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Introduction
Prostate cancer is a heterogeneous disease, where some prostate 
cells no longer function as healthy cells, by losing normal con-
trol of growth and division. Gleason grading plays an impor-
tant role in detection and treatment of prostate cancer.1 In 
Gleason grading, the sample cells are taken from each side of 
prostate gland during the biopsy and then examined under a 
microscope by pathologist to determine whether cancer cells 
are present and to evaluate the microscopic features of any can-
cer found. A Gleason grade of 1 to 5 with decreasing differen-
tiation is given to the prostate cancer based on the microscopic 
appearance of cancer cells in the prostate gland. A pathologist 
examines the biopsy specimen and attempts to give a score to 
the 2 patterns. The primary grade represents most of the tumor; 
it has to be greater than 50% of the total pattern seen. This is 
also called the major component of the Gleason score (GS). 
The secondary grade relates to the minority of the tumor; it has 
to be less than 50%, but at least 5% of the total pattern seen.2 
This is also called the minor component of the GS.

Gleason score is calculated as the sum of the major (pri-
mary) and minor (secondary) components, therefore ranging 
from 2 to 10. Higher GSs are more aggressive and have a worse 
prognosis. It has been long recognized that patients with a total 
GS ≥7 are at greater risk for prostate cancer outcomes.3 
Although this finding has influenced clinical practice, it is still 
unclear how prostate cancer outcomes differ for various distri-
butions of the total GS between its major and minor compo-
nents. For example, within the GS of 7 patients, there are 

differences in outcomes between the patients with a combina-
tion of a major GS of 3 and minor of 4 and patients with a 
major GS of 4 and a minor of 3, with the former category 
exhibiting better outcomes.4 Our goal is to identify genes and 
biological pathways’ expressions different between patients 
with a major GS of 3 and minor GS of 4, or (3,4), vs those with 
a major GS of 4 and minor GS of 3, or (4,3), starting from a 
less aggressive combination (3,3) and moving toward a more 
aggressive combination (4,4).

Our strategy for analyzing microarray gene expression data 
is to focus on biological pathways, ie, sets of genes sharing a 
biological function. Results of gene-set analysis are easier to 
interpret than gene-level analysis and more robust across simi-
lar studies. Gene-set enrichment analysis was the first method 
proposed for analysis of sets of genes differentially expressed 
between 2 conditions. An intensive review and methodological 
discussions are given by Nam and Kim.5 The methods are fall-
ing into 2 categories: competitive methods testing the strength 
of the association of a gene set with the phenotype against 
other sets of same sizes and self-contained methods testing the 
association of one set with the phenotype. Methods in both 
categories rely on a randomization testing approach to calcu-
late significance and address the small sample size, large gene-
set problem. Competitive methods use permutations based on 
gene sampling, whereas self-contained methods use permuta-
tions based on subject sampling. We prefer the latter because it 
preserves correlations across genes in a set.
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In this article, we use Significance Analysis of Microarray 
for Gene Sets (SAM-GS),6 a method previously found to per-
form very well compared with 6 other self-contained methods. 
The performance was assessed in simulation studies of type I 
error and power, as well as applications to real data.6,7 Another 
reason for using SAM-GS over other self-contained methods 
is its readily available extension. Significance Analysis of 
Microarray for Gene-Set Reduction (SAM-GSR)8 is a method 
applied to extract core subsets, chiefly contributing to the sig-
nificance of a set. The reasoning behind extracting core subsets 
is that not all the genes in a set contribute toward significance 
of a set. Significance Analysis of Microarray for Gene-Set 
Reduction identifies core subsets, by gradually retaining top-
ranked genes and evaluating significance of the remaining sub-
set. The ability of the method to identify core subsets was 
tested in simulations studies for a binary phenotype, as well as 
application to real microarray data.8

The rest of the article is organized as follows. In section 
“Methods,” we describe the data from the Swedish Watchful 
Waiting Cohort, the gene sets and pathways catalog, as well 
as the 2 methods, SAM-GS and SAM-GSR. We also present 
our strategy of moving gradually from a less aggressive GS 
combination to a more aggressive one, to distinguish between 
patients with a major GS of 3 and minor GS of 4, vs patients 
with a major GS of 4 and a minor of 3. In sections “Results” 
and “Discussion,” we present the results and discuss their 
implications.

Methods
Individual gene analysis

Individual gene analysis is a method for gene expression anal-
yses focusing on identifying individual genes that exhibit dif-
ference between 2 states of interest. In response to challenging 
characteristics of microarray data, Significant Analysis of 
Microarray (SAM)9 was proposed as an individual gene analy-
sis method. Significant Analysis of Microarray is a moderated 
t test statistic, together with a false discovery rate (FDR) type 
of adjustment, calculated based on group-label (eg, case-con-
trol label) permutation tests. The high dimensionality problem 
calls for permutation tests, which are the basis of calculating 
statistical significance of associations between a gene and the 
condition (eg, disease) of interest. Once a test statistic is calcu-
lated for the original data, its significance is evaluated by cal-
culating the test statistic for permuted versions of the data set. 
Under the null hypothesis of no association, the group labels 
are interchangeable. The P value is calculated based on the 
permutation distribution of the test statistic, as the proportion 
of times the permuted test statistic is as extreme or more 
extreme than the observed test statistic. Significant Analysis 
of Microarray is based on analyses of random fluctuations  
in the data and computes gene-specific t-like tests.  
Although SAM is used for a wide variety of phenotypes,  
we focus on the binary phenotype here. The statistic d i( )   

measuring the relative difference in gene expression for gene i 
is given as follows:
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where x i1( )  is defined as the average level of expression for 
gene i  in the case group and x i2 ( )  is the average  
expression level for gene i  in the control group. The 
pooled standard deviation “gene-specific scatter” s i( )  is as 
follows:
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where a n n n n= + + −( / / ) / ( )1 1 21 2 1 2 ; n1  and n2  are the 
numbers of cases and controls, respectively; and the small posi-
tive constant s0  is added to adjust for the “small variability 
problem” in microarray measurements. The adjustment makes 
the variance of d i( )  independent of the mean level of gene 
expression: at lower expression levels because values of d i( )  
could become very high due to very small values of s i( ) . 
Adding a small positive constant s0  to the denominator 
ensures that the variance of d i( )  is independent of the mean 
level of gene expression.

Gene-set analysis

Analyzing microarray data at an individual gene level usually 
leads to a list of many “significant” genes, even after multiple 
comparison adjustments have been made. The process of trying 
to interpret such a large list of genes is difficult. Moreover, rep-
lication of the findings in different microarray experiments is 
another serious challenge with such individual gene-level anal-
ysis. Significance Analysis of Microarray for Gene Sets6 com-
bines the SAM t-like statistics of individual genes into a 
measure of association of the gene set with the phenotype. For 
a gene set S, it is the L2 norm of the t-like statistics described 
above:

SAM-GS = ( )
=
∑d i
i
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Statistical significance of S is obtained based on a pheno-
type label permutation test. The method can be summarized in 
a few steps:

1.	 For each of the N genes, calculate the statistic d as in 
SAM for an individual gene analysis:

d i x i x i
s i s
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where the “gene-specific scatter” s(i) is a pooled standard devia-
tion over the 2 groups of the phenotype, and s0 is a small 
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positive constant that adjusts for the small variability encoun-
tered in microarray data.

2.	 Compute the SAM-GS test statistic corresponding to 
set S:

SAM-GS = ( )
=
∑d i
i

S
2

1

| |

3.	 Permute the labels of the phenotype and repeat steps (1) 
and (2). Repeat until all (or a large number of ) permuta-
tions are considered.

4.	 Statistical significance for the association of S and the 
phenotype is obtained by comparing the observed value 
of the SAM-GS statistic from step (2) and its permuta-
tion distribution from step (3).

Gene-set reduction

Significance Analyses of Microarray for Gene-Set Reduction 
proposed by Dinu et al8 was motivated by the fact that not all 
genes in a significant set are contributing to its significance. 
Given a statistically significant association of the gene set S 
with the phenotype, SAM-GSR applies SAM-GS sequen-
tially to subsets of the significant gene set S and identifies a 
core set of genes that mostly contribute to the statistical sig-
nificance of S. In reducing the gene set S, we used the following 
principle: for a pair of genes in S, genes i and j, |di| > |dj|, sug-
gest that gene j belongs to a subset only if gene i belongs to the 
subset. This principle is motivated by the fact that di

2  repre-
sents each gene’s contribution to the test statistic SAM-GS, 
and the core subset must consist of genes with larger contribu-
tions. Significance Analyses of Microarray for Gene-Set 
Reduction gradually partitions the entire set S, into 2 subsets, 
based on the principle above and evaluates their association 
with the phenotype. Significance Analyses of Microarray for 
Gene-Set Reduction can be summarized in a few steps:

1.	 For each of N genes, calculate the statistic d(i) as in SAM 
for an individual gene analyses:

 d i x i x i
s i s
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0

where x i1( )  is the average level of expression for gene i  in the 
case group, whereas x i2 ( )  is the average expression level for 
gene i  in the control group; s i( )  is the pooled standard 
deviation of gene expression over the 2 groups of phenotype; 
s0  is the small positive constant that adjusts for the small 
variability encountered in microarray data.

2.	 For k S= −1 1, ,| | , select the first k genes with largest 
statistic |d| to form a reduced set Rk. Let ck be the 
SAM-GS P value of the complement of Rk in S.

3.	 The reduced set Rk corresponds to the least k such that ck 
is larger than a threshold c, chosen by the analyst.

By removing genes with joint statistical significance, as a set, 
above a threshold, ie, ck > c, we are protected against losing genes 
that are not significant by themselves, but they collectively 
form a set that is significant.8

Results
Data description

We used data from the Swedish Watchful Waiting Cohort 
with up to 30 years of clinical follow-up.10,11 The data are 
nested in a cohort of men with localized prostate cancer diag-
nosed in the Örebro (1997-1994) and South East (1987-
1999) Health Care Regions of Sweden. Eligible patients were 
identified through population-based prostate cancer quality 
databases maintained in these regions, which were described 
in detail in the study by Johansson et al12 The study cohort was 
followed for cancer-specific and all-cause mortality until 
March 1, 2006 through record linkages to the Swedish Death 
Register, which provided date of death or migration. 
Information on causes of death was obtained through a com-
plete review of medical records by a study end point commit-
tee. Deaths were classified as cancer specific when prostate 
cancer was the primary cause of death. Sboner et al were able 
to trace tumor tissue specimens from 92% of all potentially 
eligible cases. Messenger RNA expression of 6100 genes was 
measured on 255 patients, divided into 2 extreme groups: men 
who died of prostate cancer and men who survived more than 
10 years of follow-up without metastases. These 2 groups are 
referred as lethal and indolent patients with prostate cancer. 
Clinical, pathological, and demographical characteristics of 
the 255 patients are given in Table 1. Prostate-specific antigen 
is not available in this cohort, as there were no screening pro-
grams in place at the time.

Biological pathways and gene sets from Molecular 
Signatures Database

An important aspect of microarray data analysis is accessing 
extensive collections of gene sets and properly linking them 
to gene expression data. Microarray studies typically result in 
long lists of genes, not always easy to interpret. Scientists put 
together lists of genes sharing a common biological function, 
ie, biological pathways. The analysis at the gene-set or path-
way level improves on interpretation and reproducibility 
across studies. The Molecular Signatures Database 
(MSigDB)13 available for download from http://www.broad.
mit.edu/gsea is one of the most widely used repositories of 
knowledge expert–derived sets of genes and biological path-
ways. A growing number of databases store sets from gene 
expression signatures reported in the literature. Molecular 
Signatures Database differs from these resources in several 
aspects: (1) the catalog is formatted for gene-set analysis; (2) 
it covers a more diverse and wider range of gene-set resources 
and types, including original research publications and entire 

http://www.broad.mit.edu/gsea
http://www.broad.mit.edu/gsea
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collections of sets derived from specialized resources; (3) 
MSigDB is built both through manual curation and by auto-
matic computational means, whereas other databases empha-
size only one of these approaches; and (4) the collection 
contains the largest number of gene sets overall. For our 
analyses, we used the MSigDB C2 catalog consisting of 1892 
gene sets, representing metabolic and signaling pathways 
from online pathway databases, gene sets from biomedical 
literature including 786 scientific publications, gene sets 

compiled from published mammalian microarray studies, 
and gene sets defined by mining large collections of cancer-
oriented microarray data.

Gene-set reduction results for GS ranging from 
(3,3) to (4,4)
Data analyses started by validating a strong signal in our data 
at the level of lethal vs nonlethal patients with prostate cancer. 
In total, 1351 genes out of 1892 MSigDB gene sets were 

Table 1.  Clinical, pathological, and demographical characteristics of the 255 patients.

Characteristics Counts (%) Extreme groups Fisher exact 
test P value

Odds ratio (95% CI)

Indolent Lethal

Gleason score

  <7 77 (30.2) 52 25  

  7 104 (40.8) 46 58  

  >7 74 (29.0) 8 66 1.14*10−12  

Gleason combinations

  (3,3) 77 (37.5) 52 25  

  (3,4) 71 (34.6) 36 35  

  (4,3) 33 (16) 10 23  

  (4,4) 24 (11.7) 7 17 2.2*10−16  

Age

  ≤70 77 (30.2) 39 38  

  >70 178 (69.8) 67 111 .07 1.7 (0.95-3.02)

Tumor area in biopsy, %

  ≤5 82 (32.2) 54 28  

  >5-25 88 (34.5) 39 49  

  >25-50 45 (17.6) 10 35  

  >50 35 (13.7) 2 33 9.02*10−11  

 N ot assessable 5 (2)  

ERG rearrangement status (fusion)

 N egative (0) 206 (80.8) 96 110  

  Positive (1) 40 (15.7) 5 35 3.64*10−5 6.07 (2.24-20.65)

 N ot assessable 9 (3.5)  

Extreme groups

 L ethal 149 (58.4)  

  Indolent 106 (41.6)  

Survival status

  Alive 71 (27.8)  

  Dead 184 (72.2)  
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found to be differentially expressed between 149 lethal and 
106 nonlethal patients with prostate cancer, using SAM-GS. 
Furthermore, 1246 gene sets were found to be differentially 
expressed between 80 patients with major and minor GSs ≤3 
vs 68 patients with major and minor GS ≥4. Our goal was to 
compare biological pathways and gene sets across various 
combinations of major and minor GS components. There 
might be some overlapping sets differentiating across various 
combinations. However, we did not hypothesize that the same 
groups of genes would differentiate across all the combina-
tions. Therefore, a union of unique core genes from all the 
combinations analyses is reported in Figure 1. The number of 
significant gene sets and core set sizes decreased considerably 
when comparing patients with larger total GS, indicating a 
challenge in discriminating between higher risk groups of 
patients. For example, a comparison of 77 patients with GS of 
(3,3) vs 62 patients with GS of (3,4) gives 369 gene sets sig-
nificant at a P value of .05/4 = .0125. The Bonferroni adjust-
ment corresponds to a total of 4 GS combinations, as described 
in Figure 1. Eight gene sets are differentially expressed between 
GS of (3,4) vs (4,4), and only one gene set differentiates 
between (4,3) and (4,4). The FDR14 is provided as a measure 
of adjustment for testing a large number of genes and is given 
by the expected proportion of false positives among all tests 
called significant. The FDR cutoffs for the 4 combinations are 
0.006, 0.004, 0.27, and 0.95.

Significance Analyses of Microarray for Gene-Set 
Reduction achieved a 91% reduction, averaged over the 4 GS 
combinations, starting from (3,3) and ending with (4,4). The 
369 gene sets differentiating between (3,3) and (3,4) were 

reduced to 332 unique genes shared across the core gene sets. 
The percent reduction was calculated for each gene set as the 
number of genes outside the core set divided by the size of the 
gene set and multiplied by 100. The percent reduction is aver-
aged over the significant gene sets. The overall average per-
cent reduction across combinations ranging from (3,3) to 
(4,4) was 91%. Moving from a less aggressive GSs combina-
tion (3,3) to a more aggressive combination (4,4), 580 unique 
genes were identified.

At the gene set–level analysis, only 1 of the 8 pathways dif-
ferentiating between (3,4) vs (4,4) is represented among the 
369 pathways differentiating between (3,3) vs (3,4). Negative 
log P values according to the 2 analyses are shown in Figure 2. 
The 8 pathways are represented as letters of the alphabet from 
A to H. Similarly, only 1 of the 8 pathways differentiating 
between (3,4) vs (4,4) is represented among the 389 pathways 
differentiating between (3,3) vs (4,3) (Figure 3).

There were 179 gene sets overlapping across the analyses of 
(3,3) vs (3,4) and (3,3) vs (4,3). At the gene level, there were 84 
overlapping genes across the core genes differentiating between 
(3,3) vs (3,4) and (3,3) vs (4,3). These results are presented as 
Supplementary Material.

Gene-set reduction results for GS of (3,4) vs (4,3)

We performed a gene-set analysis and reduction for 62 
patients with GS of (3,4) vs 46 patients with GS of (4,3). In 
total, 32 gene sets were identified at .05 significance level, 
with an FDR value of 0.75. The core sets of the 32 gene sets 
are presented in Table 2.

Figure 1.  Gene-set reduction flowchart. SAM-GSR indicates Significance Analyses of Microarray for Gene-Set Reduction.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117730016
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We compared the results of analysis of GS (3,4) vs (4,3) 
with results of analysis of GS ranging from (3,3) to (4,4). 
Significance Analysis of Microarray for Gene Sets P values of 
the 8 gene sets differentiating between (3,4) and (4,4) are pre-
sented in Table 3.

At the gene set–level analysis, only 1 of the 8 pathways 
differentiating between (3,4) vs (4,4) is represented among 
the 32 pathways differentiating between (3,4) vs (4,3). 
Negative log P values according to the 2 analyses are shown 
in Figure 4. The 8 pathways are represented as letters of the 
alphabet from A to H.

At the gene-level analysis, none of the 13 core genes from 
comparing (3,4) vs (4,4) are represented among the 332 core 
genes comparing (3,3) vs (3,4) or among the 323 core genes 
comparing (3,3) vs (4,3). The 13 core genes are shown in 
Table 4. Boxplots of some of these core gene expressions are 
presented in Figure 5. Although the boxplots show small dif-
ferences, we need to keep in mind that the concept of gene 
set analysis was developed to address small but coordinated 
changes in gene expressions, across the set. The correlations 
across a gene set or biological pathway drive the association 
with the phenotype, even if the changes at the individual 
gene level are small.5,6 Biological process and cellular com-
ponent from Gene Ontology for core genes are presented in 

Table 5. The set consisting of the 13 genes shows a marginal 
association with GS of (3,4) vs (4,3), with a SAM-GS P 
value of .059.

We also performed a global analysis of GSs of 6, 7, and 8. 
The results of the global analysis are shown in Tables 2 and 
3. The global analysis resulted in 66% of the gene sets with P 
values less than or equal to .05 and 25% less than or equal to 
.001. This supports previous knowledge that GS of 7 and 
above are significantly different from GS of 6. However, the 
breakdown by major and minor components is needed to sort 
out the groups of patients where the differences occur. Most 
of the gene sets show significant P values in the global analy-
sis, in agreement with differences occurring at some of the 
major and minor combinations. However, we note that some 
of the gene sets show lack of significance in the global analy-
sis, despite significance in some of the analysis of the major 
and minor combinations. In Table 2, 9 out of 32 gene sets 
that are significantly different between (3,4) and (4,3) are 
not significant in the global analysis of multiple GSs. In 
Table 3, 2 out of 8 gene sets did not reach significance level 
in the global analysis, although they appear different in some 

A BUT_TSA_UP

B CMV_HCMV_TIMECOURSE_14HRS_DN

C FERRANDO_CHEMO_RESPONSE_
PATHWAY

D HDACI_COLON_CUR24HRS_UP

E LEE_CIP_UP

F TSA_PANC50_UP

G UEDA_MOUSE_SCN

H UREACYCLEPATHWAY

Figure 3. N egative log P values for gene sets differentially expressed 

between (3,4) vs (4,4) or (3,3) vs (4,3).
The 8 gene sets differentiating between (3,4) vs (4,4) are denoted as letters of 
alphabet as shown below.

A BUT_TSA_UP

B CMV_HCMV_TIMECOURSE_14HRS_DN

C FERRANDO_CHEMO_RESPONSE_
PATHWAY

D HDACI_COLON_CUR24HRS_UP

E LEE_CIP_UP

F TSA_PANC50_UP

G UEDA_MOUSE_SCN

H UREACYCLEPATHWAY

Figure 2. N egative log P values for gene sets differentially expressed 

between (3,4) vs (4,4) or (3,3) vs (3,4).
The 8 gene sets differentiating between (3,4) vs (4,4) are denoted as letters of 
alphabet as shown below.
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Table 2.  Results of SAM-GS and SAM-GSR analyses for 62 patients with GS of (3,4) vs 46 patients with GS of (4,3), together with P values from a 
global gene set analysis of GSs of 6, 7, and 8.

Gene-set name Gene-set 
size

SAM-GS, P 
value

Global analysis of 
GSs of 6, 7, and 8

SAM-GSR core genes

AGED_MOUSE_HYPOTH_DN 28 .002 .002 DNM1 FSTL1 APOE

CD40PATHWAYa 9 .008 .365 IKBKAP

HSA05110_CHOLERA_INFECTION 23 .011 .027 SEC61A1

HEATSHOCK_YOUNG_UP 9 .016 <.001 ANXA1

NOUZOVA_CPG_METHLTD 22 .018 <.001 EFNA5 EPHA5

VEGF_HUVEC_2HRS_UPa 25 .018 .274 APOE PPY

HYPOPHYSECTOMY_RAT_DN 39 .021 <.001 COL3A1 NPPA

PENG_GLUCOSE_UP 32 .022 <.001 OCLN

LIAN_MYELOID_DIFF_TF 31 .022 .015 BHLHB2 MYB NFKB1

HSA00330_ARGININE_AND_ 25 .023 .212 ARG2

PROLINE_METABOLISMa

ADIPOGENESIS_HMSC_ 6 .025 .285 MYB

CLASS5_UPa

ONE_CARBON_POOL_BY_FOLATE 15 .028 .041 SHMT2

TNFR2PATHWAY 14 .029 .019 IKBKAP

UVC_HIGH_D9_DN 20 .03 .039 NAP1L1

HDACI_COLON_CLUSTER6a 24 .031 .317 NAP1L1

NDKDYNAMINPATHWAYa 15 .032 .112 DNM1

TYPE_III_SECRETION_SYSTEM 14 .034 .011 ATP6V1C1

ANDROGEN_GENES 43 .036 .013 NR1I3

GH_HYPOPHYSECTOMY_RAT_UP 10 .036 .042 COL3A1

ARGININE_AND_PROLINE_ 42 .04 .001 MAOA

METABOLISM

FMLPPATHWAYa 30 .04 .103 NFATC3

HSA00670_ONE_CARBON_ 13 .04 .031 SHMT2

POOL_BY_FOLATE

PHOTOSYNTHESIS 15 .041 .016 ATP6V1C1

HSA00051_FRUCTOSE_AND_ 28 .041 .005 MTMR6

MANNOSE_METABOLISM

KIM_TH_CELLS_UPa 31 .044 .124 ETS1

GCRPATHWAY 16 .044 .001 ANXA1

HEARTFAILURE_ATRIA_UP 20 .045 .051 FKBP8

ALZHEIMERS_INCIPIENT_DN 88 .046 <.001 UROS

GAMMA.UV_FIBRO_UP 25 .046 .005 IL10RB

AGUIRRE_PANCREAS_CHR8 28 .047 .002 HAS2

GH_GHRHR_KO_24HRS_DN 73 .047 .013 IFNAR1

FERRANDO_CHEMO_ 9 .048 .329 DTYMK

RESPONSE_PATHWAYa

Abbreviations: GS, Gleason score; SAM-GS, Significance Analysis of Microarray for Gene Sets; SAM-GSR, Significance Analyses of Microarray for Gene-Set Reduction.
aGene sets not significant in the global analysis of GS of 6, 7, and 8, although significant in the analysis of (3,4) vs (4,3) combinations.
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of the analyses of the major and minor combinations. These 
differences may be caused by the fact that the overall scores 

are collapsed over major and minor combinations and, after 
further validation, may provide some insights into the 
3 + 4 ≠ 4 + 3 prostate cancer hypothesis.

Discussion
Gleason score plays an important role in prostate cancer 
diagnostic and treatment. The current practice indicates 
patients with a total GS of 7 or larger to be at higher risk. It 
has been recognized in the literature that the representation 
of the total GS into its major and minor components plays 
an important role in understanding severity of the disease, 
with patients exhibiting a GS combination of (4,3) being at 
higher risk than those with a GS combination of (3,4). We 
studied differences at the gene and gene-set levels between 
patients with various combinations of major and minor GSs, 
moving from a less aggressive combination of (3,3) and 
toward a more aggressive combination of (4,4). We note that 
groups of patients within this GS range are expected to 
exhibit subtle changes, especially at the gene level. 
Significance Analysis of Microarray for Gene Sets is a pow-
erful method for detecting subtle and coordinated changes in 
microarray gene expression data. Gene-set analysis was 
developed in response to moderate to weak signal at the gene 
level. The key element in gene-set analysis is to take advan-
tage of correlations across genes in a set, therefore boosting 
the analysis power. Significance Analysis of Microarray for 
Gene Sets was found to perform well in comparative studies 
of 7 self-contained gene-set analysis methods.8 One of the 
weaknesses of self-contained methods is that only a few 
genes in a set can drive the significance of the whole set. 
Significance Analysis of Microarray for Gene Set Reduction 
was designed to extract core genes that contribute to 

Table 3.  SAM-GS P values for various distributions of Gleason scores, together with P values from a global gene set analysis of Gleason scores of 
6, 7, and 8.

Gene-set name Gene-set 
size

(3,3) vs 
(3,4)

(3,3) vs 
(4,3)

(3,4) vs 
(4,4)

(4,3) vs 
(4,4)

(3,4) vs 
(4,3)

Global analysis of 
Gleason scores 6, 
7, and 8

BUT_TSA_UP 18 .179 .254 .008 .174 .24 .047

CMV_HCMV_ 36 .047 .046 .007 .069 .574 .005

TIMECOURSE_14HRS_DN

FERRANDO_CHEMO_
RESPONSE_PATHWAY

9 .042 .016 .01 .045 .048 .329

HDACI_COLON_
CUR24HRS_UP

27 .005 .2 .01 .069 .383 .024

LEE_CIP_UP 50 .088 .076 .01 .066 .834 .002

TSA_PANC50_UP 29 .128 .048 .003 .029 .346 .001

UEDA_MOUSE_SCN 58 .05 .001 .005 .228 .15 .011

UREACYCLEPATHWAY 7 .721 .536 .001 .016 .07 .155

Abbreviation: SAM-GS, Significance Analysis of Microarray for Gene Sets.

A BUT_TSA_UP

B CMV_HCMV_TIMECOURSE_14HRS_DN

C FERRANDO_CHEMO_RESPONSE_
PATHWAY

D HDACI_COLON_CUR24HRS_UP

E LEE_CIP_UP

F TSA_PANC50_UP

G UEDA_MOUSE_SCN

H UREACYCLEPATHWAY

Figure 4. N egative log P values for gene sets differentially expressed 

between (3,4) vs (4,4) or (3,4) vs (4,3).
The 8 gene sets differentiating between (3,4) vs (4,4) are denoted as letters of 
alphabet as shown below.
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the significance of the whole set. We reason that these 2 
methods are appropriate for analyzing differences at gene 
and gene-set levels across various combinations of GSs.

Some of the gene sets and pathways identified significant in 
our analyses have been previously found to play various roles in 
cancer progression and identification of novel therapeutic 
strategies. For example, the CD40 pathway differentially 

expressed between GS of (3,4) vs (4,3) has been shown to play 
an immunosuppressive role.15 The CD40 pathway has also 
been shown to play a crucial role in production of cytokines, 
which modulate the function of T lymphocytes in antitumor 
responses.16 TNFR2 pathway was also differentially expressed 
between GS of (3,4) vs (4,3). TNFR2 is a receptor of tumor 
necrosis factor, a multifunctional pro-inflammatory cytokine. 

Figure 5.  Boxplots of core gene expressions among the 13 genes differentiating between GS of (3,4) and GS of (4,4). GS indicates Gleason score.

Table 4.  SAM-GS and SAM-GSR analyses for 62 patients with Gleason score of (3,4) vs 12 patients with Gleason score of (4,4).

Gene-set name Gene-set size P value Core set size Core genes

BUT_TSA_UP 18 .008 1 GADD45A  

CMV_HCMV_ 36 .007 2 ETV1 APEX1

TIMECOURSE_14HRS_DN

FERRANDO_CHEMO_
RESPONSE_PATHWAY

9 .01 1 CDA  

HDACI_COLON_ 27 .01 3 RPN2 ALDOA CCND1

CUR24HRS_UP

LEE_CIP_UP 50 .01 2 ETV1 COL4A2

TSA_PANC50_UP 29 .003 2 BIK NOTCH3

UEDA_MOUSE_SCN 58 .005 2 GADD45A SMPDL3A

UREACYCLEPATHWAY 7 .001 2 CPS1 ASL

Abbreviations: SAM-GS, Significance Analysis of Microarray for Gene Sets; SAM-GSR, Significance Analyses of Microarray for Gene-Set Reduction.
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Members of the tumor necrosis factor receptor superfamily can 
send both survival and death signals to cells.17

Urea cycle pathway was differentially expressed between GS 
of (3,4) vs (4,4), P value of .001, and GS of (4,3) vs (4,4), P 
value of .016; marginally significant for GS of (3,4) vs (4,3), P 
value of .07; and not significant for GS of (3,3) vs (3,4), P value 
of .721, or (3,3) vs (4,3), P value of .536. In urea cycle pathway, 
the enzyme ornithine decarboxylase converts the metabolite 
ornithine to putrescine. Ornithine decarboxylase has previously 
been found as overexpressed in prostate cancer18 and is the tar-
get of the chemotherapeutic agent difluoromethylornithine.19
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