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Abstract: Uric acid (UA) is synthesized mainly in the liver, intestines, and vascular endothelium as
the end product of an exogenous purine from food and endogenously from damaged, dying, and
dead cells. The kidney plays a dominant role in UA excretion, and the kidney excretes approximately
70% of daily produced UA; the remaining 30% of UA is excreted from the intestine. When UA pro-
duction exceeds UA excretion, hyperuricemia occurs. Hyperuricemia is significantly associated with
the development and severity of the metabolic syndrome. The increased urate transporter 1 (URAT1)
and glucose transporter 9 (GLUT9) expression, and glycolytic disturbances due to insulin resistance
may be associated with the development of hyperuricemia in metabolic syndrome. Hyperuricemia
was previously thought to be simply the cause of gout and gouty arthritis. Further, the hyperuricemia
observed in patients with renal diseases was considered to be caused by UA underexcretion due to
renal failure, and was not considered as an aggressive treatment target. The evidences obtained by
basic science suggests a pathogenic role of hyperuricemia in the development of chronic kidney dis-
ease (CKD) and cardiovascular diseases (CVD), by inducing inflammation, endothelial dysfunction,
proliferation of vascular smooth muscle cells, and activation of the renin-angiotensin system. Further,
clinical evidences suggest that hyperuricemia is associated with the development of CVD and CKD.
Further, accumulated data suggested that the UA-lowering treatments slower the progression of
such diseases.
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1. Introduction

Uric acid (UA) is synthesized mainly in the liver, intestines, and vascular endothelium
as the end product of an exogenous purine from food (100–200 mg/day), and endogenously
(500–600 mg/day) from damaged, dying, and dead cells, whereby nucleic acids, adenine
and guanine, are degraded into UA [1]. There are two types of nucleotide production
pathways: a de novo synthesis which newly creates purines and a salvage pathway that
reuses purines (Figure 1). Such nucleotides are metabolized to xanthine, which is finally
converted to UA by the action of xanthine oxidase (XO). Approximately daily 700 mg of
UA is produced by such processes. The kidney plays a dominant role in UA excretion, and
the kidney excretes approximately 70% of daily produced UA [2]. The remaining 30% of
UA is excreted from the intestine [3]. Usually, the UA pool size of an adult male is about
1200 mg [4]. The UA production is balanced by the excretion of UA into urine (500 mg)
and intestine (200 mg). When UA production exceeds UA excretion, hyperuricemia, which
has been defined as serum UA concentration > 7.0 mg/dL [5], occurs.

Hyperuricemia is induced by UA over-production due to acquired factors such as
high purine diet, fructose ingestion, alcohol intake, myeloproliferative disorders, and also
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rare genetic causes such as hypoxanthine-guanine phosphor-ribosyl-transferase (HPRT)
deficiency and phosphor-ribosyl-pyrophosphate (PPRP) synthetase (PRS) hyperactivity [6].
Renal excretion of UA is the major regulator of serum UA concentration [7], [8]. In humans,
reabsorption of UA into the blood plays a crucial role to regulate serum UA. The UA
exchange is mediated by various molecules expressed in renal proximal tubule [9]. Such
molecules include glucose transporter 9 (GLUT9) [10], urate transporter 1 (URAT1) [11],
and human ATP-binding cassette, subfamily G, 2 (ABCG2) [12], organic anion transporter
(OAT)1, 3, and 4 [6]. UA enters the cell in exchange for monocarboxylate via apical URAT1
and for dicarboxylate via apical OAT4 [6]. OAT1 and OAT3, on the basolateral membrane of
epithelial cells, transport UA from the renal interstitial into renal proximal tubule epithelial
cells [13]. Renal UA reabsorption is mainly mediated by URAT1 and GLUT9 [11,14,15].
URAT1 is found in the apical membrane of proximal tubule epithelial cells [6]. Apical
GLUT9 plays a significant role in UA reabsorption, the reabsorbed UA exiting the cell
through basolateral GLUT9 [6]. In addition, ABCG2 has been identified as a high-capacity
UA exporter that mediates renal and/or extra-renal UA excretion [16]. ABCG2 is now
known to be involved as well in UA excretion into the intestine [16].
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Hyperuricemia has been previously classified into the “UA overproduction type”, “UA
underexcretion type” and “combined type”, and approximately 10%, 60%, and 30% of hype-
ruricemic patients have been classified into each type, respectively [5,17]. Abcg2-knockout
mice showed increased serum UA and renal UA excretion, and decreased intestinal UA
excretion [18], indicating that a significance of decreased extra-renal UA excretion caused
by ABCG2 dysfunction for hyperuricemia. At present, hyperuricemia is classified into
“renal UA overload type” (“UA extra-renal underexcretion type” and “UA overproduction
type”), “UA underexcretion type” and “combined type” [5].

Hyperuricemia was previously thought to be simply the cause of gout and gouty
arthritis. Further, the hyperuricemia observed in patients with renal diseases was con-
sidered to be caused by UA underexcretion due to renal failure since the kidney excretes
approximately 70% of daily produced UA [2]. Therefore, hyperuricemia was not considered
as an aggressive treatment target. Here, we show that hyperuricemia itself is associated
with the development and severity of metabolic syndrome, cardiovascular diseases (CVD)
and chronic kidney disease (CKD), and possible beneficial effects of the treatment for
hyperuricemia on CVD and CKD.

2. Hyperuricemia and Metabolic Syndrome
2.1. Hyperuricemia and the Risk and Severity of Metabolic Syndrome

Hyperuricemia is significantly associated with the development and severity of
metabolic syndrome. Meta-analysis showed that higher serum UA levels led to an in-
creased risk of metabolic syndrome regardless of the study characteristics, and were
consistent with a linear dose-response relationship [19]. Choi HK, et al. determined the
prevalence of the metabolic syndrome at different serum UA levels by using data from
8669 participants aged 20 years and more in The Third National Health and Nutrition
Examination Survey (1988–1994) [20]. They found that the prevalence of metabolic syn-
drome increases substantially with increasing serum UA levels. A nested case-cohort
study of 431 patients with 220 cases demonstrating new vascular events during follow-up,
originating from the Second Manifestations of Arterial Disease study, showed that serum
UA levels were higher in patients with the metabolic syndrome than in patients without.
Serum UA concentrations increased with the number of components of the metabolic
syndrome adjusted for age, sex, creatinine clearance, and alcohol and diuretic use [21].

Takahashi, S, et al. evaluated the effect of accumulation of intraabdominal visceral fat
on the metabolism of UA in 50 healthy male subjects [22]. Multivariate analyses showed
that the size of the visceral fat area was the strongest contributor to an elevated serum
UA and a decrease in UA clearance. Magnitude of insulin resistance and serum UA
concentration were significantly related (r = 0.69; p < 0.001), and insulin resistance was
also inversely related to urinary UA clearance (r = −0.49; p < 0.002), and urinary UA
clearance was inversely related to serum UA concentration (r = −0.61; p < 0.001) [23].
Insulin resistance due to visceral fat accumulation may increase serum UA by decreasing
renal UA clearance in patients with the metabolic syndrome.

2.2. Hyperuricemia and the Components of Metabolic Syndrome
2.2.1. Hypertension

The meta-analysis including 25 studies assessing the association between UA and
incident hypertension showed that hyperuricemia was associated with a higher risk of
incident hypertension, regardless of whether the effect size was adjusted or not [24].
Adjusted relative risk (RR) was 1.15 [95%confidence interval (CI), 1.06 to 1.26] for a 1 mg/dL
increase of serum UA. Another meta-analysis including a total of 18 prospective cohort
studies showed that hyperuricemia was associated with an increased risk for incident
hypertension (adjusted RR, 1.41; 95%CI, 1.23 to 1.58) [25]. For a 1 mg/dL increase in UA
level, the pooled RR for incident hypertension after adjusting for potential confounding
was 1.13 (95%CI, 1.06 to 1.20).
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2.2.2. Diabetes

A meta-analysis of 12 cohort studies showed that serum UA levels were positively
associated with incidence of impaired fasting glucose and type 2 diabetes [26]. Another
meta-analysis also showed that serum UA level is positively associated with the develop-
ment of type 2 diabetes regardless of various study characteristics [27]. In the meta-analysis
including eight prospective cohort studies, the combined RR of developing type 2 diabetes
for the highest category of serum UA level compared with the lowest was 1.56 (95%CI,
1.39 to 1.76) [28]. Dose-response analysis showed the risk of type 2 diabetes was increased
by 6% per 1 mg/dL increment in serum UA level.

2.2.3. Dyslipidemia

The meta-analysis covering 17 studies showed that hyperuricemia increased the
likelihood of dyslipidemia and the pooled odds ratio (OR) for the highest UA level vs the
lowest UA level was 1.84 (95%CI, 1.49 to 2.28) [29]. In the study aimed to systematically
review the association between serum UA concentration and components of pediatric
metabolic syndrome, the pooled correlations of UA with triglyceride (r = 0.23, 95%CI,
0.19 to 0.38) and high-density lipoprotein (HDL) (r = −0.28, 95% CI, −0.37 to −0.20) were
statistically significant [30].

2.3. Possible Molecular Mechanisms for the Development of Hyperuricemia in Metabolic Syndrome

Possible molecular mechanisms for the development of hyperuricemia in the metabolic
syndrome were shown in Figure 2. Over-intake of purine may be involved in the develop-
ment of hyperuricemia in metabolic syndrome, because overeating and lack of physical
activity are the main causes of metabolic syndrome. The increased protein level of URAT1
was observed in obesity/metabolic syndrome model mice [31]. Upon high-purine load,
insulin resistance enhances UA reabsorption as manifested by up-regulated URAT1 expres-
sion and reduces UA excretion in the Otsuka-Long-Evans-Tokushima Fatty rats [32].

Glycolytic disturbances were observed in insulin-resistant and hyperuricemic states [33].
Diversion of glycolytic intermediates toward ribose-5-phosphate (R-5-P), PPRP, and UA
will follow if there is diminished activity of glyceraldehyde-3-phosphate dehydrogenase
(GA3PDH), which is regulated by insulin. Intrinsic defects in GA3PDH and a loss of
its responsiveness to insulin can explain the association between insulin resistance and
hyperuricemia.

The meta-analysis of 29 diet-intervention trials showed that short-term fructose
consumption promotes the development of hepatic insulin resistance in non-diabetic
adults [34]. Another meta-analysis including 3102 articles suggested that fructose con-
sumption from industrialized foods has significant effects on most components of metabolic
syndrome [35]. The risk of hyperuricemia and gout was also positively correlated with
the intake of fructose (OR, 2.14; 95%CI, 1.65 to 2.78) [36]. In the meta-analysis of prospec-
tive cohort studies, fructose consumption was associated with an increase in the risk of
gout (RR, 1.62; 95%CI, 1.28 to 2.03; p < 0.0001) when comparing the highest and lowest
quantiles of fructose consumption [37]. Fructose intake is significantly associated with the
development of both hyperuricemia and metabolic syndrome.

In kidney tissue of Sprague–Dawley rats which was induced metabolic syndrome
by high-fructose diet, gene expression of GLUT9 was significantly upregulated [38]. Im-
munohistochemical study showed a significant increase of GLUT9 by more than 3-fold.
GLUT9 is a high-capacity urate transporter expressed in the proximal renal tubular cell,
which reportedly also transports glucose and fructose [10]. In in vitro assays, the presence
of fructose promotes UA transport via this receptor [10]. Variation in GLUT9 gene influ-
ences acute serum UA and fractional excretion of UA responses to a fructose load [39].
GLUT9 genotype was suggested to influence the development of gout on exposure to
fructose-containing beverages.
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acid; URAT1, urate transporter 1; XO, xanthine oxidase.

Increasing amount of fructose in the diets of rats and humans results in increases in
the activity of fructokinase [40]. Accumulation of fructose-1-phosphate causes depletion of
ATP and inorganic phosphorus and increases degradation of nucleotides to UA [41].

3. Hyperuricemia and CVD
3.1. Hyperuricemia and Atherosclerosis

The meta-analysis including 15 studies showed that carotid intima-media thickness
(CIMT) in the high UA group was significantly higher than that in the control group
[standardized mean difference (SMD), 0.53; 95%CI, 0.38 to 0.68), and the difference was
significant (p < 0.00001) [42]. Subgroup analysis by disease status illustrated a positive
relationship between serum UA levels and CIMT in healthy people and people with
diseases. In the meta-analysis and systematic review to explore the modifiable risk factors
for carotid atherosclerosis, hyperuricemia was significantly associated with the presence of
carotid plaque, and could elevate the risk of atherosclerosis by at least 50% [43].
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3.2. Hyperuricemia and Coronary Heart Diseases (CHD)

In the meta-analysis including 29 prospective cohort studies, hyperuricemia was
associated with increased risk of CHD morbidity (adjusted RR, 1.13; 95%CI, 1.05 to 1.21) and
mortality (adjusted RR, 1.27; 95%CI, 1.16 to 1.39) [44]. For each increase of 1 mg/dL in UA
level, the pooled multivariate RR of CHD mortality was 1.13 (95%CI, 1.06 to 1.20). Another
meta-analysis including 14 studies involving 341, hyperuricemia was associated with an
increased risk of CHD mortality (RR, 1.14; 95 %CI, 1.06 to 1.23) [45]. For each increase
of 1 mg/dL of serum UA, CHD mortality increased by 20%. According to the gender
subgroup analyses, hyperuricemia increased the risk of CHD mortality in women (RR, 1.47;
95 %CI, 1.21 to 1.73) compared to men (RR, 1.10; 95 %CI, 1.00 to 1.19). In a systematic review
and meta-analysis using 26 studies, hyperuricemia was associated with an increased risk
of CHD incidence (unadjusted RR, 1.34; 95%CI, 1.19 to 1.49) and mortality (unadjusted
RR, 1.46; 95%CI, 1.20 to 1.73) [46]. When adjusted for potential confounding, the pooled
RR was 1.09 (95%CI, 1.03 to 1.16) for CHD incidence and 1.16 (95%CI, 1.01 to 1.30) for
CHD mortality. For each increase of 1 mg/dL in UA level, the pooled multivariate RR for
CHD mortality was 1.12 (95%CI, 1.05 to 1.19). Subgroup analyses showed no significant
association between hyperuricemia and CHD incidence/mortality in men, but an increased
risk for CHD mortality in women (RR, 1.67; 95%CI, 1.30 to 2.04).

3.3. Hyperuricemia and Stroke

The meta-analysis of 16 studies showed that hyperuricemia was associated with a
significantly higher risk of stroke incidence (RR, 1.41; 95%CI, 1.05 to 1.76) and mortality
(RR, 1.36; 95%CI, 1.03 to 1.69) [47]. Subgroup analyses of studies adjusting for known
risk factors such as age, hypertension, diabetes mellitus, and cholesterol still showed
that hyperuricemia was significantly associated with stroke incidence (RR, 1.47; 95%CI,
1.19 to 1.76) and mortality (RR, 1.26; 95%CI, 1.12 to 1.39). Another meta-analysis including
15 prospective studies indicated that the presence of hyperuricemia was associated with a
significantly greater risk of stroke incidence (RR, 1.22; 95%CI, 1.02 to 1.46) and mortality (RR,
1.33; 95%CI, 1.24 to 1.43) [48]. In addition, the pooled estimate of multivariate RRs of stroke
incidence and mortality were 1.08 (95%CI: 0.85 to 1.38); 1.26 (95%CI: 1.14 to 1.40) among
men and 1.25 (95%CI: 1.04 to 1.46); 1.41 (95%CI: 1.31 to 1.52) among women respectively.

3.4. Molecular Mechanisms of Hyperuricemia-Induced Atherogenesis and Thrombosis

Hyperuricemia promotes the occurrence and progression of CVD by regulating molec-
ular signals, such as inflammatory response, oxidative stress, insulin resistance, endo-
plasmic reticulum stress, and endothelial dysfunction [49]. Hyperuricemia may be also
responsible for microvascular damage through stimulation of the renin-angiotensin sys-
tem (RAS), inhibition of endothelial nitric oxide, and proliferative effects on vascular
smooth muscle [50].

Oxidative stress is a well-known component of atherosclerotic pathogenesis, occur-
ring in parallel with activation of pro-inflammatory signaling pathways and expression of
cytokines/chemokines [51]. XO uses molecular oxygen as electron acceptor to generate
hydrogen peroxide and superoxide anions [52]. XO is normally present in the endothelial
cells and in blood, and its levels in atherosclerotic plaques was found to be increased [53].
Several studies highlighted the possible involvement of XO in atherosclerosis develop-
ment. It was shown that atherogenesis in apo-E knockout mice could be reduced by XO
inhibitors [54]. Further, the inhibition of XO reduced the endothelial dysfunction in heavy
smokers [55]. XO stimulates the expression of scavenger receptors in macrophages and
vascular smooth muscle cells.

Increased UA is also involved in the upregulation of lethal 7-c (let 7-c), which is
interconnected with platelets functionality. In a study performed on an animal model of hy-
peruricemia, increased serum UA generated thrombosis through the activation of myocyte
enhancer factor-2C-dependent and nuclear factor-kappa B pathways by let 7-c [56]. In mice,
the inhibition of XO led to a decrease in the expression of plasminogen activator inhibitor-1
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and tissue factor, suggesting a significant contribution of hyperuricemia to prothrombotic
state [57]. Platelet-derived microparticles (PDMPs) are prothrombotic molecules that con-
tribute to thrombus formation. Increased PDMPs may promote hypercoagulable states.
The inhibition of XO led to a significant reduction in PDMPs in hyperuricemic patients [58].

4. Hyperuricemia and Renal Dysfunction
4.1. Hyperuricemia and CKD

In the meta-analysis including 15 cohorts with a total of 99,205 individuals and
3492 incident CKD, the RR of CKD was 1.22 (95%CI, 1.16 to 1.28) per 1 mg/dL serum
UA level increment [59]. The observed positive association was more pronounced among
group with a mean age < 60 years (RR, 1.26; 95%CI, 1.21 to 1.31). However, no association
was observed among studies with a mean age ≥ 60 years (RR, 1.04; 95%CI, 0.96 to 1.13).
This mean age-related difference in the association between serum UA levels and CKD
was significant (p = 0.004). A systematic review and meta-analysis including 13 studies
containing 190,718 participants showed a significant positive association between elevated
serum UA levels and the new-onset CKD at follow-up (OR, 1.15; 95%CI, 1.05 to 1.25) [60].
Hyperuricemia was found be an independent predictor for the development of newly
diagnosed CKD in non-CKD patients (OR, 2.35; 95%CI, 1.59 to 3.46). This association
increased with increasing length of follow-up. No significant differences were found for
risk estimates of the associations between elevated serum UA levels and developing CKD
between males and females.

4.2. Molecular Mechanisms of Hyperuricemia-Induced Renal Dysfunction

UA is known to induce hypertension through its effects on endothelial function and
impaired production of nitric oxide [61]. Hypertension can be the initial trigger leading
to subclinical renal damages [62]. In animal models, hyperuricemia caused hypertension
through activation of both vasoactive and inflammatory processes that have multiple
effects that include sodium retention and vascular constriction [63]. Histologic analyses
showed the lesions that were similar to those seen in hypertension, with the presence of
arteriolosclerosis and tubule-interstitial injury [64]. Serum UA levels were significantly
correlated with vascular resistance at the afferent, but also efferent, arteriole, suggesting
that hyperuricemia may be harmfully associated to glomerular perfusion [65]. Emerging
evidence suggests a significant contribution of activation of the RAS by hyperuricemia
to the development of CKD [66]. Renal vasoconstriction and reduced renal plasma flow
can be induced by activation of RAS. Further, UA may increase oxidative stress, leading
to mitochondrial dysfunction, over-secretion of pro-inflammatory cytokines, and prolif-
eration of vascular smooth muscle cells. UA crystals can cause tubular damage through
inflammation mediated by direct physical mechanisms.

5. Effects of UA-Lowering Treatment (ULT) on CVD and CKD
5.1. ULT

The pharmacological action points of ULT were shown in Figure 3. XO is a rate-
limiting and catalyzing enzyme of UA formation in purine metabolism, and is involved in
reactive oxygen species generation. Allopurinol is classified as purine-like XO inhibitor
and febuxostat and topiroxostat are classified as non-purine XO inhibitors. XO inhibitors
present antioxidant properties by reducing the production of reactive oxygen species
derived from purine metabolism. XO inhibitors still remain the first line of treatment
for hyperuricemia.

Uricosuric agents are still second-line or alternative agents, recent guidelines also
support the combination of agents such as XO inhibitors and uricosuric agents when
monotherapy is not effective [67,68]. Probenecid decreases serum UA by inhibiting URAT1
and GLUT9, and is the prototypical uricosuric agent [69]. Benzbromarone is a potent
uricosuric drug that acts by inhibition of URAT 1 and GLUT 9. Benzbromarone was shown
to be more potent than probenecid when used as an add-on to daily 300 mg of allopurinol,
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with 92% of participants reaching a target serum UA of 5 mg/dL [70]. Emerging evidence
of the possible role of hyperuricemia in cardiovascular and metabolic comorbidities have
led to the development of newer agents. Lesinurad and arhalofenate are the inhibitors of
URAT1 and OAT4 [69]. Dotinurad, a selective urate reabsorption inhibitor, is available in
Japan. Dotinurad, benzbromarone, lesinurad, and probenecid inhibited URAT1 with IC50
values of 0.0372, 0.190, 30.0, and 165 µM, respectively. Dotinurad weakly inhibited ABCG2,
OAT1, and OAT3, with IC50 values of 4.16, 4.08, and 1.32 µM, respectively, indicating
higher selectivity for URAT1. [71]. The non-inferiority of dotinurad to febuxostat in terms
of serum UA lowering effect was confirmed, and no noteworthy safety concerns arose [72].
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Figure 3. The pharmacological action points of UA lowering treatments. AMP, adenosine monophosphate; GMP, gua-
nine monophosphate; GLUT9, glucose transporter 9; IMP, inosine monophosphate; OAT4, organic anion transporter 4;
PRPP, phosphor-ribosyl-pyrophosphate; PRS, phosphor-ribosyl-pyrophosphate synthetase; UA, uric acid; URAT1, urate
transporter 1; XO, xanthine oxidase.

5.2. Effects of ULT on Atherosclerosis and CVD

In the meta-analysis which assessed the effect of allopurinol on endothelial function,
there was a significant increase in the endothelium-dependent vasodilatation with allop-
urinol treatment [mean difference (MD), 2.69%; 95%CI, 2.49 to 2.89%; p < 0.001] [73]. The
meta-analysis which studied the effect of allopurinol on flow-mediated dilation (FMD),
an index of endothelial function in humans showed that allopurinol therapy significantly
improved FMD as compared with control groups [weighted MD (WMD), 1.67%; 95%CI,
0.83 to 2.50%; p < 0.001] [74]. In this study, the benefit of allopurinol to FMD seemed to
be not related to its UA-lowering action. The meta-analysis including ten eligible ran-
domized controlled trials (RCTs), with showed a significant increase in FMD following
allopurinol treatment (WMD, 1.79% 95%CI, 1.01 to 2.56; p < 0.001) [75]. No significant
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association between allopurinol-induced changes in serum UA levels and FMD was found
(p = 0.253). Further, allopurinol was found to have a statistically significant benefit on
endothelial function in patients with chronic heart failure (MD, 0.776; 95%CI, 0.429 to 1.122)
and CKD (MD, 0.350; 95%CI, 0.009 to 0.69) but not in type 2 diabetes (MD, 1.331; 95%CI,
−0.781 to 3.444) [76].

Zhang, T, et al. performed the meta-analysis to determine if ULT in gout can reduce
CV outcomes. Comparing any ULT to placebo (eight studies, n = 2221 patients) did not
demonstrate a significant difference in non-Anti-Platelet Trialists’ Collaboration CV events
(any ULT vs placebo: RR, 1.47; 95%CI, 0.49 to 4.40; p = 0.49) or all-cause mortality (any
ULT vs placebo: RR, 1.45; 95%CI, 0.35 to 5.77; p = 0.60) [77]. In the meta-analysis of major
adverse cardiovascular events (MACE), XO inhibitors did not significantly reduce risk of
MACE (OR, 0.71; 95%CI, 0.46 to 1.09) and death (OR, 0.89; 95%CI, 0.59 to 1.33), but reduced
risk of total CV events (OR, 0.60; 95%CI, 0.44 to 0.82) [78]. There was protection for MACE
in patients with previous ischemic events (OR, 0.42; 95%CI, 0.23 to 0.76). Allopurinol
protected for myocardial infarction (OR, 0.38; 95%CI, 0.17 to 0.83) and total CV events
(OR, 0.48; 95%CI, 0.31 to 0.75). Non-purine-like XO inhibitors did not significantly reduce
or increase the risk of adverse CV events. In the meta-analysis to assess the efficacy of
allopurinol treatment in reducing the incidence of myocardial infarction following coronary
artery bypass grafting, a fixed-effects meta-analysis identified a statistically significant
reduced incidence of myocardial infarction (RR 0.21; 95%CI, 0.06 to 0.70; p = 0.01) in patients
allocated to allopurinol [79]. In seven RCT studies where XO inhibitors were compared with
no-treatment or placebo, the results of five low CV risk studies showed that XO inhibitors
lowered the risks of both MACE (RR, 0.35; 95%CI, 0.20 to 0.62) and CV events (RR, 0.61;
95%CI, 0.44 to 0.85) [80]. In the meta-analysis to identify studies comparing the efficacy of
allopurinol in patients undergoing coronary artery bypass graft (CABG), the pooled OR
of periprocedural acute cardiovascular syndrome (OR, 0.25; 95%CI, 0.06 to 0.96; p = 0.05)
and cardiovascular mortality (OR, 0.22; 95%CI, 0.07 to 0.71, p = 0.01) were significantly
lower in patients receiving allopurinol during CABG compared to patients in the control
group [81]. By contrast, the odds of cardiovascular mortality in the allopurinol group were
not significantly different from the control group in patients on long-term allopurinol after
acute cardiovascular syndrome or heart failure (OR, 0.33; 95%CI, 0.01 to 8.21; p = 0.50) and
(OR, 1.12; 95%CI, 0.39 to 3.20; p = 0.83), respectively. Similarly, the use of allopurinol did
not reduce the odds of recurrent acute cardiovascular syndrome events at two years (OR,
0.32; 95%CI, 0.03 to 3.18; p = 0.33).

Febuxostat is approved for the management of hyperuricemia in patients with gout.
In November 2017 the FDA released a warning alert on a possible link between febuxostat
and CVD reported in a single clinical trial [82]. A meta-analysis was conducted to assess the
risk of MACE in patients receiving febuxostat compared to a control group [83]. The pooled
RR of MACE for febuxostat was 0.9 (95%CI, 0.6 to 1.5; p = 0.96) compared to the control.
The RR of CV-related death for febuxostat was 1.29 (95%CI, 1.01 to 1.66; p = 0.03). The
meta-analysis was done to determine the association of 2 ULT commonly used in clinical
practice (febuxostat vs. allopurinol) on MACE [84]. No significant differences were also
noted on all-cause mortality (RR, 1.18; 95%CI, 0.99 to 1.41), myocardial infarction (RR, 0.92;
95%CI, 0.72 to 1.18), and stroke (RR, 1.05; 95%CI, 0.77 to 1.43). The meta-analysis of 15 RCTs
showed that the use of febuxostat was not associated with statistically significant risk of
cardiovascular mortality [risk difference (RD), 0.12%; 95%CI, −0.25 to 0.49%), all-cause
mortality (RD, 0.20%; 95%CI, −0.28 to 0.68%), MACE (RD, 0.40%; 95%CI, −0.34 to −1.13%),
myocardial infarction (RD, −0.06%; 95%CI, −0.29 to 0.17%), stroke (RD, 0.10%; 95%CI,
−0.15 to 0.35%) [85]. The recent meta-analysis of 16 showed that febuxostat had a better
safety outcome compared with allopurinol, which was the composite of urgent coronary
revascularization (OR, 0.84; 95%CI, 0.77 to 0.90; p < 0.0001) and stroke (OR, 0.87; 95%CI,
0.79 to 0.97, p = 0.009) [86]. However, the difference was not found in nonfatal myocardial
infarction (OR, 0.99; 95%CI, 0.80 to 1.22, p = 0.91), cardiovascular related mortality (OR, 0.98;
95%CI, 0.69 to 1.38; p = 0.89) and all-cause mortality (OR, 0.93; 95%CI, 0.75 to 1.15, p = 0.52).
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No significant differences in cardiovascular related mortality and all-cause mortality were
observed across any subgroup. The cardiovascular safety of febuxostat compared to
allopurinol for the treatment of gout remains equivocal.

5.3. Effects of ULT on CKD

The meta-analyses which studied whether ULT reduces the progression of CKD
showed insufficient data on incidence of end-stage renal disease (ESRD) for analysis and
the heterogeneity across included studies, suggesting that adequately powered RCTs are
needed to establish whether ULT has beneficial renal effects [87,88]. Another meta-analysis
showed that there was no significant difference in change in GFR from baseline between the
allopurinol and control arms in five trials, and allopurinol treatment abrogated increases in
serum creatinine from baseline in three trials [89]. Only recent meta-analysis showed that
XO inhibitors significantly reduced the risk of ESRD compared to the control (three studies;
RR, 0.42; 95%CI, 0.22 to 0.80) and also improved eGFR in data pooled from RCTs with long
follow-up times (>3 months) (four studies; MD, 6.82 mL/min/1.73 m2; 95%CI, 3.50 to 10.15)
and high methodological quality (blind design) (three studies; MD, 2.61 mL/min/1.73 m2;
95%CI, 0.23 to 4.99) [90]. No definite effects were apparently noticed on serum creatinine,
proteinuria and albuminuria in this meta-analysis [91].

Such meta-analyses cannot prove renal protective effect of ULT due to the main
limitation by the heterogeneity across included studies, and did not include trials using
non-purine XO inhibitors (febuxostat and topiroxostat) and uricosuric agents. We show the
renal outcome by ULT in Table 1. In RCTs, allopurinol reduced renal events and improved
eGFR [91–93]. Two studies showed a beneficial effect of febuxostat on eGFR [94,95],
however, one study failed to show such effects [96]. In the study which observed the
effect of switching from allopurinol to febuxostat for the treatment of hyperuricemia and
renal function in patients with CKD, febuxostat reduced serum UA levels and slowed the
progression of renal disease in comparison with allopurinol [97]. Topiroxostat treatment
reduced urinary protein excretion, however, did not show an influence on eGFR [98–100].
Benzbromarone did not show a significant change of eGFR in 2 studies [101,102]. In the
cohort study including 874 CKD patients with hyperuricemia, compared with allopurinol,
benzbromarone was associated with a reduced risk of progression to dialysis [103]. Among
patients who reached the therapeutic target, those with febuxostat and benzbromarone
initiation had a significantly lower risk of ESRD as compared with allopurinol.

Table 1. Renal Outcomes by UA Lowering Treatments.

Xanthine Oxidase Inhibitors (The First-Line Treatment for Hyperuricemia)

Author Study Design Subjects Studied Renal Outcomes

Allopurinol (The most widely used drug approved for the treatment of hyperuricemia)

Siu, Y.P., et al. [91]

Patients were randomly assigned to
treatment with allopurinol, 100 to
300 mg/day, or to continue the
usual therapy for 12 months. Study
end points included stable kidney
function with less than 40% increase
in serum creatinine level; impaired
renal function with creatinine level
increase greater than 40% of
baseline value; initiation of dialysis
therapy; and death.

54 hyperuricemic patients with
CKD

There was a trend toward a lower
serum creatinine level in the
treatment group compared with
controls after 12 months, although it
did not reach statistical significance
(p = 0.08). Less patients (16%) in the
allopurinol group reached the
combined end points of significant
deterioration in renal function and
dialysis dependence compared with
patients (46.1%) in the control group
(p = 0.015).

Goicoechea, M., et al. [92]

Patients were randomly assigned to
treatment with allopurinol 100
mg/day or to continue the usual
therapy. Study end points included
renal disease progression;
cardiovascular events; and
hospitalizations of any causes.

113 patients with eGFR < 60
mL/min.

In the control group, eGFR
decreased by
3.3 ± 1.2 mL/min/1.73 m2, and in
the allopurinol group, eGFR
increased by
1.3 ± 1.3 mL/min/1.73 m2 after
24 months. Allopurinol treatment
reduced risk of CV events in 71%
compared with standard therapy.
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Table 1. Cont.

Xanthine Oxidase Inhibitors (The First-Line Treatment for Hyperuricemia)

Author Study Design Subjects Studied Renal Outcomes

Goicoechea, M., et al. [93]

Post hoc analysis of a long-term
follow-up after completion of the
2-year trial. Intervention is
continuation of allopurinol
treatment, 100 mg/day, or standard
treatment. Study end points
included renal event (starting
dialysis therapy and/or doubling
serum creatinine and/or decrease in
eGFR by over 50%) and CV events
(myocardial infarction, coronary
revascularization or angina pectoris,
congestive heart failure,
cerebrovascular disease, and
peripheral artery disease).

113 participants (57 in the
allopurinol group and 56 in the
control group) initially followed
up for 2 years and 107 participants
followed up to 5 additional years.

During the initial and long-term
follow-up (median, 84 months),
9 patients in the allopurinol group
had a renal event compared with
24 patients in the control group
(adjested HR, 0.32; 95%CI, 0.15–0.69;
p = 0.004). Overall, 16 patients
treated with allopurinol experienced
CV events compared with 23 in the
control group (adjusted HR, 0.43;
95% CI, 0.21–0.88; p = 0.02).

Febuxostat (The widely used drug approved for the treatment of hyperuricemia)

Whelton, A., et al. [94]

A post hoc analysis of the
Febuxostat Open-label Clinical trial
of Urate-lowering efficacy and
Safety study, during which subjects
received daily doses of febuxostat
(40, 80, or 120 mg) for up to 5 years.

116 hyperuricemic gout subjects

Maintenance or improvement in
eGFR was inversely correlated with
the reduction in serum UA from
baseline. For every 1 mg/dL
decrease in serum UA, the model
projected an expected improvement
in eGFR of 1 mL/min from the
untreated value.

Shibagaki, Y., et al. [95]

The safety and efficacy of escalating
doses of febuxostat over a 24-week
period in patients with CKD stages
3b, 4 and 5 were studied.

70 patients with CKD
stages 3b, 4 and 5

Multivariate analysis showed that a
greater reduction in serum UA with
febuxostat was associated with an
increase in eGFR and a tendency
toward decreased proteinuria.

Kimura, K., et al. [96]

Participants were randomly
assigned in a 1:1 ratio to receive
febuxostat or placebo for 108 weeks.
The primary end point was the
slope of eGFR

467 patients with stage 3 CKD and
asymptomatic hyperuricemia at
55 medical institutions in Japan

There was no significant difference
in mean eGFR slope between the
febuxostat and placebo groups.

Tsuruta, Y. et al. [97]

A 1-year cohort study. In
51 patients, treatment was changed
from allopurinol to febuxostat, and
the other 22 patients were continued
on allopurinol.

73 hyperuricemic patients who
had an eGFR below 45 mL/min
and were being treated with
urate-lowering therapy

The eGFR decreased
27.3 to 25.7 mL/min in the
febuxostat group and from
26.1 to 19.9 mL/min in the
allopurinol group. The switch from
allopurinol to febuxostat was
significantly associated with the
changes in eGFR according to a
multiple regression analysis
(β = −0.22145, p < 0.05).

Topiroxostat (The drug approved for the treatment of hyperuricemia)

Hosoya, T., et al. [98]

A 22-week, randomized,
multicenter, double-blind study.
The enrolled patients were
randomly assigned to treatment
with topiroxostat 160 mg/day or to
the placebo. The endpoints included
change in the eGFR, the urinary
albumin-to-creatinine ratio.

123 hyperuricemic stage 3 CKD
patients with or without gout

After 22 weeks, although the
changes in the eGFR was not
significant, the percent change in
urinary albumin-to-creatinine ratio
(−33.0 vs. −6.0 %, p = 0.0092) was
found to have decreased in the
topiroxostat as compared with
the placebo.

Horino, T., et al. [99]

Patients were administered
40 mg/day of topiroxostat twice
daily. All patients were followed for
a year.

30 hyperuricemic patients with
CKD (20 male, 10 female)

Topiroxostat treatment resulted in
significant reduction in urinary
protein excretion (−795.5 mg/gCr)
compared with baseline values.
However, serum creatinine level,
and eGFR did not change
significantly.



Int. J. Mol. Sci. 2021, 22, 9221 12 of 20

Table 1. Cont.

Xanthine Oxidase Inhibitors (The First-Line Treatment for Hyperuricemia)

Author Study Design Subjects Studied Renal Outcomes

Katsuyama, H., et al. [100]

Patients who had been continuously
prescribed topiroxostat for 3 months
or more were retrospectively picked
up, and compared serum UA, eGFR
and urinary protein before the
topiroxostat treatment with the data
at 3 and 6 months after the
topiroxostat treatment started.

27 hyperuricemic patients

eGFR did not change 3 months after,
however, eGFR showed a trend to
increase 6 months after. The number
of patients who showed positivity
for urinary protein significantly
decreased at 3 and 6 months after
the start of topiroxostat as
compared with baseline.

Uricosuric agent (The second-line treatment for hyperuricemia)

Benzbromarone (The widely used drug approved for the treatment of hyperuricemia)

Fujimori, S., et al. [101]

Renal function changes over a
period of up to 7 years were
retrospectively evaluated in patients
with CKD associated with
hyperuricemia and were receiving
monotherapy with benzbromarone

35 patients with CKD (stage 3,
32 patients; stage 4, 2 patients;
stage 5, 1 patient) associated with
hyperuricemia

No significant changes in eGFR
from the baseline value of
46.2 ± 11.5 mL/min/1.73 m2 were
found after benzbromarone therapy.

Yu, H., et al. [102]

A single-centered, parallel-grouped,
RCT. Patients were randomly
assigned into benzbromarone and
febuxostat treatment group.

66 hyperuricemia participants
with eGFR
20–60 mL/min/1.73 m2

After 12-month treatment, eGFR did
not have significant changes in
both groups.

Chou, H.W., et al. [103]

A pharmacoepidemiology cohort
study by including patients from
Taiwan’s long-term integrated CKD
care program to compare the
effectiveness among allopurinol,
febuxostat and benzbromarone in
reducing the risk of progression to
dialysis. Patients with
hyperuricemia who were newly
treated with allopurinol, febuxostat
or benzbromarone were included.

874 CKD patients with
hyperuricemia

Compared with allopurinol,
benzbromarone therapy was
associated with a reduced risk of
progression to dialysis, the adjusted
HR was 0.50 (95%CI, 0.25–0.99).
Among patients who reached the
therapeutic target, those with
febuxostat and benzbromarone
initiation had a significantly lower
risk of end-stage renal disease.

6. Other Drugs to Lower Serum UA

The UA lowering mechanism of non-UA-lowering drugs were shown in Figure 4. The
main pharmacological action, the possible mechanisms to reduce serum UA and studies
which showed its UA-lowering effects of non-UA-lowering drugs were shown in Table 2.

6.1. Estrogen

Increased levels of serum UA in postmenopausal women are thought to be caused
by a change in renal urate elimination associated with the loss of female hormones. In the
study to evaluate the regulation of renal urate transporter expression by female hormones
using ovariectomized mice with or without hormone replacement, estradiol suppressed
the protein levels of URAT1 and GLUT9 [111]. The role of sex hormones in hepatic XO
activity was investigated by using rat liver [112]. The hepatic XO activity was decreased
about 15% by estradiol. Serum UA in 61 postmenopausal women before and during
hormone replacement therapy (HRT) (daily 0.625 mg conjugated equine estrogen combined
with 2.5 mg oral medroxyprogesterone) were measured [104]. Twenty-four untreated
postmenopausal women were used as controls. None of these women were receiving
UA-modifying agents. HRT significantly reduced serum UA concentrations throughout
3–12 months in postmenopausal women with hyperuricemia. On the other hand, serum
UA concentrations in the control group showed no significant changes for 12 months.

6.2. Losartan

Losartan, an angiotensin II receptor antagonist, inhibits URAT1 and GLUT9 [113]. In the
meta-analysis including 31 RCTs, losartan reduced serum UA levels (WMD, −1.57 mg/dL;
95%CI, −1.83 to −1.30) as compared with other antihypertensive agents [105].
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urate transporter 1; XO, xanthine oxidase.

6.3. Fenofibrate

The effects of fenofibrate, an anti-lipidemic drug, on UA metabolism and URAT1 was
investigated in healthy male subjects [114]. Fenofibrate decreased serum UA levels by
increasing its urinary excretion, most likely through the inhibition of URAT1 by fenofib-
ric acid, its major metabolite. The meta-analysis including nine studies demonstrated
that fenofibrate significantly reduced serum UA levels (WMD, −1.32 mg/dL; 95%CI,
−1.61 to −1.03; p < 0.001) [106]. Another meta-analysis showed a significant reduction in
plasma UA concentrations following fenofibrate therapy [107].

6.4. Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i)

Our previous study showed that SGLT2i, oral anti-diabetic drug, significantly reduced
serum UA levels [115]. In the meta-analysis including 31 studies, SGLT2i significantly
decreased serum UA levels compared with placebo, canagliflozin (WMD, −37.02 µmol/L;
95%CI, −38.41 to −35.63), dapagliflozin (WMD, −38.05 µmol/L; 95%CI, −44.47 to −31.62),
empagliflozin (WMD, −42.07 µmol/L; 95%CI, −46.27 to −37.86) [109]. Another meta-
analysis also demonstrated that any of the SGLT2i (empagliflozin, canagliflozin, da-
pagliflozin, tofogliflozin, luseogliflozin or ipragliflozin) significantly decreased serum
UA levels compared with control (WMD, −37.73 µmol/L; 95%CI, −40.51 to −34.95]) [110].
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Table 2. Other Drugs to Lower Serum UA.

Drugs Main Pharmacological Action Possible Mechanisms to Reduce
Serum UA

Studies Which Showed Its
UA-Lowering Effects

Estrogen Female sex hormone
Suppression of the protein levels of
URAT1 and GLUT9, and reduction
of XO activity

Serum UA in 61 postmenopausal
women before and during HRT were
measured [104]. HRT significantly
reduced serum UA concentrations
throughout 3–12 months in
postmenopausal women with
hyperuricemia. On the other hand,
serum UA concentrations in the
control group showed no significant
changes for 12 months.

Losartan Antihypertensive drugs,
angiotensin II receptor antagonist Inhibition of URAT1 and GLUT9

In the meta-analysis including
31 RCTs, losartan reduced serum UA
levels (−1.57 mg/dL; 95%CI,
−1.83 to −1.30) as compared with
other antihypertensive agents [105].

Fenofibrate Anti-lipidemic drug Inhibition of URAT1

The meta-analysis including 9 studies
demonstrated that fenofibrate
significantly reduced serum UA levels
(−1.32 mg/dL; 95%CI, −1.61 to −1.03;
p < 0.001) [106]. Another
meta-analysis showed a significant
reduction in plasma UA
concentrations following fenofibrate
therapy [107].

Sodium-Glucose
Cotransporter 2 Inhibitors
(SGLT2i)

Oral anti-diabetic drugs

SGLT2i may reduce over-expressed
URAT1 due to insulin resistance in
patients with type 2 diabetes, by
improving insulin resistance.
SGLT2i increase renal UA
elimination by another mechanism.
SGLT2i increase the concentration of
glucose in the proximal tubules, and
glucose may compete with UA for
apical GLUT9, reducing UA
reabsorption [108].

In the meta-analysis including
31 studies, SGLT2i significantly
decreased serum UA levels compared
with placebo, canagliflozin
(−37.02 µmol/L; 95%CI,
−38.41 to −35.63), dapagliflozin
(−38.05 µmol/L; 95%CI,
−44.47 to −31.62), empagliflozin
(−42.07 µmol/L; 95%CI,
−46.27 to −37.86) [109]. Another
meta-analysis also demonstrated that
any of the SGLT2i (empagliflozin,
canagliflozin, dapagliflozin,
tofogliflozin, luseogliflozin or
ipragliflozin) significantly decreased
serum UA levels compared with
control (−37.73 µmol/L; 95%CI,
−40.51 to −34.95]) [110].

SGLT2i improve insulin resistance by reducing body weight [116]. The increased
protein level of URAT1 was observed in obesity/metabolic syndrome [31]. Insulin re-
sistance enhances UA reabsorption by upregulating URAT1 expression and reduces UA
excretion [31]. SGLT2i may reduce over-expressed URAT1 due to insulin resistance in
patients with type 2 diabetes, by improving insulin resistance. Further, SGLT2i increase
renal UA elimination by another mechanism. SGLT2i increase the concentration of glucose
in the proximal tubules, and glucose may compete with UA for apical GLUT9, reducing
UA reabsorption [108].

7. Conclusions

Hyperuricemia is significantly associated with the development and severity of
metabolic syndrome. Increased URAT1 and GLUT9 expression and glycolytic disturbances
due to insulin resistance may be associated with the development of hyperuricemia in the
metabolic syndrome. Emerging evidence suggests a pathogenic role of hyperuricemia in
the development of hypertension, CKD, and CVD, by inducing inflammation, endothelial
dysfunction, proliferation of vascular smooth muscle cells, and activation of the RAS.
Highly evidenced studies show a significant association of hyperuricemia to the devel-



Int. J. Mol. Sci. 2021, 22, 9221 15 of 20

opment of CKD and CVD. Beneficial effects of XO inhibitors, especially, allopurinol, for
CVD and CKD have been reported. Further studies should be performed to elucidate the
effects of non-purine XO inhibitors (febuxostat and topiroxostat) and uricosuric agents on
the development and progression of CVD and CKD. Estrogen, losartan, fenofibrate and
SGLT2i reduce serum UA by modulating urate transporters and XO.
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