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Objective: To investigate trends in clinical monitoring indices in HIV/AIDS patients receiving
antiretroviral therapy (ART) at baseline and after treatment in Yunnan Province, China and to
provide the basis for guiding clinical treatment to obtain superior clinical outcomes.

Methods: A total of 96 HIV/AIDS patients who had started and persisted in highly active
ART treatment from September 2009 to September 2019 were selected. Of these, 54 had
a CD4 cell count < 200 cells/ml while 42 had a CD4 cell count ≥ 200 cells/ml. Routine blood
tests, liver and renal function, and lipid levels were measured before and 3, 6, 9, and 12
months after treatment. Lymphocyte subset counts and viral load were measured once
per year, and recorded for analysis and evaluation. Three machine learning models
(support vector machine [SVM], random forest [RF], and multi-layer perceptron [MLP])
were constructed that used the clinical indicators above as parameters. Baseline and
follow-up results of routine blood and organ function tests were used to analyze and
predict CD4+ T cell data after treatment during long-term follow-up. Predictions of the
three models were preliminarily evaluated.
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Results: There were no statistical differences in gender, age, or HIV transmission route in
either patient group. Married individuals were substantially more likely to have <200 CD4+

cells/ml. There was a strong positive correlation between ALT and AST (r = 0.587) and a
positive correlation between CD4 cell count and platelet count (r = 0.347). Platelet count
was negatively correlated with ALT (r = -0.229), AST (r = -0.251), and positively correlated
with WBCs (r = 0.280). Compared with the CD4 cell count < 200 cells/ml group, all three
machine learning models exhibited a better predictive capability than for patients with a
CD4 cell count ≥ 200 cells/ml. Of all indicators, the three models best predicted the CD4/
CD8 ratio, with results that were highly consistent. In patients with a CD4 cell count < 200
cells/ml, the SVMmodel had the best performance for predicting the CD4/CD8 ratio, while
the CD4/CD8 ratio was best predicted by the RF model in patients with a CD4 cell count ≥
200 cells/ml.

Conclusion: By the incorporation of clinical indicators in SVM, RF, and MLP machine
learning models, the immune function and recuperation of HIV/AIDS patients can be
predicted and evaluated, thereby better guiding clinical treatment.
Keywords: HIV/AIDS, RF, MLP, SVM, machine learning model, CD4/CD8 ratio, prediction, ART
INTRODUCTION

AIDS remains a serious public health problem in China (Xu
et al., 2014; Chen et al., 2015; Chen et al., 2018). Yunnan province
is located on China’s southwestern border with Vietnam,
Myanmar, and Laos and has a large cross-border population.
Yunnan is also close to the Golden Triangle, China’s largest
drug-producing region (Jia et al., 2008; Li et al., 2010; Li et al.,
2016). In 1989, the first outbreak of human immunodeficiency
virus type 1 (HIV-1) among injecting drug users occurred in
Dehong Prefecture, Yunnan (Jia et al., 2011). Since then, Yunnan
has become the center of an HIV-1 epidemic in China and the
country’s worst-hit region for AIDS (Wang et al., 2015; Li et al.,
2016; Zhu et al., 2018). Studies show that nearly 25% of new HIV
cases in China come from Yunnan (Xiao et al., 2007; Duan et al.,
2008; Chow et al., 2013), of which 92.6% are caused by
unprotected sex (Su et al., 2016; Li et al., 2017; Zhu et al., 2018).

HIV is a retrovirus that primarily infects CD4+ T
lymphocytes, leading to a progressive decline in their number,
gradually weakening the host’s immune system leading to
acquired immune deficiency syndrome (AIDS). In untreated
infected patients, the numbers of CD4 cells decline
progressively (Février et al., 2011), and so the CD4 cell count
has become an important indicator for the selection of treatment
plans and measurement of the effectiveness of antiretroviral
therapy (ART) (Gazzard and Moyle, 1998; Carpenter et al.,
2000; Dybul et al., 2002). In addition, the number of CD4+ T
lymphocytes is an important indicator by which to judge the
progression of the disease and evaluate patient prognosis. After
receiving antiviral treatment, patients infected with HIV undergo
a period of immune reconstruction of variable duration.
ine; RF, Random forest; MLP, Multi-
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Absolute T cell count is the most reliable indicator of disease
progression (Abbass and Lichtman, 2008).

In recent years, multiple mathematical models have been
established in which HIV infection is related to CD4+ T cell
number (Hou and Ma, 2009; Wang and Song, 2009; Li and Ye,
2010). The results of these mathematical models provide
theoretical guidance and suggestions for the prevention and
treatment of AIDS. As early as 1999, the researcher Perelson et al.
(Perelson and Nelson, 1999) introduced a model of HIV
infection incorporating CD4+ T cell number. There have been
many subsequent models based on CD4+ T cells as the principal
variable. For example, Chen et al., (2007) used TLC(T
lymphocyte,TLC) to predict CD4+ T cell count. Singh et al.
(Singh and Mars, 2010) used a support vector machine with
mined data to predict changes in CD4 cell count in HIV infected
patients using genome sequencing, current viral load, and the
number of weeks of follow-up as predictive indicators. Jingquan
et al. (Wang et al., 2006) divided the CD4+ T lymphocyte counts
of patients into three categories depending on the total
lymphocyte count using a decision tree, predicting CD4+ T
lymphocyte counts of less than 350/mL. Such estimates of
CD4+ T cell number trajectory are essential for public health
models as they predict the course of HIV epidemics (Eshun-
Wilson et al., 2012; Rowley, 2014; Ren et al., 2017). However, the
majority of such models include only routine blood data as
parameters, with a follow-up time of less than three years. No
studies have incorporated routine blood tests, lymphoid
subgroup count, viral load, liver function, renal function, and
blood lipids in addition to other indicators into the modeling,
representing the innovative feature, and value, of the present
study. The model will assist in the prompt prediction of immune
response and timely adoption of adjuvant therapy to improve
patient immune function. Machine learning models have
widespread applications in medical research, almost any data
May 2022 | Volume 12 | Article 867737
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type can be used to build predictive models. Since the
inconsistent prediction accuracy in different models, the
prediction results shared by multiple models are more accurate
(Huang et al., 2018; Renganathan, 2019; Blanchet et al., 2020).
This study used three machine learning methods to build the
predictive model.

In Yunnan province, a relatively underdeveloped frontier
province, it is not feasible to count CD4 or other lymphocyte
subsets because these parameters depend on a flow cytometry
platform. For confirmed HIV/AIDS patients and others during
follow-up, indicators such as routine blood and liver function
tests, etc. are more readily available, thus, the present study aims
to construct three different models based on different baseline
levels of CD4, CD8, the CD4/CD8 ratio and other follow-up
results, among newly diagnosed HIV/AIDS patients with a CD4
cell count < 200 cells/ml and CD4 cell count ≥ 200 cells/ml. The
model can predict changes in immune function and thereby
calculate the prognosis of HIV/AIDS patients, allowing an
appropriate selection of clinical antiviral drugs. The model has
the potential for considerable cost savings for diagnosis and
follow-up. The benefits to infected patients are clear.
METHODS

Ethics Approval
The research protocol used in the present study has been
reviewed by the Ethics Committee of the First Affiliated
Hospital of Kunming Medical University. Informed consent
was obtained from all participants included in the study prior
to enrollment, and all information and data were confirmed
for analysis.
Sample Collection
A retrospective study was conducted on HIV/AIDS diagnosis and
follow-up patients from the First Affiliated Hospital of Kunming
Medical University. Of the 96 patients, the longest follow-up time
was 9.9 years while the shortest was 2.6 years, with a median
duration of 5.9 years. All confirmed patients were screened and the
presence of HIV antibody confirmed by standardmethods,Western
blot analysis, and nucleic acid testing as a measure of HIV viral load
as a supplementary test, if necessary. All confirmed patients were
diagnosed in accordance with the national technical specifications
for HIV/AIDS Testing, 2020.Among 96 patients with HIV/AIDS,
according to the Chinese AIDS diagnosis and treatment guidelines,
the main treatment regimen was lamivudine + zidovudine +
efavirenz (3TC+AZT+EFV) and lamivudine + Zidovudine +
nevirapine (3TC+AZT+NVP), and the dosage was strictly in
accordance with the guidelines,and in accordance with China’s
AIDS diagnosis and treatment guidelines.

Of the 96 HIV/AIDS patients who began and adhered to
highly active ART (HAART) during the 10 year period from
September 2009 to September 2019, 54 had a CD4 cell count of <
200 cells/ml while 42 had a count of ≥200 cells/ml. In accordance
with the requirements of the National information management
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
standards for free antiviral therapy, routine blood tests, liver and
kidney function, and blood lipid levels were followed up 3, 6, 9,
and 12 months before and after treatment. Free lymphocyte
subset counts and viral load tests were performed once per year.
All test results were recorded for analysis and evaluation.

The treatment plan and medical inclusion criteria for patients
were those stated in the “National Manual for Free HIV Antiviral
Treatment (2nd edition)”. All patients signed the “Informed
Consent for Free HIV antiviral treatment” document, allowing
drugs to be provided free of charge by the state.

Laboratory Testing
A 2ml sample of venous blood was collected from each HIV/
AIDS patient on an empty stomach at each time point. Blood
cells were analyzed by flow cytometry (FACSCan II, BD
Biosciences, San Jose, CA) using a combined CD3/CD4/CD8/
CD45 Multitest reagent (BD Biosciences, San Jose, CA), allowing
the absolute number of lymphocyte subsets to be measured and
analyzed. All tests were completed less than 4 hours after venous
blood collection. White blood cell (WBC) and platelet counts
and hemoglobin (Hb) concentration were measured by routine
blood testing using a Nisen Meikang automatic hematocyte
counter (Japan). Total cholesterol (TC), total triglyceride (TG),
alanine transaminase (ALT), aspartate aminotransferase (AST),
and creatinine levels, aspects of blood lipids, and liver and renal
function tests were performed using a Roche Cobas 8000
analyzer. Samples were prepared using a High Pure System
Viral Acid kit, while a COBAS TaqMan 48 analyzer was used
for automatic amplification and measurement. Samples were
tested after routine daily indoor quality control testing.

Data Preprocessing
For each sample, we deleted records with missing CD4/CD8 ratio
or anti-HIV treatment, all variables (including gender, age,
marital status, route of infection, liver and kidney function,
blood lipid levels, routine blood tests, lymphoid subsets, and
HIV viral load data at diagnosis and at each follow-up) were first
normalized then processed in accordance with the following
formulae:

xi = v0 +
v1 − v0
d1

� �2

,
v2 − v1
d2 − d1

� �2

,…,
vi − vi−1
di − di−1

� �2� �

yi =
di+1
di

· vi+1

X =

x1

x2

⋮

xn

2
666664

3
777775
,Y =

y1

y2

⋮

yn

2
666664

3
777775

where vi indicates the tested value of a clinicopathological
variable at day i, v0 represents a baseline measurement value, xi
is a generated variable and yi is the corresponding score at day i.
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The generated matrix X and vector Y were then used for
construction of the various machine learning models.

Support Vector Machine Model
A support vector machine (SVM) is a category of generalized
linear classifier that performs binary classification on data by
supervised learning, having as a decision boundary the
maximum margin hyperplane that solves the learning samples
(Huang et al., 2018). SVM uses a hinge loss function to calculate
the empirical risk and adds a regularization term to the solution
system to optimize the structural risk. The model operates as a
robust classifier using sparse data. SVM can perform nonlinear
classification through kernel methods and represents a common
kernel learning method. Using such methods, the robustness and
sparsity of an SVM reduces the computational and memory
overhead of the kernel matrices while ensuring that a reliable
solution is obtained. The present study used the “SVR” function
in the “scikit-learn” Python package to build the model. The
parameter settings are: kernel=‘rbf’, degree=3, gamma=‘scale’,
and C=1.0.

Random Forest Model
A random forest (RF) refers to a classifier using multiple decision
trees to train and predict samples. Output categories are
determined by the mode of the output category of the individual
trees (Blanchet et al., 2020). Random forests have the advantages
of generating highly accurate classifiers while dealing with a large
number of input variables and balancing errors. The present study
used the “RandomForestRegressor” function in the “scikit-learn”
Python package with all models constructed using the following
parameters: n_estimators=100, criterion=‘squared_error’,
min_samples_split=2, and min_samples_leaf=1.

Multi-Layer Perceptron Model
A multi-layer perceptron (MLP) is a class of feedforward artificial
neural network. Neural networks are operational models that
consist of interconnections between a large number of nodes (or
neurons). Each node represents a specific output function, described
as an excitation function. The connection between every two nodes
represents a weighted value for the signal passing through the
connection, known as the weight, equivalent to the memory of
the artificial neural network (Renganathan, 2019). The output of the
network varies according to the method by which the network is
connected, the weight value, and the excitation function. The
network itself is generally an approximation of a certain
algorithm or function in nature, and may also be an expression of
a logic strategy. AnMLP consists of at least three layers of nodes: an
input layer, a hidden layer, and an output layer. Except for the input
nodes, each node represents a neuron using a nonlinear activation
function. The present study used the “MLPRegressor” function in
the “scikit-learn” Python package, with parameter settings:
solver=‘lbfgs’, alpha=1e-5, hidden_layer_sizes= (Li et al., 2010;
Chen et al., 2015), and random_state=1.

Statistical Analysis
Continuous variables (including age and baseline CD4 level) are
presented as means ± standard deviation while the means of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
these variables in the 2 groups were compared using a student’s t-
test. Categorical variables (sex, marital status, and HIV
transmission route) are presented as numbers (or percentages
of cases) while the prevalence of these variables was compared
using a Pearson’s Chi-squared test. Due to the small sample sizes
for a number of variables, comparisons were conducted using a
Pearson’s Chi-squared test with Yates’ continuity correction.
Pearson correlation analysis was used to calculate the pairwise
correlation coefficients among all clinicopathological variables in
the whole cohort. Pearson correlation analysis and univariate
linear regression were used to explore the correlation between
the original score and the predicted score generated by the three
machine learning models. P-values < 0.05 were considered
statistically significant. An independent sample t-test was used
for statistical analysis of the biochemical indices and the viral
load in each time group, for which 0.05 was the significance level.
RESULTS

Population Characteristics
The population of patients was divided into two groups based on
baseline CD4 concentrations (CD4 cell count < 200 cells/ml or ≥
200 cells/ml). There were no differences in sex, age, or route of
HIV transmission between the two groups. However, there was a
significant difference in marital status between the two groups.
The data indicated that the majority of patients with a CD4 cell
count < 200 cells/ml were married, while a higher proportion of
unmarried, divorced, and widowed patients were observed in the
CD4 cell count ≥200 cells/ml (Table 1).

Comparison of Clinical Indicators and Viral
Load in Each Group
As described above, all patients were categorized into a baseline
CD4 cell concentration greater than or equal to 200, or less than
200 ml/ml. Depending on the follow-up period (from 0 to 9.8
years), the data were divided into 10 follow-up period groups
(including the baseline group). All test indicators were compared
between the two CD4 cell count groups at intervals of one year. It
was found that there were significant differences in WBCs (P =
0.018), platelets (P = 0.001), ALT (P = 0.022), AST (P = 0.002),
and hemoglobin (P = 0.002) between the two groups for follow-
up periods of up to 4 years. There were significant differences in
hemoglobin (P = 0.002) and AST (P = 0.002) between the two
groups in the first year after diagnosis. For the follow-up period
of 5 years, there was a significant difference in TC (P = 0.04)
between the two groups, and a significant difference in creatinine
(P = 0.014) for the 8 year follow-up (Tables 2A, 2B).

Correlation of Clinical Indices
The results indicate that the ALT and AST levels demonstrated a
strong positive correlation (r = 0.587) and the CD4 level was also
strongly positively correlated with the CD4/CD8 ratio (r =
0.541), whereas the CD8 level was strongly negatively
correlated with the CD4/CD8 ratio (r = -0.543, Figure 1).
However, the CD4 level was only weakly positively correlated
May 2022 | Volume 12 | Article 867737
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with the CD8 level (r = 0.166). Furthermore, CD4 was positively
correlated with WBCs (r = 0.261) and platelets (r = 0.347) while
CD8 was positively correlated with WBCs (r = 0.317). Platelets
were negatively correlated with ALT (r = -0.229) and AST
(r = -0.251), and positively correlated with WBCs (r = 0.280).

Predictive Performance of the Three
Machine Learning Models
In patients with a CD4 cell count of < 200 cells/ml, there were
significant correlations between the predicted results of the SVM
model and the patient data for CD4 (r = 0.390, P = 0.045), CD4/
CD8 ratio (r = 0.721, P < 0.001), platelets (r = 0.435, P = 0.022), TG
(r = 0.614, P = 0.005), and AST (r = 0.569, P = 0.012). Additionally,
the predicted results of the RF model were significantly correlated
with the patient data for CD8 (r = 0.368, P = 0.028), CD4/CD8 ratio
(r = 0.662, P = 0.002), platelets (r = 0.563, P = 0.013), and TG (r =
0.536, P = 0.008). Finally, the predicted results of the MLP model
were significantly correlated with the patient data for CD8 (r =
0.412, P = 0.008), CD4/CD8 ratio (r = 0.554, P = 0.015), and
platelets (r = 0.451, P = 0.016). For the CD4 cell count ≥ 200 cells/ml
group, a significant correlation was observed for data predicted by
the SVMmodel and the patient data for CD4 (r = 0.365, P = 0.036),
CD4/CD8 ratio (r = 0.807, P < 0.001), WBCs (r = 0.577, P = 0.005),
TC (r = 0.482, P = 0.011), and ALT (r = 0.362, P = 0.035). The
results predicted by the RF model were significantly correlated with
the patient data for CD4 (r = 0.513, P = 0.002), CD8 (r = 0.634, P =
0.003), CD4/CD8 ratio (r = 0.898, P < 0.001), WBCs (r = 0.452, P =
0.008), and platelets (r = 0.484, P = 0.004), while there were
significant correlations for the MLP model for CD4 (r = 0.356,
P = 0.028), CD8 (r = 0.315, P = 0.032), and CD4/CD8 ratio (r =
0.837, P < 0.001). The results above demonstrate that the three
machine learning models exhibited a superior predictive
performance in patients with a CD4 cell count ≥ 200 cells/ml than
in those with a CD4 cell count < 200 cells/ml (Table 3).

Predictions of the CD4/CD8 Ratio
Based on the results above, we found that the best predictive
performance for CD4/CD8 ratio was achieved by the machine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
learning model. All three models demonstrated highly
consistent predictions (Figure 2). In patients with a CD4 cell
count of < 200 cells/ml, the SVM model displayed the best
predictive performance (r2 = 0.519), followed by the RF model
(r2 = 0.438), with the MLP model (r2 = 0.307) found to be worst.
In patients with a CD4 cell count of ≥ 200 cells/ml, the RF model
exhibited the best predictive performance (r2 = 0.806), followed
by the MLP model (R2 = 0.700), with the SVM model found to
be worst (r2 = 0.651). The results indicate that it may be
appropriate to utilize the SVM model to predict the CD4/
CD8 ratio for patients with a CD4 cell count < 200 cells/ml, and
the RF model for those with a CD4 cell count of ≥ 200 cells/
ml (Figure 3).
DISCUSSION

The number and function of lymphocytes are directly related to
immune system function. The CD4 cell count is among the
most critical indicators of immune function, lower counts
indicating weaker immune system function (Frontiers in
Cellular and Infection Microbiology, 2018). However, not all
T-cell subsets become attenuated. CD4+ T cells are helper
lymphocytes that secrete cytokines that activate other
immune cells. CD8+ T lymphocytes, also known as cytotoxic
T cells, directly destroy virus-infected and tumor cells.
Following HIV infection, the synthesis of CD4+ T cells is
reduced and their destruction increases causing their number
to progressively decrease, although the number of CD8+ T cells
increases significantly and they become functionally activated
(Masiá et al., 2016). Therefore, while observing the destruction
of immune function in patients following HIV infection, or its
reconstruction, in addition to an intuitive index of plasma viral
load, attention should also be paid to the number of CD4+ T
cells, the absolute number of CD8+ T cells, the CD4/CD8 ratio,
and other immune activation parameters (Cohen Stuart et al.,
2000). The CD4/CD8 ratio is often described as a marker of
immune status in the general population and is of interest in
TABLE 1 | Descriptive statistics stratified by baseline CD4 level.

CD4 cell count < 200 cells/ml CD4 cell count ≥ 200 cells/ml P value*

Baseline CD4 level 86.29 ± 61.49 279.26 ± 49.44 <0.001
Sex 0.180
Male 42 (73.68) 19 (57.58)
Female 15 (26.32) 14 (42.42)
Age 40.55 ± 5.50 40.06 ± 11.70 0.819
Marital status 0.048
Unmarried 2 (3.39) 6 (16.67)
Married 50 (84.75) 22 (61.11)
Divorced 3 (5.08) 4 (11.11)
Widowed 4 (6.78) 4 (11.11)
HIV transmission 0.896
Heterosexual 53 (88.33) 31 (86.11)
Intravenous drug use 2 (3.33) 1 (2.78)
Unknown 5 (8.33) 4 (11.11)
May 2022 | Volume 12 | Articl
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studies of HIV-infected individuals. There is increasing
evidence that it can be used to identify HIV-infected
individuals with persistent immune dysfunction who, despite
having a normal CD4 count during treatment, have a higher
risk of non-AIDS events and death. It has been confirmed that
early administration of ART is related to a rapid increase in
CD4+ count and the CD4/CD8 ratio (Rajasuriar et al., 2015), a
direct indicator of immune function reconstruction. A decrease
in the CD4/CD8 ratio is generally associated with an increase in
morbidity and mortality in HIV-unrelated diseases (Mussini
et al., 2015).

In the present study, correlation analysis of the clinical
information of patients with CD4+ T cell number demonstrated
that there was no statistical difference in gender, age, or route
transmission of HIV (heterosexual transmission, intravenous drug
use, or unknown) with baseline CD4 cell count while marital
status was statistically correlated. A large number of HIV/AIDS
patients in the married group had a CD4 cell count < 200 cells/ml,
while the majority that were unmarried, divorced, or widowed
had ≥ 200 cells/ml. A possible reasonmay be due to cultural factors
and a sense of fear towards divulging their HIV/AIDS status,
instead intentionally concealing it to prevent the other party
knowing their infection status. Even when symptoms appear, a
delay in seeking medical treatment would delay the diagnosis
until the onset of impaired immune function.

Correlation analysis of the clinical characteristics demonstrated
that ALT levels were positively correlated with AST levels (R =
0.587), while CD4 levels were positively correlated with the CD4/
CD8 ratio (R = 0.541). In addition, CD4 was positively correlated
with platelet count (R = 0.347). Platelet count was negatively
correlated with ALT (r = -0.229) and AST (R = -0.251), and
positively correlated withWBCs (r = 0.280). A number of previous
studies (Chen et al., 2007; Gupta et al., 2007) have stated that the
combination of total lymphocyte count, hemoglobin, and platelet
count improves the accuracy of CD4 count prediction. In addition,
clinical practice suggests that the number of CD4+ T lymphocytes
may also be related to red blood cell and white blood cell count,
similar to observations in the present study.

Since the HIV/AIDS patients were treated with ART
following diagnosis, they experienced reconstruction of the
immune system and gradual recovery of immune function over
3-4 years of follow-up. The duration of the reconstruction
period was dependent on patient characteristics. Therefore,
indicators of disease in the patients during the reconstruction
period were not stable. Fluctuation caused clear differences
between the two groups. However, after 4 years of follow-up,
all aspects of the monitored indicators tended to stabilize in the
patients who had achieved immune reestablishment, removing
any significant difference between the two groups. Differences
in total cholesterol and creatinine between the two groups in
the late follow-up period may have been caused by side effects
or complications of the drugs or damage to organ function
caused by the antiviral drugs.

In the present study, the three machine learning models,
namely SVM, RF and MLP, were constructed by simultaneously
incorporating the clinical indicators of HIV/AIDS patients,
such as routine blood tests, lymphoid subgroup count, viral
T
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load, liver and renal function, and blood lipids. Baseline values
and follow-up monitoring indicators were used to analyze and
predict the possible test results of these indicators during
treatment and follow-up testing. In both groups of baseline
CD4 cell counts, the CD4/CD8 ratio predicted by the three
models was significantly correlated with the patient data. In
patients with a CD4 cell count of < 200 cells/ml, only the
predicted platelet count for the three models was correlated
with the patient data. In conclusion, the predictive capability of
the three machine learning models was superior in patients
with a CD4 cell count of ≥200 cells/ml rather than < 200 cells/ml.

SVM is considered among the most accurate methods of all
the well-known data mining algorithms. It is a novel small-
sample learning method with a solid theoretical foundation.
RF can process high dimensional data, the training speed is
fast, and it easily obtains the extent of the importance of
different features. MLP, as a neural network machine learning
method, can achieve better predictive performance following a
training and learning process. In general, machine learning
models have different predictive performance regarding CD4
counts, as observed for the different machine learning models
in the present study, with the CD4/CD8 ratio providing the
best performance, for which all three models were highly
consistent. Specifically in patients with a CD4 cell count
of ≥200 cells/ml, the RF model demonstrated the best
predictive performance (r2 = 0.806), including for predicting
the CD4/CD8 ratio, whereas the SVMmodel should be used to
predict the CD4/CD8 ratio in patients with a CD4 cell count of
< 200 cells/ml. Of course, the RF model would theoretically
demonstrate superior predictive performance if the sample
size for machine learning was larger.

After treatment with ART, the slow increase in CD4+ cell count
is likely to lead to immune reconstitution. The high baseline CD4/
CD8 ratio was associated with successful immune reconstitution,
in accordance with previous studies that have demonstrated the
critical role of CD4/CD8 ratio normalization (Serrano-Villar et al.,
2013; Mussini et al., 2015). Therefore, the number of CD4 cells
and the CD4/CD8 ratio after treatment in HIV/AIDS patients are
key factors for successful treatment.

The present study was influenced by cases of loss and,
consequently, the sample size for long-term follow-up was
relatively small. The predictive role of baseline CD4+ cell
count and the CD4/CD8 ratio in immune reconstitution has
become clearer as the sample size has continuously increased.
The additional detection of CD4+ T cell subsets in enrolled
cases in the future will yield more effective evidence, as there is
increasing evidence that different subtypes of CD4+ cells
influence immune reconstitution (Funderburg et al., 2013;
Lu et al., 2016) and that a baseline percentage of naive CD4+ T
cells is a good prognostic factor for immune reconstitution
during long-term treatment (Guo et al., 2016). Furthermore, it
is possible to optimize prediction through the integration of
models. Therefore, we will further analyze the relationship
between changes in the monitoring indicators included here
and changes in CD4 count, thereby allowing prediction of
changes in CD4 count through the use of data mining
methods. These will be considered in additional research.
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FIGURE 1 | Correlations for all clinicopathological variables. The orange color indicates a positive correlation while cyan indicates a negative correlation. ALT, alanine
aminotransferase; AST, aspartate aminotransferase; CD4, CD4+; T cell, CD8: CD8+ T cell; TC, total cholesterol; TG, total cholesterol; Hb, total cholesterol; WBC,
white blood cell.
TABLE 3 | Predictive performance of the three machine learning models for clinicopathological variables.

Variables SVM model RF model MLP model

R P R P R P

CD4 cell count < 200 cells/ml
CD4 0.390 0.045 0.219 0.185 0.257 0.207
CD8 0.025 0.241 0.368 0.028 0.412 0.008
CD4/CD8 ratio 0.721 < 0.001 0.662 0.002 0.554 0.015
WBC 0.293 0.200 0.293 0.243 0.297 0.116
Platelets 0.435 0.022 0.563 0.013 0.451 0.016
Creatinine 0.136 0.205 0.069 0.225 0.206 0.177
TC 0.219 0.105 0.112 0.403 0.126 0.431
TG 0.614 0.005 0.536 0.008 0.098 0.599
ALT 0.237 0.101 0.359 0.057 0.105 0.859
AST 0.569 0.012 0.082 0.442 0.271 0.064
Hb 0.031 0.728 0.042 0.543 0.073 0.652

CD4 cell count ≥ 200 cells/ml
CD4 0.365 0.036 0.513 0.002 0.356 0.028
CD8 0.190 0.108 0.634 0.003 0.315 0.032
CD4/CD8 ratio 0.807 < 0.001 0.898 < 0.001 0.837 < 0.001
WBC 0.577 0.005 0.452 0.008 0.383 0.068
Platelets 0.290 0.231 0.484 0.004 0.213 0.185
Creatinine 0.091 0.381 0.170 0.386 0.068 0.827
TC 0.482 0.011 0.341 0.052 0.261 0.127
TG 0.191 0.279 0.078 0.558 0.058 0.691
ALT 0.362 0.035 0.320 0.065 0.082 0.541
AST 0.298 0.161 0.277 0.191 0.183 0.241
Hb 0.120 0.381 0.254 0.232 0.081 0.391
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Pearson correlation statistics are displayed as correlation coefficients (R) and P values.
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CONCLUSION

In the present study, three machine learning models, namely
SVM, RF and MLP, were constructed by including clinical
monitoring indicators such as routine blood examination,
lymphocyte subset counts, viral load, liver and renal function,
and blood lipid levels in HIV/AIDS patients at baseline and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
follow-up period. Baseline and follow-up results were used to
analyze and predict the outcome of these measures after
treatment and follow-up testing. The results demonstrated that
the predictive capability of the three models was better for the
group with a CD4 cell count ≥200 cells/ml than for patients
with < 200 cells/ml. For both groups, the three models yielded the
best predictive performance for the CD4/CD8 ratio, for which
FIGURE 2 | Comparisons of CD4/CD8 ratio predictions for the three machine learning models. Each point represents a sample. SVM, support vector machine; RF,
random forest; MLP, multi-layer perceptron.
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Li et al. Construct Predict Models in HIV/AIDS
the results were highly consistent. In patients with a CD4 cell
count of < 200 cells/ml, the SVM model exhibited the best
performance for predicting the CD4/CD8 ratio, while in patients
with a CD4 cell count of ≥200 cells/ml, the RF model was best.
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