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Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal 
excitability, creating an attractive opportunity to alter neural output following incomplete 
spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight 
individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered 
(to each participant) over primary motor and somatosensory cortices in separate ses-
sions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor 
carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS 
to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased 
MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 
18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output 
in chronic SCI is an important advance and should be tested in future studies as an 
opportunity to improve function in this population. We emphasize the need to re-consider 
the importance of the direction of MEP change following a single session of iTBS since 
the relationship between MEP direction and motor function is unknown and multiple 
sessions of iTBS may yield very different directional results. Furthermore, we highlight the 
importance of including sham control in the experimental design. The fundamental point 
from this pilot research is that a single session of iTBS is often capable of creating short-
term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS 
sessions to promote long-term changes in corticospinal excitability.

Keywords: neuroplasticity, transcranial magnetic stimulation, spinal cord injury, placebo, sensorimotor  
cortex, tBs

iNtrODUctiON

Following spinal cord injury (SCI), damage to the ascending and descending spinal pathways 
leads to sensory and motor impairments below the level of injury. Opportunities to recapture or 
improve neural output to impaired muscles are of utmost importance, particularly for muscles of 
the upper limb to allow for greater independence performing activities of daily living. Repetitive 
transcranial magnetic stimulation (TMS) may provide an opportunity to promote motor recovery 
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tABle 1 | Participant demographics and results.

iD Age Gender injury level Years post-injury AsiA Medications itBs site MeP

1 29 M C4 5 C Baclofen M1
S1

↓ (21.8%)
Sham > real

2 39 M C6–C7 14 C Baclofen M1
S1

↑ (4.0%)
↓ (20.3%)

3 26 M C5 4.5 C Fesoterodine M1
S1

↓ (30.8%)
↓ (26.7%)

4 41 M C6 2 D Diazepam, pregabalin, 
cyclobenzaprine

M1
S1

Sham > real
↓ (15.9%)

5 39 M C5 39 N/A None M1
S1

↑ (73.9%)
↓ (25.3%)

6 55 F C3–C4 2 C Gabapentin, citalopram M1
S1

Sham > real
↑ (20.9%)

7 58 M C6–C7 33 B Baclofen, clonazepam M1
S1

↓ (55.0%)
↑ (13.1%)

8 68 M C4 3 B Baclofen, pregabalin M1
S1

↓ (3.9%)
↓ (21.4%)

Percent of instances demonstrating change (N = 16) MeP

↑ 25%

↓ 56.25%

Sham > Real 18.75%

Participant demographic information and individual responses to iTBS are shown.
M, male; F, female; C, cervical spine (i.e., C4); iTBS, intermittent theta burst stimulation; M1, primary motor cortex; S1, primary somatosensory cortex; ASIA, American Spinal Injury 
Association Impairment Scale (A = no sensory or motor function preserved in sacral segments; B = sensory function is preserved with no motor function; C = sensory function is 
preserved below the level of injury, most muscles below injury have a grade less than 3; D = motor function is preserved below the level of injury, most muscles below injury have a 
grade of 3 or more; E = normal sensory and motor function); RMT, resting motor threshold; MEP, motor-evoked potential; ↑, measure is increased following iTBS relative to sham 
effect (percentage of change exceeding sham effects); ↓, measure is decreased following iTBS relative to sham effect (percentage of change exceeding sham effects); N/A, data 
could not be obtained.
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in incomplete SCI by strengthening synaptic connectivity within 
intact descending fibers thereby increasing neural output to 
affected muscles. To date, repetitive TMS protocols have shown 
mixed results when assessing recovery of function following SCI 
(1, 2) with only one report showing increases in corticospinal 
output (3). Spinal associative plasticity that pairs TMS and nerve 
stimulation increases neural output to muscles of the hand and 
improves function (4, 5).

Patterned, rapid delivery of TMS is delivered in a protocol 
called intermittent theta burst stimulation (iTBS). iTBS delivered 
over primary motor cortex (M1) facilitates corticospinal output as 
measured by increases in the amplitude of motor-evoked poten-
tials (MEPs) (6–8) but is also equally effective at reducing MEPs 
(7). Therefore, caution should be taken when assuming that iTBS 
should evoke a particular directional effect. Further, there is no 
clear relationship between the direction of iTBS-induced changes 
in MEPs and predictable change in motor behavior. However, 
to date, the evidence suggests that iTBS does indeed alter cor-
ticospinal output in healthy, uninjured controls. The advantage 
of iTBS relative to other TMS approaches is the short duration 
required to deliver the protocol (~2 min) and its low intensity, 
making it attractive for both experimenters and participants. To 
date, no study has examined the effects of iTBS in individuals 
with incomplete SCI, yet this technique has the potential to alter 
corticospinal output to impaired muscles of the arm.

We present a sham-controlled pilot study to provide the first 
characterization of iTBS-induced effects in chronic, incomplete 
cervical SCI. We consider these pilot data timely since recent 
SCI research in rodents indicates that repeat sessions of iTBS 
lead to facilitation of MEPs (9). Before repeat iTBS is delivered 
in humans with SCI, it is important to demonstrate whether a 
single session of iTBS is capable of inducing short-term changes 
as observed in uninjured controls (7, 10–12). To test this, we 
delivered real and sham iTBS over M1, and real iTBS was deliv-
ered over primary somatosensory cortex (S1). We included S1 
as a novel target since iTBS targeting S1 has primarily shown 
facilitation of sensory physiology (13–15) and improvement 
of sensory discrimination (15, 16). Given that neuroplasticity 
involving reorganization in SCI likely occurs in both M1 and 
S1, we considered that stimulation over either area may influ-
ence the excitability of adjacent M1 to ultimately alter the neural 
output to the target muscles.

MetHODs

Eight individuals with chronic (>1 year post-injury) incomplete 
cervical (injury from C4–T1, ASIA classification as B, C, or D) SCI 
participated (Table  1) in three experimental sessions. Subjects 
were screened for contraindications to TMS prior to participa-
tion. The study conformed to the declaration of Helsinki and was 
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FiGUre 1 | Experimental setup. (A) The apparatus used to maintain forearm position during force tracking. (B) Sample of the force tracking task. The white line 
represents the target waveform and the red line is controlled by the force transducer and represents the participant’s performance.
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approved by the Hamilton Integrated Research Ethics Board. All 
individuals provided written consent prior to participation.

Electromyography (EMG) was recorded using surface elec-
trodes (9 mm diameter Ag–AgCl) that were placed in a belly–belly 
montage on the flexor carpi radialis (FCR) and extensor carpi 
radialis muscles with a wet ground placed around the forearm 
proximal to the recording electrodes (Figure  1). All EMG 
recordings were band-pass filtered between 20 Hz and 2.5 kHz, 
amplified 1,000× (Intronix Technologies Corporation Model 
2024F, Bolton, Canada), and digitized using an analog-to-digital 
interface at 5  kHz (Power1401, Cambridge Electronics Design, 
Cambridge, UK). Data were collected using Signal software 
(v6.02, Cambridge Electronics Design, Cambridge, UK).

In this study, iTBS was delivered over the hemisphere con-
tralateral to the least impaired FCR muscle. To determine the least 
impaired FCR, maximum voluntary contraction was recorded in 
three trials from the FCR muscle while maintaining a maximum 
isometric contraction against an immovable post. Each trial con-
sisted of MVC for 5 s followed by 1 min of rest. Visual feedback 
from an oscilloscope (Tektronix TDS2004c, USA) displayed 
muscle activity to the participant. The maximum peak-to-peak 
amplitude achieved across all trials was documented as the MVC. 
The FCR that produced the greatest MVC was taken as the least 
impaired limb.

Single-pulse TMS was delivered via a 50 mm diameter figure-
of-eight branding coil connected to a Magstim 2002 stimulator 
(Magstim, UK) over the optimal location (i.e., motor hotspot) to 
elicit MEPs in the relaxed FCR of the least affected arm. The coil 
was positioned 45° in relation to the parasagittal plane to induce 
posterior-to-anterior current in the cortex. The motor hotspot 
was marked by digital registration using a standard MRI template 
via Brainsight Neuronavigation (Rogue Research, Canada). At 
this location, resting motor threshold (RMT) was quantified as 
the percentage of maximum stimulator output that elicited MEPs 
≥50 µV peak-to-peak amplitude in 5 out of 10 consecutive trials 
(17). Active motor threshold (AMT) was determined as the per-
centage of maximum stimulator output that produced an MEP of 
≥200 µV peak-to-peak amplitude in 5 out of 10 consecutive trials 
while participants maintained a contraction of 15% of their MVC.

Intermittent theta burst stimulation protocol was delivered 
using a 70 mm inner diameter figure-of-eight coil with a Magstim 
Super Rapid2 Plus (Magstim, Whitland, UK) using biphasic 
pulses in bursts of three pulses delivered at 30 Hz, in 6 Hz trains 
that lasted 2 s, that was followed by a period of 8 s in which no 
pulses were delivered (8). iTBS was repeated for a total of 612 
pulses delivered at 80% AMT. Participants received one of three 
iTBS interventions in each session and the order of delivery was 
pseudorandomized across participants: iTBS-M1 delivered at 
the motor hotspot for the least affected FCR, iTBS-S1 delivered 
at a position digitally marked 2 cm posterior to the FCR motor 
hotspot, and sham iTBS delivered over the FCR motor hotspot. 
This sham coil appears and sounds like verum iTBS but does not 
deliver real pulses. All TBS (including real and sham) was deliv-
ered to the hemisphere contralateral to the target FCR muscle 
(i.e., the least affected).

Motor-evoked potential recruitment curves were recorded 
before and immediately following the iTBS intervention in each 
session. Single-pulse TMS was applied over the FCR motor 
hotspot at 8 different stimulus intensities: 90, 100, 110, 120, 130, 
140, 150, and 160% of RMT. Three pulses were delivered at each 
intensity in a randomized order. The average area of the MEP 
was quantified at each intensity by identifying the area under the 
MEP in each trial within a 30 ms window. The area of the MEP 
was measured.

To assess the effects of iTBS across the entire recruitment 
curve, we quantified the area under the MEP recruitment 
curve (AURC) for each participant as this has been shown to 
be a reliable way to assess corticospinal excitability changes in 
proximal upper arm muscles (18). For MEP recruitment curves, 
we calculated the percent change from T0 to T1 following real 
iTBS to either M1 or S1 and subtracted the percent change from 
T0 to T1 obtained from the sham condition. Therefore, on a 
case-by-case basis, we only considered an effect to be “real” if it 
exceeded the effect of sham, or if it was in the direction opposite 
to sham effects (Eq. 1).
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resUlts

The effects of real and sham iTBS are shown in Table 1 for each 
participant. We observed no differences associated with the 
location of stimulation (S1 versus M1); MEPs decreased in 50 
and 62.5% of subjects for M1 and S1, respectively, and increased 
in 25% of participants for both M1 and S1. In total, following 
subtraction of sham effects, iTBS decreased MEPs in 56.25% of 
instances (9/16) and increased MEPs in 25% of instances. Real 
iTBS did not exceed the effects of sham in the remaining 18.75% 
(Table 1).

DiscUssiON

The data demonstrate that iTBS over M1 and/or S1 led to changes 
in MEPs in 81.25% of instances, and these were changes that 
exceeded those induced by sham stimulation. The present data 
from eight individuals with chronic SCI indicate that a single ses-
sion of iTBS over M1 or the adjacent SI tends to decrease MEPs 
in FCR. These data are promising since they indicate that cor-
ticospinal excitability is modifiable in this population. We note 
that sham effects exceeded real iTBS effects in ~20% of instances 
and this finding highlights the importance of including sham 
control stimulation in future studies. One limitation is the lack 
of imaging data to quantify the spinal cord lesion characteristics 
in our participants.

Previous research suggests that iTBS should be expected to 
increase MEPs (7). However, in a larger sample study, iTBS was 
shown to suppress MEPs in 48% and increase in 52%, leading to 
nearly proportional outcomes (10). Further, it is unclear whether 
increases or decreases in MEPs have direct relationships with 
motor performance from a given muscle. Therefore, in the pre-
sent study, our focus was not on the direction of change induced 
by iTBS but rather whether MEPs were indeed modifiable with 
iTBS in chronic SCI. Our data from our sample of individuals 
indicate that corticospinal excitability to an impaired muscle in 
SCI is modifiable, and this information is important since iTBS 
is of minimal imposition to a participant requiring low-intensity 
stimulation for less than 3 min. Work in other clinical popula-
tions has shown that iTBS may not be as effective. Notably, iTBS 
does not alter MEPs in Tourette’s syndrome (19, 20), focal hand 

dystonia (21), multiple system atrophy (22), Alzheimer’s disease 
(23), and Parkinson’s disease (24). However, another study dem-
onstrated suppression of MEPs in individuals with Parkinson’s 
diseases when iTBS is delivered to the more affected hemisphere 
(25). The data from this pilot study indicate that iTBS may provide 
an opportunity for inducing changes in corticospinal excitability, 
in line with recent iTBS study in rodent model (9), albeit we did 
not typically see facilitation. This may relate to the single versus 
multiple trains of iTBS between the studies, or differences across 
species.

We conclude that a single session of iTBS tends to decrease 
MEPs in individuals with incomplete chronic SCI. Our findings 
highlight the need to reevaluate our expectation of the effects of 
a single session of iTBS effects in SCI as we observed suppression 
more frequently than facilitation following a single bout of stimu-
lation. It is our opinion that these pilot data are promising since 
they suggest that changes in corticospinal excitability are possible 
in chronic SCI, which creates an avenue for future research in 
this population. These data may assist with the development and 
design of future, larger-scale studies regarding the anticipated 
effects of iTBS in chronic SCI.
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