clarify the infectious origin
of the disease.

Finally, in the landscape of a patient with NF1, spinal UBOs are sometimes underesti-
mated. Asymptomatic UBOs are usually T2 hyperintense intramedullary areas (Figure 18),
without evident enhancement and sometimes with “tumor-like appearance”. Due to these
findings, UBOs may initially be diagnosed as low-grade glial spinal neoplasms [101]. The
definitive diagnosis of UBOs is related to (i) the absence of “spinal” symptoms, (ii) the
clinical stability, and (iii) the progressive spontaneous regression to surveillance MRI [101].



Diagnostics 2021, 11, 1710 18 of 25
Diagnostics 2021, 11, x FOR PEER REVIEW 18 of 25 
 

 

 

Figure 18. T2 hyperintense intramedullary cervical–bulbar area with an expansive aspect in a nine-year-old child. Sagittal 

T2-weighted images performed during surveillance (a–d)—the progressive spontaneous regression is evident. The defin-

itive diagnosis is of UBOs in a patient with NF1. 

9. Targeted Therapies 

Surgical resection is the mainstay of treatment for those spinal tumors not suitable for 

only observational follow up—surgery is undertaken when feasible and safe to perform 

with curative intent, while debulking procedures are reserved most frequently for symp-

tomatic relief. The recent WHO classification for brain tumors considers data from ge-

nomic sequencing studies to incorporate molecular characteristics helpful for targeted 

therapies [102]. Due to the rare incidence of spinal cord neoplasms and to the heterogene-

ous histologies, their molecular features remain unclear and still poorly known. 

When considering systemic therapies, as frontline, but more often as adjuvant treat-

ment, in sporadic pLGGs, genomic alterations in MAPK pathways are the most common 

molecular characteristics. 

The presence of BRAF fusion KIAA1549:BRAF suggests the potential use of target 

therapy such as MEK inhibitors [16], as well as the use of BRAF inhibitors when its muta-

tions are present [17,103]. 

The most common point mutation in PAs is the BRAFV600E mutation, identified in 

17% of pLGGs. Clinical trials of the first generation BRAF inhibitor dabrafenib reported 

up to 44% response rate in pLGGs [104]. 

Limited information is available about NTRK alterations in cerebral pLGGs and only 

speculative interest relates to spinal pLGG. RTK inhibitors are efficacious in several path-

ways, so more information is needed [105]. 

Phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/Akt/mTOR) pathway mu-

tations are very common and everolimus has been explored as treatment when this path-

way is overexpressed [106]. 

Although IDH1 mutations frequently occur in brain astrocytomas and rarely in pe-

diatric age, the incidence of IDH1 mutations in spinal cord astrocytomas has been found 

to be rather low, excluding enasidenib and ivosidenib from potential therapies [107]. 

Even though it is difficult to distinguish the response to therapy from the natural 

history of the tumor, there are numerous target drugs that have been studied and are po-

tentially useful in VHL syndrome: monoclonal antibodies (bevacizumab, ranibizumab, 

pegaptanib), tyrosine kinase inhibitors (semaxanib, sunitinib, pazobanib, erlotinib, dovit-

inib, sorafenib), and biological response modifiers [36]. 

Given the evidence that the SH3PXD2A-HTRA1 fusion is a potential driver present 

in a subset of schwannomas, Agnihotri et al., in preclinical data, provided a rationale that 

fusion-positive cells are potentially sensitive to MEK inhibitors and may represent a ther-

apeutic approach for treatment-refractory fusion-positive schwannomas [108]. 

  

Figure 18. T2 hyperintense intramedullary cervical–bulbar area with an expansive aspect in a nine-
year-old child. Sagittal T2-weighted images performed during surveillance (a–d)—the progressive
spontaneous regression is evident. The definitive diagnosis is of UBOs in a patient with NF1.

9. Targeted Therapies

Surgical resection is the mainstay of treatment for those spinal tumors not suitable for
only observational follow up—surgery is undertaken when feasible and safe to perform
with curative intent, while debulking procedures are reserved most frequently for symp-
tomatic relief. The recent WHO classification for brain tumors considers data from genomic
sequencing studies to incorporate molecular characteristics helpful for targeted thera-
pies [102]. Due to the rare incidence of spinal cord neoplasms and to the heterogeneous
histologies, their molecular features remain unclear and still poorly known.

When considering systemic therapies, as frontline, but more often as adjuvant treat-
ment, in sporadic pLGGs, genomic alterations in MAPK pathways are the most common
molecular characteristics.

The presence of BRAF fusion KIAA1549:BRAF suggests the potential use of target
therapy such as MEK inhibitors [16], as well as the use of BRAF inhibitors when its
mutations are present [17,103].

The most common point mutation in PAs is the BRAFV600E mutation, identified in
17% of pLGGs. Clinical trials of the first generation BRAF inhibitor dabrafenib reported up
to 44% response rate in pLGGs [104].

Limited information is available about NTRK alterations in cerebral pLGGs and
only speculative interest relates to spinal pLGG. RTK inhibitors are efficacious in several
pathways, so more information is needed [105].

Phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/Akt/mTOR) pathway
mutations are very common and everolimus has been explored as treatment when this
pathway is overexpressed [106].

Although IDH1 mutations frequently occur in brain astrocytomas and rarely in pedi-
atric age, the incidence of IDH1 mutations in spinal cord astrocytomas has been found to
be rather low, excluding enasidenib and ivosidenib from potential therapies [107].

Even though it is difficult to distinguish the response to therapy from the natural
history of the tumor, there are numerous target drugs that have been studied and are
potentially useful in VHL syndrome: monoclonal antibodies (bevacizumab, ranibizumab,
pegaptanib), tyrosine kinase inhibitors (semaxanib, sunitinib, pazobanib, erlotinib, dovi-
tinib, sorafenib), and biological response modifiers [36].

Given the evidence that the SH3PXD2A-HTRA1 fusion is a potential driver present
in a subset of schwannomas, Agnihotri et al., in preclinical data, provided a rationale
that fusion-positive cells are potentially sensitive to MEK inhibitors and may represent a
therapeutic approach for treatment-refractory fusion-positive schwannomas [108].

10. Conclusions

In conclusion, pediatric spinal tumors are less frequent than brain neoplasms and
should be suspected when children have “nonspecific” sensory and motor symptoms.
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MRI is the reference imaging method, but clinical history is important. When MRIs
show an “atypical” focal or diffuse area of altered intra/extramedullary signal, usually T2
hyperintense with (or without) swollen appearance (tumor-like appearance), it is important
to know the onset (acute or chronic) of symptoms, previous traumatic events, recent
infections, and the results of laboratory tests. These findings are essential to investigate
differential diagnoses, as well as plan therapeutic strategies that may include surgical
excision or biopsy and adjuvant therapies when needed.

An MRI evaluation includes pre- and post-contrast T1-weighted sequences, T2-
weighted sequences, and MR “cisternography” sequences; DWI plays an important role in
the assessment and detection of metastases. The role of advanced neuroimaging (DTI, DCE,
spectroscopy, and functional imaging) is not clearly standardized in the study of spinal
tumors and these methods are not yet included in a “standard” spinal cord evaluation.

Currently, it is essential to investigate the potential molecular alterations associated
with pediatric spinal cancer that provide novel and additional information regarding the
tumor, in order to improve both diagnosis and therapeutic strategies that include (new)
target drugs (Table 1, Figures 19–21). Moreover, the diagnosis of spinal tumors, especially
in children, can be an indicator of a cancer predisposition syndrome such as NF1, NF2,
and VHL syndrome. Therefore, when a pediatric spinal tumor is found, it is necessary to
perform an MRI of the entire neuroaxis and a familial genetic evaluation.

Table 1. Pediatric spinal tumors, location, and molecular data. * = the most common; / = no preferential location.

Tumors Location * Molecolar/Genetics

LGG Cervico and thoracic tract KIAA1549–BRAF fusion or BRAFV600E mutation; NF1
mutation

HGG / H3K27M

DL-GNT Leptomeningeal dissemination KIAA1549–BRAF, NTRK1/2/3, or TRIM33:RAF1 fusion

Ependymomas Cervical/lumbo-sacral tract RELA-/YAP1- fusion; nMyc amplification NF2 mutation

Hemangioblastomas Variable epicenter VHL mutation

Mesenchymal chondrosarcomas Thoracic tract HEY1/NCOA2 fusion

Meningiomas / NF2 mutation; SMARCE1, SMARCB1, or SUFU mutation

Schwannomas Nerve sheaths NF2 mutation; LZTR1 or SMARCB1 mutation

Plexiform neurofibromas Nerve sheaths NF1 mutation

Atypical teratoid/rhabdoid tumor / SMARCB1 mutation

Embryonal tumor with multilayered rosettes / C19MC amplification
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