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Haematopoiesis in fish and mammals is a complex process, and many aspects regarding
its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic
despite advanced studies. The effects of microenvironmental factors or HSCs niche and
signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio
as a model organism for studies on haematopoiesis in vertebrates and discusses the
development of this process during the embryonic period and in adult fish. It describes the
role of the microenvironment of the haematopoietic process in regulating the formation
and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts
and research areas important for haematopoiesis in fish and mammals.

Keywords: haematopoietic stem cells, embryonic period haematopoiesis, post-embryonic haematopoiesis,
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INTRODUCTION

Haematopoiesis in vertebrates, despite many studies, remains to be fully characterised, and there are
even controversies related to the model of this process and its details, particularly the differentiation
of haematopoietic stem cells (HSCs) (1). As emphasized by Cheng et al. (1), these controversial
observations might be related to differences in research techniques, especially methods for tracing
the development/differentiation of HSCs and labelling efficiency of these cells. Haematopoiesis is
still enigmatic, and perhaps this is the key issue, as a process strongly dependent on various factors
of the microenvironment and signalling pathways that influence all stages of the formation and
development of blood cells and their precursors (2). In the light of previous findings that confirmed
the hierarchy of haematopoietic stem cells and hematopoietic stem/progenitor cells (HSPCs), as well
as the differentiation models of HSCs (3–5), Cheng et al. (1), proposed new paradigms on
haematopoietic stem cell differentiation, emphasizing at the same time the need for their further
revision (6–10). In the proposed model (1) it is assumed that HSCs differentiate into multipotent
progenitors (MPP), which include the subpopulation of short-term haematopoietic stem cells
(MPP1/ST-HSC), giving rise to parallel subpopulations: MPP2, MPP3 and MPP4 (LMPP,
lymphoid-primed multipotent progenitors). At the further stages of differentiation, the MPP2
subpopulation gives rise to pre-megakaryocyte-erythrocytes and ultimately the platelet lineage, with
the indirect participation of the megakaryocyte progenitors and the erythrocyte lineage, mediated
by the pre-colony forming unit-erythroid. The MPP3 subpopulation gives rise to granulocytes and
monocytes that form from pre-granulocyte-macrophages and granulocyte-macrophage
progenitors, and the MPP4 subpopulation (LMPP) differentiates, through common lymphoid
org June 2022 | Volume 13 | Article 9029411
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progenitors mainly into lymphocytes. It should be stressed that
the long-term research into details of haematopoiesis has
provided many new data, especially on the differentiation of
HSCs, giving reasons and foundations for the modification or
even radical change of the model/paradigm of haematopoiesis
(1). However, studies indicating that haematopoiesis may be
characterised by the continuous acquisition of specific properties
by hematopoietic stem/progenitor cells (HSCs/HSPCs) seem
particularly interesting, since these cells are likely to have an
epigenetic status allowing for the transformation towards a
specific cell lineage or specific cell type (1, 11–15). Yokota (14)
indicates the possible heterogeneity of HSCs and describes the
process that corresponds to the “holacracy”. Xu et al. (16), by
visualizing haematopoiesis as a stochastic process, showed that
the formation of blood cells can be modelled as a dynamic
process with a stochastic competition between the cell types.
Haematopoiesis might also be a process based on deterministic
events, as can be inferred from the study by Zhen et al. (17) in
Danio rerio. Studies on zebrafish (D. rerio) also imply that
haematopoiesis may be a continuous process of HSPCs’
differentiation associated with the simultaneous suppressive
and/or stimulating transcriptional activity of genes that are
responsible for the formation, proliferation and differentiation
of cells specific for a particular haematopoietic lineage (18).
Danio rerio (Kingdom – Animalia , Superphylum –
Deuterostomia, Phylum – Chordata, Subphylum – Vertebrata,
Class – Actinopterygii, Order – Cypriniformes Family –
Cyprinidae, Subfamily – Danioninae, Genus – Danio, Species -
D. rerio) due to its special biological characteristics is a model
organism and a highly valuable and effective “tool” in studies on
haematopoiesis and haematopoietic niches in vertebrates,
including mammals and humans (19–22). Findings from
studies on the zebrafish model have explained processes that
influence the course of haematopoiesis and the development of
HSCs, and have significant implications not only for general
knowledge in the range of basic sciences, but most of all are
important because of their potential applicability in regenerative
medicine (2, 18, 19, 21–23).
DANIO RERIO AS A MODEL ORGANISM
IN STUDIES ON HAEMATOPOIESIS

Developmental processes and molecular mechanisms regulating
haematopoiesis in embryos and larvae of D. rerio, as emphasized
by Gore et al. (2), are conserved in evolutionarily younger
organisms. It is also very important that the zebrafish has cells
of all the haematopoietic lineages, available in each period of
differentiation in the pronephros, which is the equivalent to
mammalian bone marrow, and orthologs of many transcription
factors (TFs), including TAL bHLH transcription factor 1
(TAL1, erythroid differentiation factor), GATA binding protein
2 (GATA2), RUNX family transcription factor 1 (RUNX1), MYB
proto-oncogene, transcription factor (MYB, known as c-myb),
and ETS transcription factor ERG (ERG), which play important
roles in the process of haematopoiesis in mammals (24–30).
Frontiers in Immunology | www.frontiersin.org 2
The essential similarity between the haematopoiesis in zebrafish
D. rerio and mammals also includes transcription mechanisms,
more specifically the transcriptional status of cells, associated
with the expression of genes coding regulatory factors, crucial for
a specific cell lineage, as well as signalling pathways important for
the regulation of haematopoiesis, including the Wnt signalling
pathway and Notch signalling pathway (2, 18, 23, 31–33). It is
noteworthy that Notch signaling targeting the transcription
factor RUNX1 controls self-renewal of stem cells, and the
Notch-Runx1 signaling pathway is essential for the fate of
these cells (33). D. rerio is characterised by easy and fast
reproduction (zebrafish is oviparous and fertilization is an
external process); dynamic development (at 25-26°C);
embryonic transparency, which enables observations and in
vivo imaging of the development of embryos/larvae and
haematopoiesis ; ease of genetic testing and genetic
modification to generate transgenic organisms using the Tol2
Transposase system (autonomous transposone identified in
Japanese rice fish, Oryzias latipes, which is used to create the
transgenic zebrafish) to obtain reporter lines suitable for specific
labelling of certain types of cells with green fluorescent protein
(GFP) (2, 18–20, 34–39). A model enabling the visualization of,
inter alia, the hematopoietic process is Danio rerio double
mutant - the nacre mutant and the spontaneous mutant the
roy orbison (roy), known as the casper strain, which shows a
complete lack of melanocytes and iridophores in embryogenesis
and in adulthood. These fish retain the transparency of the outer
shells throughout their lives and, very importantly, they are a tool
with the expected sensitivity and resolution in imaging and
analyzing the number and distribution of GFP-labeled stem
cells in vivo (40–42). In zebrafish all events of blood cell
formation and colonization of haematopoietic niches can be
observed from the earliest stages of development (from a few
hours and/or days after fertilization), at the single cell level. The
effects of modified/downregulated expression of a specific gene
(gene knockdown) or its removal or permanent deactivation
(gene knockout) caused by the use of an antisense
oligonucleotide (morpholino oligonucleotides) that binds to
the coding gene or its mRNA, the CRISPR system and
endonuclease Cas9 (CRISPR/Cas9) or transcription activator-
like effector nucleases (TALEN) can also be analysed successfully
in zebrafish (2, 19, 36). However, the analysis of the expression of
a specific gene cannot ignore the fact that there are significant
differences between phenotypes caused by genetic mutations and
phenotypes caused by gene knockdown or knockout, also in D.
rerio. It should also be borne in mind that harmful phenotype
changes in mutants, but not in morphants, may be buffered by
the activity of the mechanism underlying genetic compensation
(43, 44). Therefore, conclusions reached from studies on
haematopoiesis in zebrafish can be and are indeed used for
modelling studies on haematopoiesis and its disorders in humans
(20, 32). Nevertheless, it should be noted that despite the large
research opportunities offered by model organisms of D. rerio,
which complement the mammalian models, they are biased with
certain limitations, which was indicated by Konantz et al. (20).
For example, there is a limited availability of antibodies suitable
June 2022 | Volume 13 | Article 902941
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for labelling cell surface markers or techniques for the
simultaneous and selective expression of oncogenes in the
tissues of adult D. rerio, which would offer more opportunities
for the phenocopying of human disorders.
EMBRYONIC HAEMATOPOIESIS IN
DANIO RERIO

Embryonic period haematopoiesis in D. rerio (Figure 1) has two
stages, i.e. early-embryonic haematopoiesis (Figure 1.1A) and
embryonic haematopoiesis (Figure 1.1B).

Early-Embryonic Haematopoiesis
At this stage of embryonic development, hematopoiesis in
zebrafish (Figure 1.1A) is a process which, as in other
vertebrates, develops in two successive waves: the primitive
wave (Figure 1.1A.a) and the definitive wave (Figure 1.1A.b)
(2, 20, 23, 45).

The primitive wave of the early-embryonic haematopoiesis
(Figure 1.1A.a) starts in two different regions of the lateral
Frontiers in Immunology | www.frontiersin.org 3
mesoderm: in the posterior lateral-plate mesoderm (PLPM) and
in the anterior lateral-plate mesoderm (ALPM). From PLPM, at the
trunk midline of the fish embryo (2), the so-called intermediate cell
mass (ICM) blood islands are formed (gata1a+ - GATA binding
protein 1a or spi1b+ - Spi-1 proto-oncogene b, called pu.1)
conceptually analogous to the extra - embryonic yolk sac blood
islands of mammals and birds, which give rise to primitive erythroid
cells - erythrocytes (E) (hbbe3+ - haemoglobin beta embryonic-3,
hbbe1.1+ - haemoglobin beta embryonic-1.1, hbae3+ -
haemoglobin alpha embryonic-3, hbae1.1+ - haemoglobin, alpha
embryonic 1.1, known as hbae1), and 24 hours post fertilization
(hpf) they enter the circulation as oval and nucleated cells and
primitive myeloid cells - neutrophils (mpx+ - myeloid-specific
peroxidase) (2, 19, 23, 28). Moreover, transcription factors Gata1a
and Spi-1b exhibit a cross-inhibitory relationship to regulate the
fates of primitive erythroid and myeloid cells (23). ALPM, which is
the main myelopoietic site, gives rise to rostral blood islands (RBI)
(etsrp+ - ETS1-related protein, spi1b+, gata1a+), where primitive
macrophages are formed (csf1ra+ - colony stimulating factor 1
receptor a,mpeg1+ - macrophage expressed gene 1, ptpn6+ - protein
tyrosine phosphatase non-receptor type 6, cxcr3.2+ - chemokine [C-
FIGURE 1 | Embryonic period haematopoiesis and adult haematopoiesis in zebrafish (D. rerio) (references in the main text). Explanatory notes for part (A, B): PLPM,
posterior lateral-plane mesoderm; ALPM, anterior lateral-plane mesoderm; ICM, intermediate cell mass; RBI, rostral blood islands; VDA, ventral wall of the dorsal
aorta; CHT, caudal hematopoietic tissue; hpf, hours post fertilization; dpf, days after fertilization; spi1b, Spi-1 proto-oncogene b; etsrp, ETS1-related protein; gata1a,
GATA binding protein 1a; hbbe3, haemoglobin beta embryonic-3, hbbe1.1, haemoglobin beta embryonic-1.1; hbae3, haemoglobin alpha embryonic-3, hbae1.1,
haemoglobin alpha embryonic-1.1, lyz, lysozyme C, mpx, myeloid-specific peroxidase, lzm/mpx, double-positive neutrophils stain strongly with Sudan black; lmo2,
LIM domain only 2; runx1, RUNX family transciption factor 1; myb, MYB proto-oncogene, transcription factor; itga2.L, integrin subunit alpha 2 L homeolog (itga2-A);
itga2B, integrin subunit alpha 2 B (CD41).
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X-C motif] receptor 3, tandem duplicate 2) as well as neutrophils
(lyz+ - lysozyme C, mpx+, lyz+/mpx+ - double-positive neutrophils
stain strongly with Sudan Black), which have a phagocytic capacity,
and are involved in the formation of HSCs/HSPCs in the ventral
wall of the dorsal aorta (VDA) and themigration of these cells to the
vascular system/venous sinuses in the caudal region of the fish body,
between the caudal artery and the vena cava, i.e. to the caudal
haematopoietic tissue (CHT) (2, 19, 23, 46–53). As highlighted by
Jagannathan-Bogdan and Zon (23), PLPM and ALPM in D. rerio
co-expressing tal1, gata2, lmo2 (LIM domain only 2), fli1 (Fli-1
proto-oncogene, ETS transcription factor) and etsrpmay give rise to
angioblasts or HSCs, which confirms the presence of
haemangioblasts - common precursors of endothelial cells and
haematopoietic cells in zebrafish and humans.

The definitive wave of early-embryonic haematopoiesis
(Figure 1 - 1.Ab) includes the transient stage and the
definitive stage of haematopoiesis. The transient stage takes
place in PLPM, where multipotent erythromyeloid progenitors
(24-30 hpf) are formed, also called erythroid-myeloid
progenitors (gata1a+, lmo2+) (2, 19, 23, 54, 55). During the
definitive stage of haematopoiesis the subpopulation of
endothelial cells in VDA (the equivalent of the mammalian
aorta-gonad-mesonephros [AGM] region), in the process of
the so-called endothelial-hematopoietic transformation (EHT),
also defined as the new type of cell behaviour, primitive
multipotent HSCs (runx1+, myb+) are formed and released
(26-54 hpf) that may differentiate into haematopoietic stem
progenitor cells (HSPCs) expressing runx1, myb, itga2.L
(integrin subunit alpha 2 L homeolog, known as itga2-A),
itga2.B (integrin subunit alpha 2 B, known as CD41) (2, 4, 18,
19, 21, 47, 56, 57). According to Henninger et al. (58), about 30
HSCs or their clones are generated at this stage of embryonic
development, and these cells are responsible for the formation of
the haematopoietic system and life-long haematopoiesis in fish/
vertebrates. Henninger et al. (58) also emphasized that HSCs in
D. rerio in this period of embryonic development are the most
productive. This event, i.e. the formation of HSCs/HSPCs, marks
the beginning of the definitive haematopoiesis, in which blood
cells are generated by self-renewal and differentiation of already
existing HSCs/HSPCs but not those generated de novo (19, 58).
HSCs/HSPCs are induced, for example, by Cxcl12b (chemokine
[C-X-Cmotif] ligand 12b) produced by the specific population of
endothelial precursors (endotome cells), and by TNF-a (tumour
necrosis factor a), produced by primitive macrophages and
neutrophils, and after moving into the vena cava they migrate
to CHT (2 days post fertilization, dpf), which is the site of
embryonic haematopoiesis (the equivalent of the foetal liver
in mammals).

Embryonic Haematopoiesis
In CHT they are stimulated by cytokines: Kitlgb (kit ligand b),
Osm (oncostatin M), Csf3a (colony stimulating factor 3
[granulocyte] a), Ccl25b (chemokine [C-C motif] ligand 25b),
Cxcl8b (chemokine [C-X-C motif] ligand 8b) and Cxcl12a
(chemokine [C-X-C motif] ligand 12a) as well as Klf6a
(Krüppel-like factor 6a, transcription factor), and gain the
capacity for self-renewal and differentiation. The development
Frontiers in Immunology | www.frontiersin.org 4
and expansion of these cells is a key property of CHT, supervised,
inter alia, by the regulatory mechanism of non-hematopoietic
CHT components, i.e. vascular endothelial cells, epithelial cells,
fibroblasts, and nerve and muscle cells (59–61). It has been
shown (59) that promoting the proliferation and differentiation
of HSCs/HSPCs in the CHT niche, in addition to chemokines
and cytokines, is also tightly controlled by various external and
internal cellular factors, such as the cell cycle and transcriptomic
features that are likely to affect cell heterogeneity in the parental
and progenitor compartments. An example is the identified and
characterized (59) vascular endothelial-specific factor, i.e.
Gpr182 (G protein-coupled receptor 182), which plays a
positive role in CHT remodeling favoring the expansion of
HSPCs. It should be emphasized that the HSPCs population,
in CHT D. rerio, includes four subpopulations, identified on the
basis of different lineage-specific genes - HSPC1 cmyb+, a
proliferative subpopulation not involved in the differentiation
process and HSPC2 hemgn+, tmem14ca+, HSPC3 cebpb+, HSPC4
coro1a+, ccr9a+, rac2+, subpopulations capable of differentiating
cells targeted to perform specialized functions (59). These
subpopulations are also recognizable on the basis of the
metabolic genes HSPC2 pcna+, cdk1+, slc11a2+, HSPC3 fosab+,
HSPC4 actb1+, rac2+, litaf+, coro1a+ (59), suggesting their
influence on HSPC heterogeneity (59). At this stage of
development of hematopoiesis, HSCs/HSPCs give rise to
embryonic macrophages, neutrophils and monocytes, they
proliferate and migrate (19, 49, 56, 59–62) and finally colonize
the developing thymus, where T lymphocytes are generated (3
dpf), along with the pronephros (4 dpf) (the equivalent to the
bone marrow of mammals) (Figure 1. - 2) (2, 19, 32, 63, 64). In
the pronephros , HSCs/HSPCs fulfi l their l i fe- long
haematopoietic function (19).

Haematopoietic Niches
The key sites in regulating the formation and function of stem
and progenitor cells, HSCs/HSPCs, are specialized/specific
anatomical regions called haematopoietic niches creating a
microenvironment of the haematopoietic process. They have
special anatomical and structural features, that is a specific subset
of cells including vascular endothelial cells, mesenchymal
stromal cells (MSC), macrophages and neutrophils, and
regulatory agents that interact with stem cells and selectively
orchestrate a development pathway for these cells (19, 36). Two
haematopoietic niches have been identified in D. rerio: VDA,
called the initiating haemopoietic niche, and CHT, defined as the
primary tissue of embryonic haemopoiesis or the intermediate
haematopoietic niche. In adult zebrafish, the haematopoietic
niche is the pronephros, which accommodates self-renewing
and differentiating HSCs/HSPCs, and generating all blood cells
during the whole adult life of vertebrates (19, 28, 36).

Some vascular endothelial cells in VDA, called haemogenic
endothelial cells (HE) in D. rerio give rise to HSCs (runx1+,
myb+) and HSPCs (runx1+,myb+, itga2.L+, itga2B+), while others
perform regulatory functions in the process of their formation.
The formation of HSCs/HSPCs, as previously mentioned, is
induced by the activity of a specific population of endothelial
precursors, called “endotome cells” (at the primary stage of their
June 2022 | Volume 13 | Article 902941
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formation in somite they are identified as meox1+, mesenchyme
homeobox 1), which migrate and colonize VDA (65), and
Cxcl12b produced by them. Further, due to the deactivation of
meox1 (a gene coding a protein which may play a role in the
molecular signalling network regulating the growth of somites)
and increasing the number of “endotome cells”, the induction of
HSCs/HSPCs is stronger and they are released to the circulation,
with the involvement of cells other than endothelial cells from
VDA, i.e. those from adjacent somites, as well as primitive
macrophages and neutrophils by the release of cytokines and
enzymes, such as TNFa or Mmp2 (matrix metalloproteinases 2
(19, 36, 47, 51, 58). Monteiro et al. (66) demonstrated that the
formation of HSCs/HSPCs is also regulated by Tgf-b
(transforming growth factor beta), an anti-inflammatory
cytokine regulating the proliferation and differentiation of
many types of cells. Tgf-b, by binding to a single type II
serine-threonine kinase receptor (Tgf-br2) in an autocrine
mechanism activated by ligands, Tgf-b1a and Tgf-b1b, is
involved in the determining/programming of endothelial cells
towards the haemogenic endothelium (before EHT), and further,
in a paracrine mechanism activated by Tgf-b3 (the source of the
ligand is the notochord), it is involved in EHT and the generation
of HSCs/HSPCs. Tgf-b, in both stages of its activity, also
regulates the expression of Jag1a (jagged canonical Notch
ligand 1a) activating the Notch1a receptor present on the
surface of cells in VDA, which is a necessary process for the
formation of haematopoietic stem cells (66, 67). The release of
HSCs/HSPCs from VDA is regulated by Cbfb (core binding
factor subunit beta), coded by the cbfb gene whose expression
defines HE cells and determines EHT (68). A study by Bresciani
et al. (68) revealed, however, the involvement and functional role
of Cbfb at different stages of HSCs/HSPCs development. Cbfb is
a subunit involved in the early stage of the definitive wave of
haematopoiesis (Figure 1.1.A.b) by forming the Runx1/Cbfb
complex, which, as in mammals (mice), is a heterodimeric core-
binding transcription factor) (68). In D. rerio both subunits,
Cbfb and Runx1, can be active independently of each other and
participate in two different stages of the definitive
haematopoietic wave (68). Runx1 is involved in the generation
of HSCs (runx1+, myb+) in VDA, while Cbfb is involved in the
release of HSCs from VDA. The definitive wave of
haematopoiesis in D. rerio is also regulated by two isoforms of
the Scl transcription factor (stem cell leukaemia) - Sclb and Scla
(17). These isoforms are involved in the defining and generation
of HE – Sclb (VDA scl-b+ cells, before EHT) and the generation,
retention and release of HSCs/HSPCs - Scla (generated HSCs scl-
a+) (17). Of note is the fact that the expression of scl-b is the first
molecular marker of haemogenic endothelial cells (17), and the
process of HSCs generation is determined by a sequential activity
of transcription factors: Scl-b, Runx1 (at the stage of EHT) and
Scl-a. At this stage of haematopoiesis the differentiation of
haematopoietic stem cells HSCs/HSPCs is also strongly
regulated by Dnmt3bb.1 (DNA [cytosine-5-]-methyltransferase
3 beta, duplicate b.1), an enzyme that is one of six (dnmt3bb.1,
dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.2, dnmt3bb.3) homologs
of DNMT3b in mammals (69, 70). The activity of Dnmt3bb.1
Frontiers in Immunology | www.frontiersin.org 5
initiated in response to an increased expression of the runx1 gene
(stimulated most likely by Scl-b (17),) and the Notch/Runx1
signalling pathway, sustains the expression of the myb gene and
functional efficiency of HSCs/HSPCs (69, 70). Moreover, the
vascular endothelial cells present in haematopoietic niches
support the process of haematopoiesis regardless of their origin
(VDA, CHT, pronephros) and different transcriptional
characteristics (32, 71, 72). Importantly, the endothelial cells in
the CHT are characterized by a specific alignment, for which
HSCs/HSPCs migrating and released to the perivascular space
must squeeze between them. Because of this, haematopoietic
stem cells directly surrounding endothelial cells induce changes
in their organization within the niche (a pocket is formed around
HSCs/HSPCs) and probably also cause an increase in the
concentration of cytokines and signalling molecules, which
consequently influences the expansion and differentiation of
HSCs/HSPCs and their effective interaction with stromal cells
(19, 22, 36).

Mesenchymal stromal cells (MSCs) in D. rerio originate from
the ventral border of the caudal somites and are generated during
the epithelial–mesenchymal transition (EMT). MSCs are present
among the endothelial cells of vascular network/vascular sinuses
forming CHT and may express Cxcl12a cytokines (19, 32, 73).
MSCs come in contact with HSCs/HSPCs, anchor them and
further orient their differentiation and division, which increases
the population of stem cells. It is possible that this process is
induced by the Cxcl12/CxcR4 signalling axis (36, 53). This is
facilitated, as mentioned earlier, by the formation of ‘pockets’
around HSCs/HSPCs, increasing the local concentration of
growth factors and signalling molecules, and creating the most
product ive condit ions for the interaction between
haematopoietic stem cells and stromal cells (36). Importantly,
MSCs were previously described as fibroblastic reticular cells
(FRCs), and later as stromal cells or stromal reticular cells (SRCs)
also present in the pronephros in fish and, similar to CXCL12+

reticular cells, present in mammalian bone marrow (53).
Primitive macrophages and neutrophils, being the cells of the

hematopoietic microenvironment, play an important regulatory
role in the formation of HSCs/HSPCs in VDA and the migration
of these cells to CHT and haematopoietic organs in adult
individuals (pronephros, thymus) (2, 19, 23, 47–53). These
cells, as mentioned earlier, develop at the early stage of
embryonic haematopoiesis, i.e. during the primitive wave of
haematopoiesis (16 hpf) (Figure 1.1.A.a) and the definitive
wave of haematopoiesis (30 - 55 hpf) (Figure 1.1.A.b), when
HSCs/HSPCs are generated (26-54 hpf). The presence of mpeg1+

macrophages was demonstrated in VDA and CHT (19, 46, 50).
Travnickova et al. (50) reported that primitive macrophages, by
releasing Mmp-9 (matrix metalloproteinases 9), induce the
degradation of the extracellular matrix (ECM) and mobilize
HSCs/HSPCs for migration. However, the actual role of these
cells in niches of the early stage of embryonic haematopoiesis is still
unclear (19, 37, 50, 67). Primitive neutrophils, like primitive
macrophages, express the genes coding matrix metalloproteinases,
Mmp-2 and Mmp-9, and these enzymes, apart from the
degradation of extracellular matrix proteins, also stimulate the
June 2022 | Volume 13 | Article 902941
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release of HSCs/HSPCs from VDA (Mmp-2) and CHT (Mmp-9)
(19, 51). Theodore et al. (51) emphasized that Mmp-2 and Mmp-9
proteins are active at different stages of the formation, development
and migration of HSCs/HSPCs and via discrete indirect or direct
mechanisms, they are involved in processes associated with the
signalling inflammatory process, extracellular matrix protein
degradation, and the regulation of chemokines activity. In the
formation of HSCs/HSPCs, the signalling pathway mediating
sterile inflammation (in an environment without the
inflammatory/damaging factor) triggered towards endothelial cells
in the VDA also plays an important role. This process develops, for
example, because of the activity of Tnf-a, a proinflammatory
cytokine released mainly by primitive neutrophils (and to a lesser
extent by the primitive macrophages), which activates the
endothelial cells in VDA. In subsequent events of the process
Tnf-a actives specific Tnfr2 (tumour necrosis factor receptor-2),
and this increases the expression of Jag1a and activates Notch1a,
which may be a receptor present on the surface of HSCs, and
ultimately, through the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) active in the formed HSCs,
transcription necessary for the release of HSCs/HSPCs from
endothelial cells is triggered (67, 74). The formation, release and
migration of HSCs/HSPCs is also controlled and promoted by the
regulatory activity of Ifn-g and Ifn type I – the equivalent of IFN-a
in mammals (37). The regulatory properties of these cytokines, like
Tnf-a, reflect their broad functional potential, which is very
important, as it turns out, in the process of embryonic
haematopoiesis that, of note, is not related to the inflammatory
process/inflammation or protection against infection.
HAEMATOPOIESIS IN ADULT
DANIO RERIO

In adult fish, haematopoiesis develops in the pronephros. In this
organ HSCs/HSPCs are self-renewing and differentiating, giving
rise to all lineages of blood cells (19, 28, 36). However, there are
still open questions about the site where HSCs are
accommodated and differentiate, what the mechanisms
regulating the formation of mature morphotic elements of
blood in fish and other vertebrates are, and what is the most
probable model/paradigm on haematopoiesis. The classical
model of haematopoiesis in vertebrates, also in the light of
recent studies on D. rerio (75), aided with state-of-the art
research techniques and regarding “megakaryopoiesis” (18) or
the molecular definition of cell populations/clusters in the
pronephros and identification of marker genes for cells of
specific haematopoietic lineages (75), is still being improved
and is a subject of targeted verification (1, 11, 13–15, 18, 76).
The proposed models of hematopoiesis and data on this process
in vertebrates still raise further doubts and questions, for
example about heterogeneity, the presence/localization of HSC/
HSPC in the adult body or the definition of a hematopoietic
niche, and thus whether the bone marrow in mammals or the
anterior kidney in fish, they are the only/final sites of the blood
formation process. Today we know that not (1, 14, 15).
Frontiers in Immunology | www.frontiersin.org 6
Considering the latest findings on haematopoiesis in
vertebrates, including mammals and fish, the conventional
concept of HSCs, including their presence, development and
differentiation, is evolving into a completely different paradigm.
HSCs/HSPCs form a flexible heterogeneous population of cells
with different potential for self-renewal and differentiation (14,
18, 77, 78). In mammals these cells in the state of homeostasis
circulate and generate peripheral haematopoiesis, respond to
differentiating signals and the presence of antigens, and produce
myeloid cells, including dendritic cells (DC), in the periphery
(14, 79). HSCs and HSPCs have been detected in the lungs and
the gut of mammals - humans and mice (14, 80), and it was
demonstrated (79) that these cells can migrate to other organs/
tissues and return from the periphery to the bone marrow. It
should be emphasized that also in the periphery, the integrity of
HSCs is protected by the haematopoietic microenvironment, i.e.
niches that are heterogeneous by nature (14), because they are
formed, for example, by osteoblasts, endothelial cells,
mesenchymal stromal cells, nerve cells and megakaryocytes
(ME) (14). Moreover, when exposed to microenvironmental
factors, HSCs develop and change autonomously and
heteronomously (14). Cheng et al. (1), in the presence of data
obtained through the use of advanced single-cell ‘omics’
techniques, indicated a model of continuous differentiation of
HSCs, which is characterized by the absence of a discernible
hierarchy. HSCs develop and differentiate gradually, in many
directions, continuously and without creating a distinct
hierarchy of organized progenitor populations (Figure 2).
Cheng et al. (1) assumed that because of the identified
heterogeneity of HSCs, the ability of the development of these
cells into specific lineages is already acquired before their
differentiation. Studies on samples of human bone marrow
(11) and in D. rerio (18) revealed that profiled cells with a
restricted monolineage originate from the continuum of
undifferentiated HSPCs, i.e. cells that have the potential of
myeloid and lymphoid cells, either innate or adaptive
(Figure 2). A separate haematopoietic lineage was identified
among HSCs, ‘preventing’ the formation of megakaryocytes (the
equivalent of thrombocytes in teleost fish) and platelets, which
acquire properties specific just for that lineage (76). This fact is
particularly interesting, also in consideration of the functional
potential (haemostatic and immune properties) of these cells in
vertebrates (platelets in mammals and thrombocytes in fish) at
various stages of phylogeny (5). Brown and Ceredig (15)
indicated that it is very likely that in mammals HSCs and their
‘progeny ’ are pluripotent, because regardless of the
predetermined fate of their development they may switch it to
an alternative one, closely related, and during their development/
differentiation they are sensitive to many cytokines (THPO -
thrombopoietin, EPO - erythropoietin, CSF3 - colony
stimulating factor 3 [granulocyte-colony stimulating factor -
G-CSF], CSF1 - colony stimulating factor 1 [macrophage-
colony stimulating factor - M-CSF], CSF2 - colony stimulating
factor 2 [granulocyte-macrophage- colony stimulating factor -
GM-CSF], FLT3L - FMS-like tyrosine kinase 3 ligand), which
determine the profiling of HSCs and formation of a specific
June 2022 | Volume 13 | Article 902941
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lineage of haemopoietic cells. The local increase in the
concentration of certain cytokines and the autoregulated
expression of the receptor specific for this cytokine most likely
determine the fate of HSCs’ differentiation process, which
depends on the effects of cytokine-receptor interaction (15).

In D. rerio HSCs/HSPCs migrate from CHT and further
colonize the thymus, where T lymphocytes are formed (3 dpf),
and the pronephros, where erythroid, myeloid and lymphoid – B
lymphocytes cells are formed, except T lymphocytes (4 dpf) (2, 19,
32, 56, 62–64, 81). As emphasized by Macaulay et al. (18),
zebrafish have cells of all haematopoietic lineages and orthologs
of transcription factors and other genes that are also involved in
the process of haematopoiesis in mammals, namely tal1, lmo2,
lyl1, gata2, runx1,meis1,myb and erg specific for HSCs, fli1, gfi1b,
gata1, cd61, cd42b specific for megakaryocyte/erythroid lineages,
and gfi1, spi1b specific for myeloid cell lineage. It should be added
that D. rerio has two GATA2 orthologs, ie gata2a and gata2b. The
dominant and required for maintenance of HSCs is gata2b,
expressed on HSCs and HSPCs, while gata2a dominates in the
vascular system, including hemogenic endothelial cells (30). The
high degree of comparability/functional similarity between fish
and mammals also relates to signalling pathways and
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transcription mechanisms that are active during haematopoiesis
in these two taxonomic groups of vertebrates (18, 23). According
to Macaulay et al. (18), adult haematopoiesis in D. rerio is, as in
mammals, continuous and asynchronous/flexible, and the
pronephros in fish, like the bone marrow in mammals,
accommodates all types of haematopoietic cells at different
stages of differentiation. This was shown in studies on the
origin and development of thrombocytes (18), based on single
cell RNA sequencing (scRNA-seq), which allows for the analysis
of differential expression (DE), grouping and classification of cells,
but also the reconstruction of cell differentiation trajectory. This
study (18) revealed that the differentiation of cells (acquisition of
specific phenotypes) progresses along a one-dimensional, non-
branching path. It was also found (18) that this process is
correlated/consistent with the transcriptional programme,
which is reflected in the stimulated or suppressed expression of
genes specific for the programme of development, differentiation
and functional determination of cells from a particular lineage, or
restricting the proliferation of cells and their translational
capacity. Macaulay et al. (18) emphasized that as this process
continues, the number of expressed genes and mRNA content in
the cell is reduced and limited to those which define a specific cell
lineage. In addition to these data, information on defined sets of
genes spec ific for HSCs, HSPCs, megakaryocytes /
thrombocytes runx1,cd41 (kidney marrow [pronephros]); neutrophils mpx

(kidney marrow [pronephros]); NK cells lck/rag1-/- (kidney marrow [pronephros]);
B cells rag2 (kidney marrow [pronephros]); mature T cells lck (thymus) is also
important (18). The heterogeneity of cells in the pronephros in
adult D. rerio was also demonstrated by Tang et al. (75), based on
the massively parallel transcriptomic method using indexing
droplets (InDrops), single-cell RNA sequencing and t-
distributed stochastic neighbour embedding (tSNE). In these
studies, major haematopoietic cells in the pronephros of
zebrafish were defined, i.e. neutrophils, progenitors, erythroid
cells, HSCs/thrombocytes, B cells, T/NK cells, myeloid cells,
macrophages, as well as seven unique kidney stromal-cell types.
Novel genes of specific haematopoietic cell lineages were also
identified (HSCs/HSPCsrunx1, thrombocytescd41, neutrophilsmpx,
T/NKlck cells, NKlck/rag1-/- cells, Brag2 cells), and a new population
of NKLmpeg1.1,ccl33.3,nkl.3,nkl.4,prf1.2,prf1.7 cells (NK-like), which
conserve the genes typical for cells with cytotoxic and lytic
capacity despite the lack of their association with Tlck

lymphocytes. The analysis of findings (75) suggests that
classically defined HSPCs involved in the lineage of erythroids
and thrombocytes may also include progenitor cells with closely
related transcriptional programmes.
CONCLUDING REMARKS

The presented information shows that haematopoiesis in D. rerio,
as in mammals, is a complex process, both at the embryonic stage
and in adult individuals. Findings on the development of
haematopoiesis and the role of the microenvironment/niche in
the regulation of the formation and function of HSCs/HSPCs shed
a new light on this process, especially in the context of details
FIGURE 2 | Hypothetical model for the development and differentiation of
HSCs, in multiple directions specific for lineages, continuous and without
creating a distinct hierarchy of organized progenitor populations (proposed by
the authors). Explanatory noted: HSC, haematopoietic stem cell; HSC/HSPC,
haematopoietic stem cell/hematopoietic progenitor cell (migratory/tissue,
resident); TF, transcription factor (or sequence,specific DNA,binding factor)
in the environment of HSC-HSPC cells; ME, megakaryocytes/source of
platelets in mammals/thrombocytes in fish; E, erthcrocytes; M, monocytes/
macrophages; G, granulocytes; DC, dendritic cells; ILC (ILC1; ILC2; ILC3/ NK;
LTi), innate lymphoid cells; mILL (Tgd lymohocytes [IEL, intraepithelial
lymphocytes]; mucosal associated invariant T cells [MAIT]; NKT cells; B1
lymphocytes [unconventional BCD5+ lymphocytes]; marginal zone B cells),
mammalian unconventional or innate-like lymphocytes; TTCR+, TTCR+
lymphocytes and their subpopulations; BBCR+, B BCR+ lymphocytes and
their subpopulations.
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associated with the differentiation of HSCs and the resulting need
to modify the paradigm on haematopoiesis. Despite the
discoveries made to date, the process of haematopoiesis in
D. rerio and other vertebrates requires further studies to explain,
for example, the epigenetic characteristics of cells from specific
haematopoietic lineages, taking into account different stages of
development and a continuum of differentiation, or the presence
of HSCs outside the bone marrow/pronephros niche, and define
Frontiers in Immunology | www.frontiersin.org 8
the ‘local’ capacity of these cells for self-renewal and differentiation
into mature forms of certain haematopoietic lineages.
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