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Abstract

Introduction: The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability
to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade
there have been numerous advancements and improvements in epitope prediction, on average the best benchmark
prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of
deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string
kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed

Epitope Predictor (DRREP).

Results: DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and
SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published
predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance
improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%),
with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and

LBtope achieved an AUC of 0.702.

Conclusion: DRREP is an analytically trained deep neural network, thus capable of learning in a single step through
regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able
to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art

predictors.

Keywords: Epitope prediction, Deep network, Neural network, Analytical learning, Linear epitope, Continuous
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Introduction

Early methods for vaccine development were based on the
micro-organisms themselves [1]. In contrast, the promise
of successful subunit vaccines (epitope-driven vaccine)
comes from antigens [2]. Our ability to design subunit
vaccines depends on our ability to find good vaccine tar-
gets on the foreign object in question, it depends on
our ability to find epitopes. There are numerous exper-
imental techniques for B-cell epitope mapping [3], but
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doing this search experimentally, searching exhaustively
by brute force, is an extremely time consuming endeavour.
Thus, computational approaches are employed, and are
the primary subject domain of computational vaccinol-
ogy. Epitope prediction, the ability to predict with some
probability whether a particular amino acid belongs to an
epitope, can guide our experimental based search and save
us a significant amount of time.

B-Cell epitopes are antigenic residues that B Lympho-
cytes bind to. These antigenic determinants can be either
continuous, or conformational. Continuous epitopes, also
known as linear epitopes, are formed by continuous
sequences of residues. The majority of epitopes (90%) are
within the conformational class [4], which are the result

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4024-8&domain=pdf
mailto: gsher@knights.ucf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Genomics 2017, 18(Suppl 6):676

of 3D interaction of protein residues in close spatial prox-
imity, but discontinuous on the actual protein sequence.
Predicting both of these epitope types is a computationally
difficult, and because conformational epitopes can be con-
sidered as clusters or spatially joined continuous epitopes,
the prediction of continuous eptopes is an essential step
for both problems. Finally, because there is a substantially
larger amount of epitope sequence based data than there
is structural, protein sequence based (as opposed to struc-
ture based) prediction is a much more feasible problem at
this time.

In this work we present a sequence based continuous
epitope predictor called DRREP (Deep Ridge Regressed
Epitope Predictor). Our linear B-Cell epitope predictor is
based on a deep neural network (DNN) [5], which utilizes
a string mismatch function based first hidden layer, a sec-
ond normalization pooling layer, an analytically computed
third hidden layer, followed by another non-linear pooling
layer, and a final fifth layer composed of a single thresh-
old neuron. Our intuition is that because there is structure
within protein sequences, and because we are dealing with
sequences composed of characters, these structures and
patterns are based on the k-mers within the sequences.
Thus, a way to find and extract them, is through the use
of string based activation functions, similar to methods
applied in text mining. Because we do not know ahead
of time the actual structures, lengths, and patterns of
these k-mers, one way to solve the problem of exposing
them is to generate a large number of our own random
k-mer patterns, tiling the sequence with them, and count-
ing how many, and which of our generated k-mers match
the k-mers within the sequence being analysed. This
k-mer tiling method extrapolates the protein sequence
into a large feature space, which we can then cluster,
separate, and classify through regression. In DRREP, we
perform this regression step using the Moore-Penrose
generalized inverse [6].

Background
The first linear epitope prediction methods were devel-
oped in the 1980s, and were based on propensity scales
[7, 8]. These were built up experimentally, and based
on the statistical correlation of a physicochemical prop-
erty of a residue and it belonging to an epitope. Later
systems used multiple propensity scales together, these
systems include the likes of PEOPLE [9], PREDITOP [10],
BEPITOPE [11], and BcePred [12]. A decade later, these
propensity scales were coupled with various predictive
algorithms, after it was shown that predictions based
purely on propensity scales produce results only slightly
better than random [13].

Starting in 2006, machine learning algorithms coupled
with new types of amino acid sequence encoding methods
and propensity scales, began to emerge. The first of such
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systems was ABCPred [14], based on a recurrent neural
network with an input vector of 16 residues using a sparse
binary encoding. During the same year, BepiPred [15] was
released, and was based on Hidden Markov Models [16]
rather than neural networks. The input to BepiPred was
based on numerous physicochemical properties and pro-
tein secondary structure. In 2007 AAP [17] was released,
and was the first predictor using a support vector machine
based model, and proposed the use of a new type of anti-
genicity propensity scale. AAP’s improved performance
ushered a new era of epitope predictors based on SVM
algorithms.

In 2008, BCPred [18], and later in 2010, FBCPred
[19] were published, both using SVM. BCPred and
FBCPred demonstrated that predictive improvement can
be achieved by using methods developed within the text
mining community. These two systems used string ker-
nels [20, 21] and SVM to make their predictions. BCPred
operates on a fixed length input sequence window,
whereas FBCPred can be applied to variable length input
sequences. LEP-LP [22] is an SVM predictor released in
2008, and was based on multiple numerically profiled
propensity scales as input.

Due to SVM’s excellent classification performance,
the SVM based predictor trend continues to this day.
CBTOPE [23] converts residues in the sliding window
into a “Composition profile of patterns’, which is a vec-
tor of amino acid ratios within the window. BEST [24]
epitope predictor uses a 20-mer sliding window and an
SVM classifier. COBEpro [25] is another epitope predictor
which uses SVM to predict short epitope sub-sequences.
All three, CBTOPE, BEST, and COBEpro, can also pre-
dict conformational epitopes using a secondary clustering
algorithm.

Around the same time, in 2009, EPITOPIA [26] was
released. EPITOPIA is based on a naive bayes classi-
fier and is capable of predicting conformational epitopes.
It uses structure and sequence based inputs, with the
sequence input being based on a sliding window and
multiple (14) propensity scales. BaysB [27] is an epitope
predictor based on the naive bayes method and an SVM
model. BRORacle [28] uses an SVM predictor whose input
data is based on sequence features, secondary structure,
and physicochemical properties such as solvent accessibil-
ity and disorder. LEPS [29] was released in 2011 and is an
extension of LEP-LP. LEPS’ SVM based model is used to
discard LEP-LP’s less likely candidates, resulting in a more
accurate classification. SVMTriP [30] is an SVM based
predictor, but for input it uses “Tri-peptide similarity and
Propensity scores.”

One of the most recently published epitope predictors
is LBtope [31]. LBtope is also based on an SVM model,
which is coupled with a nearest neighbour algorithm.
In the paper presenting LBtope, Singh et al. notes that
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until now, most predictors (ABCPred, BCPred, FBCPred,
BEST) have been trained on negative datasets composed
of random peptides. Furthermore, the training datasets
have been small, with a size of roughly 1500 total sam-
ples. To solve this problem, Singh et al. composed a
new dataset of epitopes and non-epitopes, an order of
magnitude larger and using the available data from
IEDB [32, 33]. In this LBtope-dataset, the non-epitope
sequences were based on confirmed data.

Finally, in 2015 deep learning models began entering
the bioinformatics domain. Deep learning, and in partic-
ular convolutional deep networks, are currently state of
the art in classification. The deep maxout network based
model called DMN-LBE [34], was the first deep learning
approach which was applied to linear epitope prediction.
This predictor used the new LBTope dataset for train-
ing and testing, and used 5-fold cross validation. The
system’s classification performance was reported to be
slightly higher than that of LBTope. Unfortunately, just
like LBtope, it was not applied to actual long protein
sequences in the published paper.

Taking all of this information into account, in this work
we develop a first of its kind, deep analytically learning
network using string kernels. Our system, DRREP, due
to using string kernels, can be applied to the sequence
directly and without any type of pre-processing. Fur-
thermore, DRREP outputs a vector of residue-by-residue
scores, rather than scores for a single fixed k-mer win-
dow. Thus, DRREP can be used to predict the presence
of epitopes in variable length sequences, and applied to
entire protein chains. It is a convolutional deep network,
with the first layer being a convolutional string kernel, the
second an average pooling layer, the third a linear neuron
layer, the fourth an average pooling layer, and finally fifth
being a single threshold neuron.

Methods

Majority of the published epitope classifiers are based on
Support Vector Machines [2], Neural Networks trained
through backpropogation [35, 36], Naive Bayes Classifiers
[18], and Propensity Scales [37]. A very limited number of
the more obscure methods have also been explored, such
as Ant Colony Optimization [38], for example. In the last
decade a number of new and innovative classification and
regression algorithms have been demonstrated and pub-
lished, the most promising of which falls into the category
of Deep Learning [39]. These types of systems are only
now starting to be explored in the bioinformatics, and
more concretely, the epitope prediction domain.

In this paper we develop a new epitope classification
pipeline called Deep Ridge Regressed Epitope Predictor
(DRREP). DRREP is a deep neural network which uses a
string mismatch activation function, and is trained using
an analytical method based on ridge regression. Because
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DRREP learns using an analytical method in a single step
(going through the data only once), the system learns
faster than SVM and other traditional iterative learning
methods (exp. those based on error back-propagation).

Benchmark datasets

There is a need to standardize epitope prediction
benchmarking. Different papers discussing their predic-
tors tend to use different test datasets. For example,
BCPRED/FBCPRED used a short 193 residue SARS-COV
sequence, BepiPred used an HIV dataset composed of
2706 residues, and BEST predictor used a large SEQ194
dataset, composed of 128180 residues. But the Accu-
racy and AUC achieved by a system on one dataset, can
not be compared to the accuracy and AUC achieved by
another system on a different dataset. This makes the
task of comparing the different epitope predictors a bit
difficult, requiring the re-application of the published pre-
dictors on some common datasets. Thus, we found the
most current test datasets used by other state of the art
predictors, and applied our system to those datasets, and
when possible (when an epitope prediction server was
available), applied the competing predictor to the test
datasets it has not been applied to in its original paper.
This allowed us to compare the AUC of different predic-
tors on multiple datasets, each with very different epitope
densities.

We have chosen to use the following 5 datasets: 1. SARS
[40], which is a relatively short (193 residues) sequence,
with a high epitope density. 2. HIV [41] dataset on which a
number of other predictors have been tested and reported
their AUC on, composed of 2706 residues. 3. SEQ194,
which is a large dataset derived from BciPep, composed
of 194 protein sequences, with a total of 128180 residues,
and used as a test dataset by numerous predictors [24]. 4.
AntiJen [42] used by BepiPred as a validation dataset. and
5. Pellequer [43], which was used as BepiPred’s training
dataset [15].

The SEQ194, HIV, Pellequer, and AntiJen sequences
were all calculated by measuring the cross-reactivity
between the intact protein and the peptide fragments.
AntiJen and SEQ194 have extremely low epitope densi-
ties (1.4 and 6.6%, respectively); HIV and Pellequer have
an order of magnitude higher epitope densities (37.1 and
37.6%, respectively); and SARS has the highest epitope
density of the five datasets (63.7%). Thus, together these
5 datasets represent a realistic test of the classifier that is
to be used to search for new epitopes within new protein
sequences, covering a wide spectrum of possible epitope
densities.

We also wanted a relatively common training dataset
that has been used by other predictors, and which did
not share any of its epitopes with the test datasets we
have selected. We have searched through the literature



The Author(s) BMC Genomics 2017, 18(Suppl 6):676

and found that the BciPep [44] dataset has been uti-
lized as a training dataset by a variety of predictors. The
BCPred/FBCPred further pointed out some of the weak-
nesses within that dataset, producing a variation of it
without protein sequence duplicities. A training dataset
based on it was also used by the BEST predictor. Thus,
given its common use, it represents a good training and
validation dataset, and was chosen by us to train and
validate DRREP on.

Training and validation dataset

DRREP was trained on the BCPred’s 80% homology
reduced dataset [45], which is itself a refined, homology
reduced BciPep dataset [44]. The BCPred group based
their dataset on the BciPep’s shared 1230 unique linear
B-Cell epitope dataset, by only keeping the 80% homol-
ogy reduced subset. Afterwards, any epitope present in
the subset that had a length less than 20 amino-acids,
was extended/buffered on both sides by random anti-
gen sequences from SwissProt [45]. This resulted in a
new dataset composed of 1230 linear B-Cell epitopes,
each of length 20 or greater. This dataset was further
filtered to remove sequences that due to the buffer-
ing became too similar. The final dataset was composed
of 701, 80% homology reduced sequences, each com-
posed of 20 residues. For this 701 epitope sequence based
dataset, non-epitope peptides were then generated by
randomly extracting non-eptipe sequences from the Swis-
sProt database, with the final dataset composed of 701
epitopes and 701 non-epitopes.

Finally, from this base dataset, the BCPred/FBCPred
group generated 10 final datasets, composed of sequence
sizes: 12, 14, 16, 18, 20, 22, 24, 26, 28, 30. To create
the 22, 24, 26, 28, and 30 residue sized epitopes, the 20
residue sized epitopes and non-epitopes were extended on
both ends. To create the 12, 14, 16, and 18 residue sized
datasets, the 20 residue sized epitopes were truncated on
both ends. By creating these 10 different sized sequence
length based dataset variations, the BCPred/FBCPred
group was hoping to see how classification accuracy of
a system changes when one changes the sliding window
length. BCPred/FBCPred group made the original non
homology reduced dataset, and the 10 derived datasets,
available online at [46]. Because our system is also based
on a sliding window method, and thus requires finding an
optimal sliding window, we chose to train it using these 10
datasets.

Benchmark measures

Our system can be applied to residue chains of any length
by utilizing a sliding window approach that moves forward
one residue at a time along the chain. Once it reaches the
end of the entire protein sequence, it provides a score for
each residue. Thus, benchmark measurements, accuracy,
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and AUC, are more fine grained and are based on the
correctly predicted epitope residues, rather than correctly
predicted epitopes. Those predicted residues which all
fall into a single continuous sequence, are considered by
DRREP to form a single continuous epitope. This classifi-
cation approach allows DRREP to provide smoother deci-
sion boundaries and classify variable length eptiope and
non-epitope sub-sequences within some large sequence
to which it is applied, as opposed to providing scores for
fixed length blocks of residues. Accuracy, Sensitivity, and
Specificity, are calculated as follows:

Sensitivity = TP/(TP + FN)
Specificity = TN /(TN + FP)
Accuracy = (TP + TN) /(TP + FP + TN + EN)

where TP (True Positive), FP (False Positive), TN
(True Negative), FN (False Negative), are residue based.
The Receiver Operating Characteristic (ROC) plot is
True Positive Rate (Sensitivity) vs. False Positive Rate
(1-Specificity), with AUC calculated as the area under the
ROC curve. AUC has been demonstrated to be highly cor-
related with the general performance of a classifier, with
a higher AUC being correlated with a classifier capable of
high sensitivity, specificity, and accuracy.

Deep ridge regressed epitope predictor

The Deep Ridge Regressed Epitope Predictor (DRREP)
is a deep neural network composed of 5 hidden layers,
but only a single learning layer. The first layer is a ran-
domly generated array of k-mers, used to perform feature
extraction using basic string mismatch functions, with the
mismatch number set to 0. Because the activation func-
tion just counts and outputs how many times a particular
k-mer occurs in the input string, it can also be consid-
ered to be using a bagging method introduced by Leo
Breiman [47]. But because each k-mer is slid across the
entire input sequence, with the second neural layer per-
forming a pooling computation, the first layer can also
be considered as performing a convolutionary computa-
tion. The second layer is composed neurons which form a
normalization pooling layer. The third is a layer of linear
neurons, whose weights are set analytically using a simpli-
fied ridge regression algorithm [48]. The hidden weights
of the linear neural layer are analytically computed using
a matrix inverse, in our case, the Moore-Penrose gener-
alized inverse, a method also used in a number of other
machine learning algorithms [49-52]. This is followed by
a fourth scaled average pooling layer, and then a final
fifth thresholding layer. This final fifth layer is composed
of a single threshold neuron whose synaptic weights are
deduced by DRREP using the validation scores of the
sub-networks it is composed of, acquired during the train-
ing process. These validation scores are used to weigh
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the sub-network contributions to the final classification
score. In essence, making the DRREP function as a type of
ensemble of sub-networks.

In the following subsections we discuss the Moore-
Penrose generalized inverse calculated synaptic weights,
followed by a pseudo-code and a detailed discussion of the
entire DRREP pipeline.

Calculating synaptic weights analytically

DRREP can be applied to a continues sequence of any
length, producing a score for each residue. The way
DRREP does this internally is by using its sliding window
to cut the long sequence into sub-sequences, score each
subsequence, and then recompose the sub-sequences,
averaging out the prediction for each subsequence such
that the resulting longer sequence has a score for each
residue. Thus, DRREP has a long sequence as input, and
then it internally cuts it down to create a dataset of Y
columns and X rows, where Y is the length of the sliding
window used (chosen by the researcher during the train-
ing phase), X = Tot_Residues — SlidingWindowLength+ 1,
and Tot_Residues is the total number of residues in the
original long input sequence.

Each of these sliding window sized sub-sequences is
passed through the first string function based layer and
the second norm-pooling layer. The second layer outputs
a matrix: H, which then acts as an input matrix to the
third linear neural layer containing the synaptic weight
matrix: 8. During the training phase, the input data is
labelled, and is usually composed of a dataset of sliding
window sized sub-sequences, each of which is either an
epitope or a non-epitope. Thus, we expect for the hidden
linear neural layer to produce the expected training output
(labels/classes) matrix: E, based on the available labelled
input and B. We can calculate g by solving:

HB =E

where matrix E is composed of target labels, or in our case,
epitope and non-epitope classes, and matrix H is com-
posed of the output vectors of the 2nd pooling neural layer
which is based on the output of the first string function
neural layer that processed the labelled input vectors. The
optimal weight matrix of the linear hidden neural layer,
B, is then computed through the use of Moore-Penrose
generalized inverse, all in a single step, as follows:

B =H'E

where H' is the Moore-Penrose generalized inverse of
matrix H.

Because the string function based first hidden neural
layer which performs the extrapolation of the input data
into the feature space, is randomly generated, and because
regression is performed using the Moore-Penrose gener-
alized inverse, the algorithm is fast, and is used here akin
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to the way it is used in [53]. Because there is no pre-
training, or long phases of iterative training as is done in
the more standard approaches based on gradient descent,
it opens doors to potentially training the system on
big data.

Training, validation, and DRREP construction

DRREP is a 5 layer deep neural network based on a
parallel stack of independently trained 3 layer based
sub-networks, each with a single learning layer, a ran-
domly generated string (k-mer) based activation func-
tion first hidden layer, and a pooling transformational
layer, as shown in Fig. 1. Training is done in multi-
ple phases. First, N number of 3 layer neural networks,
called Sub_DRREPs, are generated and trained indepen-
dently (each such Sub_DRREP network is composed of
the DRREP’s first 3 layers). The N networks are then
stacked in parallel, with each network’s output aggre-
gated, and then normalized by the norm-pooling 4th
layer. The normalized signals are then passed on to the
threshold neuron in the 5th layer. The way this is per-
formed, is by putting these sub-networks in parallel, to
form a single, wider, deep network. Then the fourth layer
is added, which normalizes and pools the outputs from
these sub-networks. The fifth layer is composed of a single
thresholding neuron. The scaling factor for each sub-
network is based on its relative validation AUC score,
which act as weights for the single thresholding neuron in
the final 5th layer, which decides whether the input vec-
tor belongs to an epitope. The DRREP pipeline is shown
in Fig. 1.

The Sub_DRREP networks can be trained on input
sliding windows of different sizes Y. We have explored
sliding window sizes: 12,14, 16, 18, 20, 22, 24, 26,28, and
30. Though DRREP can be composed of Sub_DRREPs
of different sized sliding windows, in this paper we
have explored composing DRREP where all Sub_DRREP
networks use the same sized sliding windows. We have
explored different values for Y, and different values
for the parameter N (total number of Sub-DRREPs),
and settled on ¥ = 24 and N = 20, which resulted in
the best validation score, and a DRREP that was fast
to train.

DRREP makes its predictions purely based on the amino
acid sequence. The first hidden layer in each Sub_DRREP
is composed of a random number S of basic mismatch
activation functions, each of which uses a randomly gen-
erated k-mer whose size ranges between 1 and the size
of the sliding window Y. Based on our experiments, a
string mismatch activation function which allows for 0
mismatches, produces the best results. Thus, each neuron
using the basic mismatch activation function in the first
layer counts the number of times its k-mer occurred in the
sequence of the sliding window.
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Fig. 1 DRREP Architecture DRREP is composed of N Sub_DRREPs.
Each Sub_DRREP's first layer, L1, is composed of S neurons, each of
which is made out of a randomly generated k-mer based mismatch
function. The second layer, L2, is composed of S nodes, with the
entire layer performing normalization of the L1's signals. Layer L3, is
the learning linear neural layer, whose synaptic weights are calculated
using the Moore-Penrose generalized inverse. All N Sub_DRREPs are
stacked in parallel. The L4 is a norm-pooling layer, composed of N
nodes, which normalizes the signals from each Sub_DRREP. The next
layer, L5, is composed of a single thresholding neuron, which weighs
each contribution from the Sub_DRREPs based on that Sub_DRREP's
relative validation score, and passes this value through the threshold
to output the final score for the input sliding window

This allows the second normalization layer to calcu-
late the proportions of various types of k-mers occurring
within the window. Our intuition is that there are numer-
ous small k-mers which are particularly antigenic, but we
do not know which ones, or in which order and ratios
they should be to trigger an immune response. Our system
generates a large number of random k-mers, and through
regression the system finds the correlation between the
ratio and combination of the presence of these k-mers,
and antigenicity.
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Through meta-parameter optimization, DRREP was
found to perform best (highest Validation dataset AUC)
when for each Sub_DRREP, S was randomly chosen
between 2 and 4000 (done in 2 bouts with a randomly
generated value between 1 and 2000 for each). DRREP’s
sliding window moves through the long input sequence,
and for each sliding window, DRREP’s basic mismatch
functions in the first hidden layer output the number of
times their k-mer appeared in the window. The second
pooling hidden layer in DRREP normalizes these scalar
values, producing a k-mer ratio vector, and then passes
this vector onwards to the 3rd layer. The third layer is
the learning layer, whose synaptic weights are computed
in a single step after all the training input vectors (win-
dows) have been processed by the first 2 layers to produce
the matrix H. The synaptic weights are computed using
the Moore-Penrose generalized inverse, using the pro-
vided labels for the training dataset. This is done for each
Sub_DRREP independently. Their (Sub_DRREPs) outputs
are then passed onwards to layer 4, where they are pooled
and normalized (this time, between the Sub_DRREPs,
rather than the neurons within each single Sub_DRREP as
was done in the 2nd hidden layer). Finally, the 5th layer
is composed of a single threshold neuron with N weights,
one for each Sub_ DRREP. After the training and validation
phases for the entire DRREP are completed, the synap-
tic weights for this neuron are set to the validation AUC
scores of each Sub_DRREDP, so that the voting contribu-
tion of each Sub_DRREP is based on its performance on
the validation dataset. The neuron calculates its output in
the standard linear neuron fashion, through the applica-
tion of the dot product, resulting in the final output score.
This output score can then further be passed through a
threshold, so that the output is a classification rather than
a score. By default, the threshold of the neuron is set to
the mean score of the entire score sequence that DRREP
produces (made possible by DRREP first calculating all the
scores, and then calculating the threshold based on the
mean).

The pipeline
First a training dataset is 90/10 split into subsets, with
90% of the total dataset used for training, and 10% set
aside to be used for validation. The training dataset
is designated by the input dataset and its expected
labels/classes as: (Trn_I, Trn_Exp) and validation dataset
with its labels/classes as: (Val_I, Val_Exp). I and Exp post-
fixes designate Input and Expected (label) matrices of
the dataset. The 3rd hidden layer in each Sub_DRREP is
composed and trained using the method shown in Fig. 2.
Once DRREP is trained and validated using the provided
dataset, it can then be used for epitope discovery and clas-
sification by applying it to protein sequence datasets, as
shown in Fig. 3.
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Algorithm 1 Training DRREP using the Training dataset, and validating it using the
Validation dataset, both using epitope and non-epitope vectors of size 24.

1 Initialize N,Y,J, (Trn_l, Trn_Exp), (Val_l, Val_Exp), where: N = 20, Y = 24, J = 2, Trn_|

Training data input, Trn_Exp = Training labels, Val_l = Validation data input, Val_Exp

Validation labels

L1, L2, L3, L4, L5« [

Old_AUC + 0

For every Sub_DRREP.i in N, perform:

(a) Loop J number of times:
1. Generate rand(2000) of mismatch activation functions, each with a randomly generated
k-mer of size rand(Y’), and append this vector to L1
2. Generate a list of length(L1) nodes, where each node Node_k performs a normalization
function of the signals coming from L1, and outputs a normalized signal of neuron L1_k,
for k ranging from 1 to length(L1)
3. Calculate the hidden layer output vector for Trn_l by first passing this training input
matrix through L1, and then normalizing the L1 output by passing it through L2, producing
matrix H
4. Calculate synaptic weights 3 for the Sub_DRREP_i's neuron in L3, given the labelled
data Trn_Exp, and the hidden layer output matrix H, using Moore-Penrose generalized
inverse, s.t. B H*Trn,Exp
5. Use the now formed L1, L2, L3 to calculate the vector Output of epitope prediction
scores for Val_l
6. Compare Output for Val_l to Val_Exp, and calculate AUC'
7. If AUC is higher than Old_AUC, keep current L1, L2, L3, set Old_AUC to AUC, and
loop. Otherwise remove from L1 the newly added mismatch activation functions, reset
L2, L3 to empty lists, and loop
(b) SubDRREP.i + [L1,L2,L3]

5 Form DRREP'’s first 3 layers by parallel stacking Sub_DRREPs

6  Create DRREP’s L4 normalization pooling layer composed of N nodes

7  Create DRREP’s L5 threshold neuron composed of N weights

SN

Fig. 2 Training DRREP The figure presents the algorithm used to train DRREP

DRREP can be updated with new Sub_DRREP networks
over time, as new training data becomes available. This
is done by simply stacking the new sub-networks in par-
allel with the existing sub-networks within the DRREP
pipeline. In a similar fashion, sub-networks can also be
removed if needed (exp. a Sub_DRREP is found to con-
tribute negatively to the final prediction).

DRREP was first optimized with regards to its meta-
parameters. We explored multiple sliding window sizes,
and multiple first hidden layer sizes, and optimal number
of Sub_DRREPs to form the DRREP. We found that slid-
ing window of size 24, with 20 total Sub_DRREPs, each
composed of around 4000 randomly generated string mis-
match functions in its first layer, produced the highest val-
idation AUC. Once the meta-parameters were optimized
based on the best validation AUC score, the system was

then tested by being applied to long continuous protein
sequences. DRREP was implemented using JuliaLang, a
high performance technical computing programming lan-
guage. But because DRREP is composed of nearly 80000
first hidden layer neurons, and stored in human readable
XML format, there is roughly a 40 s overhead in loading
the system into memory, which is only done once.

Results

The DRREP pipeline was applied to 5 datasets (SARS,
HIV, Pellequer, AntiJen, and SEQ194) composed of long
continuous protein sequences, with the AUC and accu-
racy at 75% specificity shown in Table 1. In the same table,
we also list the AUC scores reported by other epitope pre-
dictors, such as the self reported AUC values of BCPred
on the SARS dataset, BepiPred on the HIV dataset, and

Algorithm 2 Loading & applying DRREP to an unknown sequence.

Open the sequence file.

SeqLen < length(Sequence)
For every Sub_DRREP in DRREP do:
(a) Load Sub_DRREP

oA WN

Sequence < load(Sequance_FileName)
Initialize the score matrix Output_M to an empty matrix

1 Open the file where DRREP parameters are stored.

(b) Calculate the Output vector of prediction scores for the sequence using the Sub_DRREP
(c) Add the Output score vector to the Output_M score matrix.
7  Pass the Output_M matrix through DRREP’s 4th norm-pooling layer to produce a normalized
Output_M score matrix
8  Pass the normalized Output_M score matrix through DRREP’s scaling and thresholding 5th
layer neuron to produce a rescaled and summed version (using a standard dot product, where
each weight is based on the correlated Sub_DRREP's validation score), and then pass it through
the neuron’s thresholding function to produce the final Score_Vector
9  Return Score_Vector

Fig. 3 Loading and Applying DRREP The figure presents the algorithm used to load and apply DRREP
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Table 1 Accuracy and AUC results of applying DRREP to long
protein sequence datasets, and the AUC results of other epitope
predictors

DataSet Tot Residues  Epitope%  System 75spec  AUC

SARS 193 63.3 DRREP 86.0 0.862
BCPred 80.3 _
ABCPred 67.9 0.648
Epitopia 67.2 0.644
CBTOPE 75.6 0.602
| Btope 65.8 0.758
DMN-LBE 59.1 0.561

HIV 2706 37.1 DRREP 614 0.683
BepiPred _ 0.60
ABCPred 612 0.55
CBTOPE 60.4 0.506
L Btope 612 0.627
DMN-LBE 63.6 0.63

Pellequer 2541 376 DRREP 62.7 0.629
| Btope 60.9 0.62
DMN-LBE 62.8 061

AntiJen 66319 14 DRREP 73.0 0.702
LBtope 74.2 0.702
DMN-LBE _ _

SEQ194 128180 6.6 DRREP 75.9 0.732
Epitopia _ 0.59
BEST10 _ 0.57
BEST16 _ 0.57
ABCPred _ 0.55
CBTOPE _ 0.52
COBEpro _ 0.55
L Btope 753 0.71
DMN-LBE

multiple systems on the SEQ194 dataset. Where possi-
ble, we ran the server-available predictors on the SARS
and HIV datasets, these included the CBTOPE, Epitopia,
ABCPred, LBtope, and DMN-LBE predictors.

CBTOPE and Epitopia servers produced score based
outputs, whereas ABCPred produced a list of index start
locations of the predicted 16-sized window based epi-
topes. This required a conversion to a single residue score
based format, and was performed by using the highest epi-
tope score for each residue’s location. We have also used
the CBTOPE and ABCPred servers to calculate scores
for the HIV dataset. We had difficulty running Epitopia
on the longer HIV dataset, as the server produced run-
errors. Also, unfortunately, DMN-LBE server predicts one
sequence at a time. Thus, due to the large number of
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sequences AntiJen and SEQ194 datasets are composed
of, we were only able to run the smaller SARS, HIV, and
Pellequer datasets on the server (doing so manually, one
sequence at a time). For the missing predictors, or where
the AUC scores are not listed in the table, we did not get
a response from the authors as to the proper conversion
from the output format produced by their predictor, to the
score based format we needed to calculate AUC and accu-
racies, or the server for that predictor was not available.
Nevertheless, we applied DRREP to every dataset (without
retraining), so that it could be compared to every system
which was originally tested on it.

Figure 4 demonstrates the type of output DRREP pro-
vides when using the classification threshold, rather than

1 11 21 31 41
SEQ: NITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCY
True:  _____ EEEEEEEEEEEEEEEEE
DRREP: _EEEEEEEEEEEEEEE
BCPred: _________ EEEEEEEEEEEEEEEE
ABCPred: __EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Epitopia:E_EE__E_EEEEEEEEEEE EEE E_EE EE_ E__
CBTOPE: EE E E__EEEEEEEE__
LBtope: E__________________ EEEEEEEEE E___

51 61 71 81 91
SEQ: GVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFM
True:
DRREP:
BCPred:
ABCPred: EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Epitopia:__E__E E_E E_EEEE E____
CBTOPE: __EEE EE EE
LBtope: EEEE

101 111 121 131 141
SEQ: GCVLAWNTRNIDATSTGNYNYKYRYLKHGKLRPFERDISNVPFSPDGKPC
True:  ______ EEEEEEEEEEEE______ EEEEEEEEEEEEEEEEEEEEEEEEEE
DRREP: ___EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
BCPred: ____EEEEEEEEEEEEEEEE EEEEEEEEE

ABCPred: EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Epitopia:_____ E_EEEEE_EEEEEEEEE___E____EEEEEEE_EE__EEEEEEEE

CBTOPE: ________ EEEEEEE__EEEEEEEEEEEE _EEEEEEEEEEEEEEEEEEE

LBtope: EEEE EEEEEEEEEEEEEEEEEEEEEEEEEEE
151 161 171 181 191

SEQ: TPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAPATV

True:  EEEE____________EEEEEEEEEEEE_______________

DRREP: EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BCPred: EEEEEEE_EEEEEEEEEEEEEEE

ABCPred: EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Epitopia:EEEEE___EE_EEEE *

CBTOPE: EEEEEEEEEEE___EEEEE E

LBtope: EEEEEEEEE Ex

Fig. 4 Predicting Epitopes in SARS SARS sequence (SEQ), true epitope
locations (True), DRREP's predicted epitopes (DRREP), BCPred’s
predicted epitopes (BCPred), ABCPred's predicted epitopes
(ABCPred), EPitopia’s predicted epitiopes (Epitopia), CBTOPE's
predicted epitopes (CBTOPE), and LBtope's predicted epitopes
(LBTope). The incorrect predictions are colored in red, the correct are
colored in blue, and the true epitope locations are colored green
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simply outputting a list of residue scores. The figure
shows the SARS sequence, with the line (True) show-
ing the actual epitope locations, line (DRREP) shows
DRREP’s epitope predictions when using a 75% specificity
threshold, line (BCPred) designates BCPred’s predicted
epitopes, line (ABCPred) designates ABCPred’s predicted
epitopes, and similarly for EPitopia, CBTOPE, and finally
LBtope. The true epitope locations are coloured green,
and for each predictor, the incorrect predictions are
coloured in red, and the correct are coloured blue.

Discussion
When applied to the SARS sequence, DRREP achieved
an AUC of 0.862, and an accuracy of 86.0% at specificity
set to 0.75. BCPred reported an accuracy of 80.3% at the
same specificity. We also used the ABCPred, Epitopia,
CBTOPE, LBtope, and DMN-LBE servers to generate pre-
dictions for the SARS sequence. Their resulting AUCs
were 0.648, 0.644, 0.602, 0.758, and 0.561 respectively.
Their accuracies calculated at a specificity set to 0.75 are
also listed in the table. DRREP achieved a higher accuracy
and AUC than all competing predictors on this sequence.
This is an improvement in accuracy of 5.7% over BCPred,
and an AUC improvement over the best performing pre-
dictor on that dataset (LBtope here, because BCPred did
not report it’s AUC for this sequence) of over 13.7%.
Furthermore, from Fig. 4 we can see that DRREP pre-
dicted correctly a larger number of residues than other
predictors. But, DRREP classified the four sub-sequences
as all belonging to a single epitope. This could potentially
be alleviated by adding a post-processing filter which cal-
culates not just a score, but changes in a score as well.
We base this hypothesis on the fact that we observed
a number of cases where the score transitioned signif-
icantly between continuous sequences of epitope and
non-epitope sequences, yet still held above the epitope
threshold for both cases. Based on this observation, per-
haps the system could be further improved by taking into
account radical score transitions. This methodology is
planned to be explored in our future research. From all
the test datasets on which LBtope was tested, it performed
the worst on SARS. For the tests performed, the version
of LBtope used was based on the one trained on a fixed
20 residue window based dataset, which was used in the
original LBtope publication. When using this version, the
server does not predict the last residue, hence it was des-
ignated with an asterisk. An LBtope trained on flexible
window based original dataset was also tested on SARS,
because that version does predict the last residue, but it
performed much worse than the version shown, and thus
was not included. The Epitopia server also did not pro-
vide the classification for the 193rd residue in the SARS
sequence. Another interesting anomaly in residue predic-
tion results was produced by ABCPred. ABCPred server
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gives a score for 16 residue slices, with a default epitope
score threshold set to 0.5. Based on this, ABCPred clas-
sified numerous such 16 residue slices as epitopes, and
when combined together, this included all but the first two
residues in the SARS sequence.

When applied to the HIV dataset, DRREP produced
an AUC of 0.683. We can compare it to LBtope and
DMN-LBE, which were also tested on the HIV dataset,
their AUCs were 0.627 and 0.63 respectively. We ran
ABCPred, BepiPred, and CBTOPE servers on the same
dataset, and their resulting AUCs were 0.60, 0.55 and
0.506, respectively. Thus, DRREP achieves an AUC higher
by 0.053 than the best predictor in the list (DMN-LBE),
an improvement of 8.4%. Interestingly, at 75% specificity
DMN-LBE had a higher accuracy.

BepiPred was trained on the Pellequer dataset, and was
thus disqualified from being compared on it. We had a
difficult time running this dataset on multiple predictor
servers, and neither could we find their performance on
this particular dataset within published literature. The
only server we were able to run on the dataset was LBtope,
which achieved an AUC of 0.62, which is 3.2% lower than
DRREP’s AUC of 0.629. On Pellequer DMN-LBe, though
having a lower AUC score, at 75% specificy achieved an
accuracy of 62.8%, which was .1% higher than DRREP.

AntiJen is a dataset much larger than HIV and Pellequer,
and thus we could not get it to run on some of the listed
predictor servers, nor find their published performance
on this dataset. The only server that allowed us to run
such a large dataset was LBtope. DRREP and LBtope tied
on this dataset with an AUC of 0.702. LBtope did achieve
a 1.2% higher accuracy at 75% specificity.

DRREP achieved an AUC of 0.732 on the SEQ194
dataset, which we compared to Epitopia, ABCPred,
CBTOPE, and COBEpro, whose AUCs on this dataset
were acquired from [26], and BEST10/16 system whose
AUC is listed in [24]. This dataset was also ran on the
LBtope server, which achieved an AUC of 0.71. DRREP
achieved an AUC performance improvement of 5.6% over
the best performing predictor (LBtope). It should be
noted that the dataset SEQ194 is the most recently pub-
lished of all datasets, with the largest number of long,
FASTA encoded sequences. Furthermore, LBtope was ran
using the LBtope_Fixed_non_redundant (non redundant
dataset) version, which was the one reported in their most
recent paper, and we considered to be the best performer
of the versions available.

Thus, DRREP achieved a higher AUC performance on 4
of 5 datasets than all other predictors, and particularly the
state of the art LBtope and DMN-LBE predictors. DRREP
tied with the LBtope on the remaining fifth dataset, the
AntiJen dataset. And though DMN-LBE achieved a higher
accuracy at 75% specificity on the HIV dataset, and par-
ity on Pellequer, it will not be possible to know the 75%
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specificity threshold when the systems are applied to new
and unknown sequences, thus AUC is still the best indica-
tor of system’s general performance. These results demon-
strate DRREP’s markedly higher general performance.

Conclusion
In this paper we have presented a novel deep network
based classifier using a string activation function based
first layer, multiple non-linear transformational pooling
layers, and a single learning layer. The learning layer
synaptic weights are calculated analytically using the
Moore-Penrose generalized inverse, making the training
phase faster than that of SVM, and standard gradient
descent based models. When DRREP was applied to the
SARS sequence, the achieved classification accuracy at
75% specificity was 86.0%, which is 5.7% higher than the
BCPred/FBCPred, it's AUC was higher by over 13.7% than
that of LBtope on the same sequence. When applied to
the HIV, Pellequer, and SEQ194 datasets, DRREP achieved
an AUC performance improvement of 8.4%, 3.2%, and
5.6% respectively, over the best performing predictors in
the list, which were the most recently published DMN-
LBE and LBtope predictors. The only dataset on which
DRREP did not achieve a performance improvement was
the AntiJen dataset, on which both DRREP and LBtope
achieved the same AUC score. We believe that these
results represent a substantial and highly regular and
stable improvement over the current state of the art.
DRREP is a promising new method. Its generaliza-
tion capabilities are stable across all tested datasets,
with different levels of epitope densities. We plan to
further improve DRREP’s performance by incorporating
new advancements within the deep learning domain, by
further exploring convolutional layering, local receptive
field layering, and other types of topologies and pooling
paradigms. We also plan to further explore the effect of
training dataset refinement on the system’s performance.
The DRREP system [54] and its datasets [55], are freely
available on the GitHub server, and can be downloaded
from the referenced URLs.
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