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Abstract: The increasing ubiquity of smartphone data, with greater spatial and temporal coverage
than achieved by traditional study designs, have the potential to provide insight into habitual
physical activity patterns. This study implements and evaluates the utility of both K-means clustering
and agglomerative hierarchical clustering methods in identifying weekly and yearlong physical
activity behaviour trends. Characterising the demographics and choice of activity type within the
identified clusters of behaviour. Across all seven clusters of seasonal activity behaviour identified,
daylight saving was shown to play a key role in influencing behaviour, with increased activity in
summer months. Investigation into weekly behaviours identified six clusters with varied roles, of
weekday versus weekend, on the likelihood of meeting physical activity guidelines. Preferred type
of physical activity likewise varied between clusters, with gender and age strongly associated with
cluster membership. Key relationships are identified between weekly clusters and seasonal activity
behaviour clusters, demonstrating how short-term behaviours contribute to longer-term activity
patterns. Utilising unsupervised machine learning, this study demonstrates how the volume and
richness of secondary app data can allow us to move away from aggregate measures of physical
activity to better understand temporal variations in habitual physical activity behaviour.

Keywords: physical activity; unsupervised machine learning; smartphone; secondary data; cluster
analysis; data science; big data; self-recorded health data

1. Introduction

Physical inactivity is a global health problem, with 1 in 4 adults not meeting World
Health Organisation (WHO) physical activity guidance [1]. In their global action plan on
physical activity, the WHO has set a goal of a 15% relative reduction in physical inactivity
by 2030, recommending a whole systems approach [1]. A key step in tackling physical
inactivity is understanding how different patterns in activity behaviour have different
impacts on health [2,3]. In the age of smartphones and wearables, the volume and ubiquity
of rich individual level physical activity data has never been greater. These data have the
potential to provide new insight into physical activity behaviours at both the individual
and population level [4].

To date, most of the evidence base regarding physical activity behaviours has come
from primary studies; studies which, following a method determined by the investigators,
recruit participants and collect specific predetermined self-report or objectively recorded
data over a set time period. Primary data collection is often limited by funding and
participant burden to small sample sizes and short data collection periods [5,6]. Moreover,
this participant recruitment and short-term monitoring has the potential to result in self-
selection biases or behaviour modification by the participants, known as the Hawthorne
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effect or reactivity [7,8]. For instance participants tend to be more active during the
initial data collection periods than later in the study [9]. These shortcomings potentially
limit insights into habitual and longer-term physical activity behaviours [5]. Participant
recruitment also frequently necessitates participants are from the same locality, restricting
generalisability of identified behaviours to the wider population [10].

These limitations may play a role in the mixed evidence of seasonal (yearlong) and
weekly variations in physical activity behaviour [11–17]. Few studies to date have looked
at physical activity behaviours using daily measures over an extended time period or
extensive spatial area [5]. However, smartphone and wearable device data provides the
opportunity to unobtrusively achieve this repeated monitoring [18] and reduce partic-
ipant burden [14,19]. Whilst simultaneously offering the insights that researchers are
trying to gain from primary studies. For example, utilising the smartphone data, of over
700,000 users across 111 countries, Althoff et al. observed higher activity, as measured
by step count, on weekdays during commuting times and higher levels of activity on
weekend afternoons in walkable cities [20]. Furthermore, analysis of data from Strava,
a popular app where users record cycling and running activity, has demonstrated sea-
sonal and hourly variations in commuting and recreational physical activity across several
countries [21–24]. Many of the studies utilising smartphone data use secondary data [25],
data originally collected for another purpose. These secondary data studies may therefore
capture those who do not usually participate in recruited studies and remove the risk of
the Hawthorne effect altering participant behaviour [26]. Use of secondary smartphone
app data requires careful ethical and data security consideration [27,28]. Additionally the
representativeness of any smartphone app user sample must be ascertained from user
provided demographic data [26,29]. Still, if used appropriately, the growing market of
fitness and health monitoring apps has the potential to revolutionise how we study physical
activity behaviour [26].

The volume and dimensionality of individual activity data from smartphones provides
methodological opportunities commonly used by data scientists exploring ’big data’ but
not yet readily utilised in physical activity pattern analysis [26,28]. Machine learning
classification methods are increasingly used to identify activity behaviours from raw
accelerometery data, for example identifying periods of walking, running or sedentary
behaviour [30–32]. Yet these methods can also be applied to detect patterns in activity
behaviour themselves. Utilising k-means clustering for example, McConnell et al. identify
ten physical activity pattern clusters in data collected from more than 48,000 participants [9].
This unsupervised machine learning approach is advantageous as it allows patterns of
activity behaviour to be characterised without relying on prior assumptions [9,33,34].
Moreover, the volume of data these methods afford means it is possible to quantify day-to-
day trends in behaviour and longer-term patterns at the individual level, rather than relying
on aggregate activity measures. Though these smartphone data may lend themselves to
machine learning approaches, care needs to be taken to identify the most suitable clustering
approach to identify the physical activity patterns of interest [35].

The aims of this research are two-fold, first to implement two unsupervised methods
to provide a robust classification for both annual and weekly physical activity behaviour
patterns, as measured by step count. Second, to characterise the demographic and other
behaviour characteristics of the identified clusters of physical activity behaviour.

2. Materials and Methods
2.1. Data

This study utilises smartphone app data provided by Active Inspiration Ltd from
their commercial app “Bounts”, which can be accessed by application to the UK Consumer
Data Research Centre [36]. The app incentivised physical activity by rewarding users
with points for higher activity levels. Accumulated points could be exchanged for prizes,
such as gift vouchers, prize draw entries, or merchandise [29]. Data are provided as a
daily breakdown of different activity types, with corresponding metrics including activity
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duration, steps taken and speed. Data are linked with a unique pseudonymised ID to
user information including year of birth, gender, and postcode district, where the user
chose to enter this information into the app. Cleaned activity data for 30,804 participants
who used the Bounts app in 2016 were utilised. The full data cleaning process has been
outlined in Pontin et al. [29]. In brief, only users with seven or more days of recorded
activity and who entered their gender and age into the app were included in the final
30,804 users [29]. Improbably fast or long activities were also removed. Previous analysis
found that although app users were more likely to be female, the Bounts population has
a similar socioeconomic profile to that reported for the whole UK population in the 2011
UK Census [29].

Data Preparation

Analysis focused on step count as this was the most widely collected metric across
activities and captures both app usage and physical activity volume. Moreover, daily step
counts have been established as an accessible metric to monitor and set physical activity
goals [37]. For each user the number of steps they recorded on each day of 2016 was
calculated, with 0 indicating a day where the participant did not record any activity. Step
count was capped at 30,000, with daily step counts of 30,000 and above treated equally
for the purposes of clustering. This was to ensure variations in the step counts of those
who were less active were identified and to ensure that clustering did not only distinguish
between the highly active user minority and other users. We investigated patterns in
physical activity behaviour within the 30,804 participants both across the year of recorded
activity (2016), to detect seasonal changes, and across the weeks of activity to identify
commuting and leisure related activity patterns. Users on average recorded 34 weeks
of activity across 2016 [29]. To categorise weekly activity behaviour patterns, each week
of activity recorded by each user was treated as a separate entity, resulting in 1,059,201
weeks of activity recorded by the 30,804 users (23,933 female, 6871 male) being used in
the clustering analysis. Then, 18.6% of activities did not have an associated step count,
for instance some gym activities, swimming, and cycling, and activities recorded on some
apps, such as Strava, that record distance but not step count if using a phone tracker. These
activities without step count were explored further in the cluster interpretation.

All statistical analysis was conducted in Python 3.8. The unsupervised clustering algo-
rithms were implemented using the scikit-learn open-source machine learning library [38].

2.2. Clustering Algorithm Choice

The first aim was to investigate the use of a range of unsupervised clustering methods,
compare model classifications and assess real-world interpretability. Commonly when
evaluating clustering method suitability, algorithms across the different method types
are compared, i.e., density, partitioning, and hierarchical methods [30,35]. Algorithm
choice was based on those techniques most frequently found in the literature [35]. The
agglomerative (hierarchical) clustering and k-means (partitioning) clustering methods,
outlined in Table 1, were applied to both the annual and weekly data.
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Table 1. Clustering method description.

Clustering
Algorithm

Class of
Algorithm Example of Application to Seasonal Physical Activity Data

k-means Partitioning

Yearly activity behaviours are partitioned into a predefined number of
clusters, minimising within cluster difference (within cluster sum of
squares) and maximising between cluster difference. Initially randomly
positioned centroids are used and each year of activity behaviour assigned
to its nearest centroid, the mean of the centroids is calculated and the
process is iteratively repeated until the centroids do not change [30]. These
are then the defined clusters.

Agglomerative Hierarchical/
linkage

Initially each unique year of activity behaviour is treated as its own cluster,
the most similar clusters are then grouped together to form larger clusters.
The point at which we chose to stop cluster merging and examine the
remaining cluster is determined using a dendrogram.

2.3. Model Specification

K-means clustering was applied to the yearly and weekly steps data, respectively.
The number of clusters was determined using the elbow method, silhouette score, and
sensitivity analysis. The elbow method determines the optimal trade-off between number
of clusters and minimisation of the value of inertia (within-cluster sum-of-squares), a
measure of internal cluster coherence [39]. Alternately silhouette analysis looks to find the
trade-off between number of clusters and the maximum average silhouette score, a measure
of how similar an object is to its own cluster compared to other clusters [39]. Sensitivity
analysis around the optimal number of clusters was used to ensure behaviour patterns
were not missed or duplicated between clusters. Agglomerative clustering (hierarchical)
was also applied to the yearly steps data and a dendrogram produced. Due to the size
of the weekly step data, the data were split into 20 random samples (>50,000 weeks of
activity) and the clustering repeated on 5 of the samples the results of the clustering were
then compared across samples. In each instance, the number of clusters was determined
from observation of the dendrogram, again to minimise cluster number but maximise
inter cluster variance [39]. Following interpretation of the clusters, cluster names were
assigned, designed to best capture level and seasonal or weekly patterns of physical
activity behaviour.

2.4. Model Evaluation

Model clustering was compared using the adjusted rand index (ARI) and mutual
information score (MI). ARI measures the similarity of cluster assignments ignoring the
permutations of cluster labelling and correcting for chance, defined as:
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where nij, ai and bj are values from the contingency table above.
MI measures the agreement between clustering assignments, whilst also disregarding

labelling permutations with adjusted mutual information (AMI) correcting for agreement
due to chance [35,40], defined by the following equations:
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MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

|Ui ∩Vj|
N

log
N|Ui ∩Vj|
|Ui||Vj|

(2)

AMI(U, V) =
MI(U, V)− E(MI(U, V))

avg(H(U), H(V))− E(MI(U, V))
(3)

For the weekly activity behaviour MI, AMI, and ARI were calculated between each
sample and the k-means clustering classifications, average MI, AMI, and ARI scores were
then calculated.

2.5. Cluster Characterisation

Visual interpretation of the temporal activity patterns in the defined clusters was used
to characterise the patterns observed. For weekly activity behaviours a single user may
have recorded activity that falls into several of the different classified weekly patterns.
Thus, for each user the proportion of weeks that fell into each cluster was calculated from
the total number of weeks that user recorded activity. Demographic characteristics of
the clusters were calculated and compared between and across clustering methods. A
chi-squared test was used to determine if the gender distribution of each cluster was equal
or whether specific clusters had a higher number of male or female users. Additional
characteristics of activity behaviour including preferred activity type and meeting of WHO
physical activity guidelines, of 150 min of moderate to vigorous physical activity (MVPA),
were also compared across weekly behaviour clusters. Some devices use different names
for the same activity type, therefore such activities were grouped as outlined by Pontin et
al. [29]. For example, checking into a gym, activities recorded using gym equipment and
‘cardio’ workout were all grouped under ‘cardio & workout’ and ‘biking’ was categorised
under ‘cycling’. ‘Meps’ were MYZONE Effort Points calculated by Myzone fitness trackers
based on activity intensity rather than defining the type of activity.

2.6. Cluster Interrelation

For each app user the proportion of weeks recorded belonging to each cluster of
week behaviour was calculated and aligned with the individuals’ yearly cluster behaviour.
Relationships between cluster membership were visualised to relate weekly behaviour
patterns to overall seasonal physical activity behaviours.

3. Results
3.1. K-Means Clustering Model Specification

The number of clusters was determined by visual inspection of the elbow and sil-
houette plots for the seasonal (Figures 1 and 2) and weekly (Figures 3 and 4) clustering,
respectively. Results of the sensitivity analysis can be found in Figures A1 and A2 and
were used to confirm number of clusters. For physical activity behaviour across the year
seven clusters were determined as the optimal number that most parsimoniously captured
variation in physical activity behaviours. Similarly, for weekly physical activity behaviour
six clusters were determined to be optimal.
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Figure 1. Elbow plot for determining the number of yearlong step behaviour clusters.

Figure 2. Silhouette analysis for k-means clustering of yearlong step behaviour.

Figure 3. Elbow plot for determining the number of weekly step behaviour clusters.



Int. J. Environ. Res. Public Health 2021, 18, 11476 7 of 27

Figure 4. Silhouette analysis for k-means clustering of weekly step behaviour.

3.2. Agglomerative Hierarchical Clustering Model Specification

For the agglomerative clustering models, the number of clusters was determined
by inspection of the resulting dendrogram, to identify the maximum distance between
clusters whilst also capturing significant differences in physical activity behaviour. The
resulting dendrogram for seasonal behaviour clusters is depicted in Figure 5, indicating
seven clusters (coloured) perpendicular to the intersecting black line. Dendrograms for the
agglomerative clustering on the five samples of weekly activity behaviour are displayed in
Figure A3.

Figure 5. Dendrogram of agglomerative clustering of yearlong activity behaviours, colour indicates
final cluster membership.

3.3. Modelled Behaviours

Due to good agreement between the two clustering methods, we focus on the k-means
clusters for brevity in Sections 3.3.1 and 3.3.2 rather than presenting both. Agreement
between the two methodologies is further explored in the model evaluation Section 3.4.

3.3.1. Seasonal Physical Activity Behaviour

Average daily step count for the assigned k-means clusters is illustrated in Figure 6.
As previously reported, UK daylight saving beginning and ending (weeks 12 and 43) have
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resulted in a misassignment of step count, resulting in an inaccurate peak in March and
dip in October [29]. Seasonal patterns in all clusters of activity behaviours are seen, with
an increase in step activity following daylight saving beginning, corresponding to lighter
evenings and a drop in activity when daylight saving ends, corresponding to less daylight
hours for exercise. Cyclical weekly variation is also seen within the clusters across the
year. Equally all step activity sees a slight drop off during summer months. Within both
agglomerative clustering and k-means defined clusters similar variations in step intensity
and behaviour are seen. There is an apparent highly active cluster with consistently high step
counts throughout the year. Several clusters follow this same yearlong trend in activity
as the highly active cluster but at varying levels of step count intensity. Around daylight
saving beginning we see the emergence of three clusters of users who start using the app
at this time. Within these three clusters there are three distinct behaviours; those that start
using the app and follow similar seasonal patterns to those who started using the app on
or before the start of the year, those who are increasingly motivated and those who start
using the app, initially are motivated however seemingly use motivation with falling step
count as the year progresses. Finally, an inactive user cluster is observed whose step count is
consistent low throughout the year. For both clustering methods this low step count cluster,
with the highest number of users, was further investigated to look at non-step activities.

3.3.2. Weekly Physical Activity Behaviour

The number of different weekly cluster patterns recorded by users across the year
was 3.8, i.e., users on average recorded almost four different patterns of weekly activity
behaviour across the year. Figure 7 shows these weekly physical activity behaviour clusters
which follow three patterns. First are those whose step count is consistent throughout the
week at either a high, moderate, or low step count threshold. Second are the weekday active;
either averaging below (moderately active) or above (active) 10,000 steps a day. Finally,
we see the ‘weekend warriors’ who have a much higher step count on the weekend than
weekdays. The less active clusters (with a lower step count) are the larger clusters, i.e.,
the more common activity behaviours, with the consistently highly active cluster having the
lowest membership.

Figure 6. Average daily step counts of yearlong physical activity behaviour clusters (N = number of users assigned to
each cluster).
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Figure 7. Average daily step counts for k-means weekly physical activity behaviour clusters (N = number of weeks of
behaviour assigned to each cluster).

3.4. Model Evaluation

Cluster agreement and sizes, as illustrated in Figure 8, are similar between the ag-
glomerative and k-means methods when classifying yearlong physical activity behaviour.
The MRI score, reported in Table 2, indicates a high level of agreement between the cluster
assignments of the agglomerative and k-means clustering analysis for yearlong activity
behaviour, therefore there is a high similarity between the clustering methods. Even af-
ter adjusting for chance (AMI) and effectively controlling against increased MI due to
a larger number of clusters, this remains relatively high for yearlong activity behaviour.
Similarly, ARI, measuring the similarity of the yearlong cluster assignments, is also fairly
high. Figure 8 demonstrates that most of the disagreement between clustering methods for
yearlong activity behaviour is associated with the clusters we have labelled motivate and
demotivated ‘spring starter’ user behaviours, alongside some variation in classification
based on where activity intensity is ‘cut’. The full confusion matrix of the association
between the clustering methods is available in Figure A4.

Figure 8. Sankey diagram of cluster agreement between k-means and agglomerative clustering methods for yearlong
physical activity behaviour. The thickness the line the indicates the number of years of behaviour assigned to both the
corresponding k-means and agglomerative clusters.
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Table 2. Model evaluation metrics for yearlong physical activity step behaviours.

Validation Metric Seasonal Physical Activity
Behaviour Clusters

Weekly Physical Activity
Behaviour Clusters

Mutual Information score (MI) 0.992 0.879

Adjusted mutual information score (AMI) 0.569 0.523

Adjusted Rand Index (ARI) 0.577 0.413

In terms of weekly physical activity behaviour, the MI and AMI are still fairly high
indicating a good level of agreement between the k-means approach and the agglomerative
clustering on the samples of weekly activity behaviour (Table 2). ARI however is no very
high suggesting similarity of assignments between the two methods is not as good as for
yearlong behaviour. However, some difference is expected due to applying agglomerative
clustering to only a sample versus the k-means clustering being applied to the full dataset.

4. Cluster Characterisation

There was no significant difference in demographic distribution in the yearlong or
weekly clusters as defined by the two clustering methods, hence only the cluster characteri-
sation for the k-means clusters are presented.

4.1. Cluster Demographics
4.1.1. Yearlong Physical Activity Behaviour Cluster Demographics

Every cluster of yearlong activity behaviour contains behaviours recorded by both
male and female users, as shown in Table 3. However, male users are more likely to be
clustered in the inactive and highly active yearlong clusters, whilst female users were more
likely to be moderately active through the year or spring starters who either increased activity
throughout the year or became demotivated. Gender is not significantly associated with
belonging to the active spring starters or active yearlong clusters.

Table 3. Demographic characteristics of k-means yearlong physical activity behaviour clusters. Bold
font indicates a statistically significant associating, significantly higher proportions are shaded grey.

Proportion of

Cluster Description Number of Users Female
Users

Male
Users

p Mean Age

Active spring starter 2679 8.67 8.81 0.730 41.46
Active yearlong 2562 8.28 8.44 0.686 41.48

Demotivated spring starter 4671 15.91 12.57 <0.05 38.49
Highly active yearlong 1132 3.31 4.93 <0.05 42.21

Inactive 10,498 32.21 40.61 <0.05 37.81
Moderately active yearlong 3947 13.32 11.06 <0.05 40.22

Motivated spring starter 5315 18.31 13.58 <0.05 39.74

In Table 3, we can see the average age of the clusters varies slightly. However, when
we visualise the age distributions in the kernel density estimate plot in Figure 9 we can
see different activity behaviours are associated with different age profiles. The inactive
cluster seems to be indeterminate of age, with the age distribution similar to that of the age
distribution of all users. Notably, the highly active cluster has the oldest average age and age
distribution profile, suggesting the app may appeal to active older users, reflected in the
active yearlong cluster. Younger age distributions are associated with the three spring starter
clusters, with the youngest age distribution of these three clusters seemingly associated
with motivated behaviour.

4.1.2. Weekly Cluster Demographics

In Table 4, the proportion of weeks of activity recorded by men classified as consistent
low activity and consistently highly active was significantly higher than the proportion of
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weeks recorded by women in these cluster. Conversely, there was a significantly higher
proportion of weeks of activity recorded by women than men in the consistently somewhat
active and weekday active clusters.

Table 4. Gender and activity behaviour characteristics of k-means weekly physical activity behaviour
clusters. Bold font indicates a statistically significant associating, significantly higher proportions are
shaded grey.

Proportion of Weeks
Recorded by

Cluster Description Number of
User Weeks Female

Users
Male
Users

p

Active Weekend Warriors 140,400 13.28 13.16 0.160
Consistently highly active 61,568 5.25 7.8 <0.001

Consistently somewhat active 269,056 26.83 20.37 <0.001
Consistent Low Activity 251,160 21.88 30.18 <0.001

Weekday active 133,167 12.47 12.93 <0.001
Weekday moderately active 203,850 20.29 15.56 <0.001

Figure 9. Age distribution of users in yearlong physical activity behaviour clusters (grey: k-means,
red: agglomerative clustering).
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4.2. Further Physical Activity Behaviours of the Clusters
4.2.1. Physical Activity Behaviour of Yearlong Clusters

Preference for different types of physical activity varied by cluster (Figure 10). As
previously identified, ‘move’ activities are the most commonly recorded [29]. The inactive
cluster, as defined by step count, subsequently has a higher percentage of cycling and
gym activities, typically non-step related activities. Equally, the proportion of activities
associated with a higher step count, such as running and walking activities, is highest
in the highly active yearlong group. The moderately active, active, and highly active
yearlong behaviour clusters show a trend of increased activity type diversity the more
active the cluster.

As previously identified, not all activities have an associated step-count, dependent on
the app used to record the activity and activity type. Overall, 49.7% of activities recorded
by the inactive cluster had no step count, compared to just 14.4% of activities recorded by
users in other clusters. Therefore, we also looked at activity duration as a metric for activity
volume by comparing activity duration between step count defined yearlong clusters and
disaggregating the inactive cluster based on availability of step count data (Figure A5). All
clusters showed a similar seasonal pattern in activity duration as seen in the step count.
The inactive cluster with step count data showed a similar pattern in activity duration to
the other clusters, but activity duration was still diminished. The inactive cluster members
with no step-count data showed a similar activity duration behaviour to the inactive cluster
members with a step count. However, there was more variation in mean activity duration
across the cycles suggesting intermittent activity recording, e.g., recording a cycle ride a
couple of times a week.

4.2.2. Physical Activity Behaviour of Weekly Clusters

Table 5 depicts the number of activities and activity diversity of the clustered weekly
step behaviour of the Bounts app users. Generally, increased activity diversity and number
of activities a week is associated with a higher number of active minutes on average and,
therefore, a greater likelihood of meeting physical activity guidelines. The consistently
highly active week cluster has the highest average number of weekly activities and diversity
in activity (average number of different activity types). This corresponds to this cluster also
recording on average the most active minutes a week and therefore being more likely to
meet the 150-min physical activity guideline. Conversely, the consistently low active cluster
has the lowest activity diversity and number of activities undertaken a week. However,
the consistently low activity weekly behaviour cluster record on average a higher number
of active minutes than the somewhat active and weekday moderately active clusters,
corresponding to a higher proportion of weeks recorded by the consistently low activity
cluster meeting the WHO physical activity guideline. As previously mentioned, this is
probably associated with a sub-group of the low active cluster recording activities without
an associated step count. Differences between the active weekend warrior and weekday active
and moderately active clusters in meeting physical activity guidelines seems to be based on
overall difference in average step count and not on the number of activities recorded or
diversity of activities undertaken.
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Figure 10. Proportion of activities recorded by each cluster by activity type.
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Table 5. Physical activity characteristics of weekly physical activity behaviour clusters.

Cluster Description
Average Number of

Activities Undertaken
per Week

Average Number of
Different Activity
Types Undertaken

Average Active
Minutes per Week

Proportion of Cluster
Weeks Meeting MVPA

Guidelines *

Active Weekend Warriors 9.46 1.4 107.7 19.9%

Consistently highly active 17.5 1.9 303.8 42.3%

Consistently somewhat active 7.3 1.2 59.0 11.0%

Consistent Low Activity 4.2 1.2 145.6 28.1%

Weekday active 11.2 1.5 137.2 23.5%

Weekday moderately active 8.4 1.3 72.6 13.7%
* 150 min of moderate to vigorous physical activity as recommended by the WHO.

Figure 11 depicts the proportion of weeks each cluster meets the physical activity
guideline, disaggregated by gender. Male users across all clusters are more likely to
meet the physical activity guidelines, with gender often playing a larger role than cluster
membership in determining meeting of the physical activity guidelines. For example,
consistently somewhat active male cluster members are more likely to meet physical activity
guidelines than women in all clusters bar the consistently highly active cluster.

Figure 11. Proportion of weeks in the weekly step behaviour clusters meeting the WHO 150 min(*)
of MVPA guideline, by gender.

4.3. Cluster Interactions

Figure 12 illustrates how the individual weekly behaviours recorded by users cumu-
latively contribute to the annual physical activity behaviour classification. For instance,
yearlong inactive users have a high proportion of consistent low activity weeks. The increas-
ingly motivated spring starters and demotivated spring starters both have a proportion of
somewhat active weeks compared to those classified as active spring starters, where being active
or moderately active during the week is the most common weekly physical activity behaviour.
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Figure 12. Proportion of user’s weekly physical activitybehaviour clusters contributing to their annual physical activity
behaviour classification.

5. Discussion

Through the use of secondary smartphone app data we have been able to identify
seasonal and weekly clusters of daily activity behaviour in a long temporal dataset. Using
step-counts as a proxy for physical activity it has been possible to detect seven unique
yearlong behaviours and six distinct weekly patterns of physical activity behaviour in a
group of over 30,000 smartphone users spread across the UK.

Differences between yearlong physical activity behaviour clusters can be attributed
to differences in step count intensity (the moderately active, active and highlight active
clusters), as well as a subset of users (32.4%) showing either motivated or demotivated
activity behaviours. Female users are more likely to be in these motivated or demotivated
clusters than their male counterparts, and the age distribution of these clusters tends
towards younger users, whilst male and old users are more likely to be in the highly active
yearlong clusters. These findings are in line with Guertler et al. who report reduced non-
usage attrition risk in male and older users of a smartphone app to encourage fitness [41].
Additionally, we can link these gendered and age differences to differences in activity type
choice between clustered users. Generally, wider variety and splitting of activity choice
between different types is in line with the more active cluster membership, mirroring
the likelihood of male users to undertake a wide variety of activities, as previously dis-
cussed by Pontin et al. [29]. Future sociodemographic stratification of yearlong activity
behaviours is warranted to further understand the role seasonality plays in observed
physical activity behaviour.

Within all the yearlong activity clusters, bar the demotivated cluster, we see an increase
in physical activity with increasing daylight over the summer months, in line with previous
findings regarding daylight saving by Pontin et al. [29]. However, there is a slight dip in
activity in July and August. A July dip within overall higher levels of physical activity
in the summer months has previously been identified in studies using pedometer [19],
accelerometer [42], and smartphone app data analysis [22] to capture physical activity
behaviour. All these studies also have the advantage of continual or high frequency repeat
physical activity monitoring, allowing this behaviour to be identified. An explanation for
this July dip has been attributed to a potential increase in days off from work during the
July months or warmer temperatures in the Northern hemisphere discouraging individuals
from being physically active [19]. Childcare and sport facility availability may also play a
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role with this time period corresponding to school holidays in the UK [43]. Identification of
seasonal behaviour in physical activity in children has driven policy to increase activity over
the summer holidays [44,45], however further investigation is required to identify what is
driving these behaviours in adults to address this seasonal reduction in activity behaviour.

Despite evidenced influence of time of year and daylight on physical activity [46,47],
when investigating activity behaviours seasonality is often controlled for. Limited availabil-
ity of habitual data due to short data collection periods is often the driver for needing to
control for seasonality. However, secondary smartphone app data present a cost-effective
method to passively collect long-term physical activity data with minimal participant
burden [48]. Allowing further exploration of these seasonal patterns to provide useful
insight into more complex drivers of activity behaviour. Paired with detailed spatial data
they also provide the opportunity to guide targeted local policy intervention to encourage
physical activity.

Previous analysis of weekly behaviour in the Bounts dataset has only looked at total
number of activities recorded by all users across the year [29]. By controlling for week-
to-week variation and calculating the absolute deviation in the number of daily activities
recorded from the weekly average across all users, weekends were lower in the number
of activities recorded and had lower activity counts compared to weekdays when activity
levels peaked on a Tuesday [29]. Though this is a commonly applied method, through
the step-count clustering analysis we illustrate this is not a universal behaviour. Whilst
some users do follow a mid-week peak step count and weekend low steps count series of
behaviour (weekday active and moderately active clusters) a substantial proportion (54.9%)
of user recorded weeks follow a consistent different pattern of behaviour across the week
at different activity intensities and 12.8% are weekend warriors with higher activity on
the weekends.

A low proportion of weekend warriors is in line with other studies, which classed be-
tween 1% to 7% of individuals as weekend warriors [13,15,46,48]. Previously we identified
that app users were more likely to be from areas with a lower socioeconomic status [29],
therefore this low proportion of weekend warrior users might be attributed to the socio-
demographic makeup of the users. Shuval et al. identify higher-income individuals were
more likely to be weekend warrior and meet the physical activity guidelines over a shorter
time period [16]. Though we do not see a significant difference in the percentage of weeks
classified as ‘weekend warriors’ by gender the evidence around the role of gender in week-
end warrior behaviours remains mixed. Several studies have identified men were more
likely to be classified as weekend warriors than women [15,49], however many studies do
not explore the role of gender at all [50,51].

Pontin et al. previously have discussed the potential reasons for a low proportion
of Bounts users meeting of the MVPA guidance, including the high proportion of female
users who despite moving throughout the day often record activity that does not meet the
threshold of MVPA [29]. By exploring the profiles of weekly behaviour we can see that
weekly behaviour patterns play a prominent role in meeting MVPA guidance. In line with
other research we see that ’weekend warriors’ engage in around half the amount of MVPA
than consistently highly active individuals [3]. Nonetheless, gender is seemingly a stronger
indication of meeting physical activity guidance than cluster membership, with male users
consistently more likely to meet the guidance than female users across all clusters. Male
users are also more likely to be in the more active weekly clusters in the first place. As
previously reported, male users record both a higher average number of activities a day
and a higher average number of different activities whilst using the app [29]. Across
the week increased activity diversity and activity frequency is associated with the more
active clusters and an increased number of active minutes. Increased activity variety has
previously been associated with increased likelihood of meeting the WHO physical activity
guidelines and increased energy expenditure in intervention studies [52,53]. However, the
main body of evidence around activity variety and physical activity is in childhood not
adult populations, reflected in the UK Chief Medical Officers’ Physical Activity Guidelines
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which recommend variety of activity for 1–18 year olds but not in adult or older adult
populations [54]. Future research outside of an intervention setting needs to be completed
into the role of activity type variety in meeting activity guidance.

By using a longer time period than traditional study designs we show that users do
not consistently follow the same weekly behaviour patterns, recording weeks of activity
that fall into several different classifications. This intra-individual variation suggests the
typical seven-day data collection period will not capture the full variety of an individual’s
activity behaviour [5]. Therefore, a longer time period of physical activity monitoring
is needed to capture habitual behaviour. Determining when and why these changes in
weekly behaviour occur warrants further investigation and could drive both development
of just-in-time intra-individual interventions to increase physical activity and wider inter-
individual driven policy interventions. Moreover, linking weekly behavioural pattern
combinations to overall annual activity patterns helps to explain these further. For instance,
being a weekend warrior seemingly does not contribute to longer term patterns of higher
levels of activity. Whereas those who are active mid-week seemingly have a more consistent
activity behaviour across the year. To our knowledge this is the first study to relate weekly
physical activity behaviours to annual physical activity behaviour.

Using unsupervised clustering methods to identify patterns in step count we have not
relied on prior assumptions to classify these behaviours [9]. Meyer et al. have previously
identified patterns of use of activity trackers [55]. However, they relied upon a qualitative
approach to detect patterns in the data [55]. Though the use of expertise is useful in
defining patterns, this is only feasible in a smaller sample size and an inability to scale this
analysis to a larger sample size limits wider generalisability to the general population [55].
Furthermore, clustering analysis is scalable and specific to the populations of interest.

Compared to previous clustering and behavioural pattern identification approaches
our study is advantageous in comparing day-to-day variation in activity, using daily step
counts rather than aggregate measures. Despite detailed individual level data obtained
from smartphones it is commonplace that activity behaviours are aggregated and then
averaged out, losing the detail or variety in observed behaviours. For instance, Althoff
et al. aggregate behaviour to city level and then take the average step count at 30 min
intervals [20]. Whilst these aggregate approaches are useful for population comparisons,
they may well mask behaviours of population subsets which need to be understood
to target policy to increase physical activity. Similarly, in the aforementioned study by
McConnell et al. where they identified ten physical activity behaviours from smartphone
app data, they use aggregate measures, such as percentage of time spent active to define
the clusters of behaviour [9]. The temporal richness of these data is a particular advantage
of using smartphone app data. Appropriate method choices need to be made to best make
use of this detail physical activity behaviour information. A limitation of using step counts,
despite being the most common metric, to inform the cluster names is that some activities
do not have an associated step-count. Therefore, individuals that cycle or swim, activities
that are more popular in male users [29], may be classed as inactive despite being more
likely to meet physical activity guidelines. Future studies would benefit from deriving a
composite measure of activity, such as METS, to better incorporate different activity types
into the clustering.

The similarity between the partitioning and hierarchical clustering methods, as well
as their identification of patterns identified in other settings, indicates they are suitable
methods for classifying physical activity behaviours in similar datasets in the future.
Nevertheless, these methods are not without their limitations. K-means clustering tends
to produce uniform cluster sizes [56]. As we can see in the sizes of both the weekly and
yearly clusters, unsurprisingly behaviours are not equally distributed throughout the
population. Possibly explaining the disagreement in clustering method assignment to the
motivated and demotivate spring starter clusters. Therefore, using k-means may mask
smaller clusters of behaviour. In the future, studies could use different cluster initiation
techniques to better detect the smaller cluster centroids [57]. Data volume limited the
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ability to apply agglomerative clustering to the weekly physical activity behaviour data as
the analysis was costly in terms of computational memory and time. Though we addressed
this via repeat agglomerative clustering on subset data and subsequent identification of
patterns in overall dataset. This issue can also be addressed by use of high-performance
computing services or cloud computing [26], however these have associated monetary
costs and skill requirements. Moreover, data security of any computing service used must
be considered. Thus, these clustering method limitations are important with respect to
method selection.

We only included investigation of hierarchical and partitioning methods as density
methods, for instance density-based spatial clustering of applications with noise (DBSCAN),
were expected to perform badly due to the difference in densities of the observed temporal
patterns and closeness of the potential clusters [30]. This was confirmed in preliminary
exploratory analysis. Future investigation could expand the clustering methodologies
employed. For instance, the issue of differentiating density in DBSCAN clustering could
be addressed using hierarchical DBSCAN. Dynamic time warped (DTW) k-means was also
considered, using optimal alignment instead of Euclidean distance between the sequences
of behaviour [58]. However, DTW k-means unifies the same pattern with time shifts in
the data. For instance, an increase in magnitude of behaviour across two days of the
week would be treated the same by the DTW algorithm if the same level of magnitude
increase occurred mid-week or on the weekend. As we were interested in the time and
magnitude of activity behaviours DTW was not deemed a suitable clustering method.
Future studies looking to identify general activity patterns of behaviour could however
benefit from application of DTW k-means. Fuzzy C-Means is another possible future
method to investigate, similar to k-means clustering but behaviours do not have to belong
to a single cluster. This would help detect the borderline behaviour for instance when we
saw disagreement over k-means and agglomerative clustering due to different apparent
cut-off points in step count intensity. However, the interpretability of these fuzzy clusters
may limit wider applicability of identified patterns.

Though there are many benefits to using secondary smartphone app data, the nature
of using app data designed originally to encourage physical activity has some limitations,
in particular the potential of app premise to influence recorded activity behaviour [28].
Evidence regarding the influence of apps on long-term activity behaviour however remains
mixed. In their meta-analysis Romeo et al. found that smartphone apps produced a non-
significant increase in participant’s daily average step count compared to controlled condi-
tions [59]. Additionally, they report that programs longer than 3 months, similar to Bounts
app usage, were less effective in increasing physical activity than shorter programs [59].

Previous investigations have shown that Bounts app attracts a much higher proportion
of female users [29]. This is contrary to previous studies using physical activity smartphone
app data which have been found to over represent young male users [9,60,61]. Thus, any
researchers looking to replicate this analysis in a different smartphone app data source
would need to also consider the socioeconomic and demographic profile of the app users.
Additionally, we use a single measure to determine whether WHO physical activity guid-
ance was met which might explain the overall low proportion of users classed as sufficiently
active, future research would benefit from multiple activity specific measures to quantify
physical activity [62]. Future work would also benefit from multi-year investigation. This
would allow confirmation of the seasonal observed patterns and allow identification of
any app-based influences on activity behaviour. For instance, we see a larger number of
sign-ups around the beginning of British summertime and have shown that an increase in
activity occurs independent of sign-up date. Repeat year investigation would allow us to
identify whether this sign-up phenomenon occurs annually or is a one off linked to app
promotional activity. Additional demographic detail, such as occupation, ethnicity, health
status and family composition, would also aid in disentangling these behavioural patterns
further. However demographic detail must be weighed against maintaining individual
anonymity in secondary smartphone app data sources [28].
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6. Conclusions

Secondary smartphone app data proves to be a useful tool to capture temporal patterns
in physical activity behaviour. The size and richness of these app data lend themselves
to detailed pattern analysis. Exceeding the typical seven-day study period we identify
that individuals can belong to several groups of weekly behaviour, suggesting that this
shorter time period is not suitable to capture habitual activity behaviours. Through the
application of machine learning methods, we can move away from aggregate measures of
physical activity to identify and better understand these temporal variations in physical
activity behaviour.
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Appendix A

Figure A1. Seasonal k-means clustering sensitivity analysis.
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Figure A2. Weekly k-means clustering sensitivity analysis.
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Figure A3. Cont.



Int. J. Environ. Res. Public Health 2021, 18, 11476 23 of 27

Figure A3. Dendrograms and corresponding activity patterns (N = 6) for agglomerative clustering of the five samples of
weekly physical activity behaviour.
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Figure A4. Confusion matrix outlining the agreement between the two clustering methods.
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Figure A5. Activity duration by yearlong step count cluster, Inactive cluster disaggregated by step count data availability.
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