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Fetal sex is associated with striking differences during in utero development, fetal-to- 
neonatal transition, and postnatal morbidity and mortality. Male sex fetuses are apparently 
protected while in utero resulting in a higher secondary sex rate for males than for females. 
However, during fetal-to-neonatal transition and thereafter in the newborn period, female 
exhibits a greater degree of maturation that translates into a better capa city to stabilize, 
less incidence of prematurity and prematurity-associated morbidities, and better long-
term outcomes. The present review addresses the influence of sex during gestation 
and postnatal adaptation that includes the establishment of an adult-type circulation, 
the initiation of breathing, endurance when confronted with perinatal hypoxia ischemia, 
and a gender-related different response to drugs. The intrinsic mechanisms explaining 
these differences in the perinatal period remain elusive and further experimental and 
clinical research are therefore stringently needed if an individual oriented therapy is to be 
developed.
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iNTRODUCTiON

Vital statistics from different countries point out that the number of male born infants overcomes 
that of females. In 1997, the sex ratio male vs. female after studying a population of 549,048 births 
was established in 1.06% (1). The human sex ratio is thought to be the result of two processes 
(Figure 1). First, the sex of the zygotes is significantly influenced by the hormonal activity of the 
progenitors during the periconceptional period. Second, maternal stress induces the production 
of adrenal androgens leading to selective spontaneous abortion of male sex embryos. Both these 
circumstances are relevant conditioning factors contributing to the secondary sex ratio at birth. 
However, studies trying to unveil the factors that determine the sex ratio at birth and to identify 
associations between sex ratio and other perinatal circumstances such as still birth, and/or birth 
or parental-related factors have yield inconclusive results (2). In developing countries where the 
incidence of prenatal losses and stillbirths is significantly greater than in developed countries, male/
female sex ratio at birth has been established around 102 (3).

The sex ratio at conception or primary sex ratio (PSR) in humans is unknown. No scientific 
evidence, however, has supported the assumption that PSR is more male-biased than the birth 
sex ratio (secondary sex ratio). In previous studies, estimates of the PSR have been claimed to be 
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FiGURe 1 | Primary sex rate is determined at birth. However, along gestation different circumstances modify survival of fetuses from different gender and therefore 
secondary sex rate is that present at birth.
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around 0.56 (proportion of males) or even greater. Statements 
supporting that PSR are unbiased, it is slightly male or female 
biased, or that it cannot be estimated due to an absence of sound 
data or methodological issues have been evenly called upon 
(4). Orzack et  al. analyzing 3–6 day embryos, estimated the 
sex ratio (male proportion) at conception in 0.5. Interestingly, 
the sex ratio of abnormal embryos is male biased while normal 
embryos are female biased. Bias is associated with the Y and X 
chromosomes and of chromosomes 15 and 17. Along gestation, 
the sex ratio varies. After an initial increase in male mortality, an 
increased female mortality follows thereafter finally overcoming 
male mortality at the end of gestation. This would explain why 
the secondary sex ratio for males is greater that for females. In 
the neonatal period, however, male mortality and morbidity 
significantly overcomes that of females (4).

In 2013, the leading causes of neonatal death worldwide 
were attributed to prematurity-associated and birth-related 
com plications such as birth asphyxia or trauma, infections, and 
congenital malformations. Although the order of relevance is 
highly dependent on the level of income, cultural and social 
development of each country in every country and for all diag-
nostic groups the proportion of affected males was significantly 
higher than that for females (3, 5). Recently, United States vital 
statistics from 2013 informed that the overall infant mortality 
rate for male newborn infants as compared to female was 6.51 vs. 
5.39 per 1,000 births, 21% higher coincident with other relevant 
reports (6, 7).

In 1971, the term “male disadvantage” was coined by Naeye 
et al., referring to the higher incidence of perinatal mortality for 
male as compared to female newborn infants. Interestingly, in the 
analysis of 2,735 consecutive newborn autopsies, these authors 
found that the rate of males to females was 1.28:1. Male tendency 

toward increased morbidity and mortality was related to condi-
tions associated with birth. Hence, removal of the male fetus 
from maternal utero predisposed to conditions that increased 
morbidity and mortality thus unveiling male-inherent biological 
disadvantages when confronted with the extrauterine milieu (8). 
The exact mechanisms involved in male biologic disadvantages 
remain unclear; however, a body of evidence reveals that obstet-
ric risk factors such as hypoxia, the influence of sex hormones, 
alterations in cell death pathways and sensitivity to inflammation 
and excitotoxins, as well as sex differences in autonomic and 
endocrine stress responses seem to play a relevant role in this 
biologic difference between males and females (9).

The aim of the present review is to inform how the sex of the 
fetus influences morbidity and mortality during pregnancy and 
the neonatal period.

SeX RATe AND PReGNANCY OUTCOMeS

The association of fetal sex with gestational complications such as 
preeclampsia, preterm delivery, glucose tolerance, spontaneous 
abortion, stillbirth, or complications during delivery such as true 
cord knots, alteration of fetal heart variability, need for C-section 
among others have been largely assessed in clinical studies and 
recently reviewed (10). Hence, Sheiner et  al. (11) compared 
50,000 pregnancies with male fetus vs. a similar number with 
female fetus. Interestingly, pregnancies with female fetuses had a 
higher incidence of preeclampsia and glucose intolerance while 
pregnancies with male fetuses had a significantly higher incidence 
of prematurity and complications such as macrosomia, failure of 
progress during the first stages of labor, cord prolapse, among 
other factors contributing to interfere with eutocic vaginal deliv-
ery, thus concluding that male sex is an independent risk factor 
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TAble 1 | Odds ratio (OR) for males regarding gestational conditions that alter 
fetal progression in labor after Sheiner et al. (11).

Condition OR Significance

Macrosomia 2.0 (1.8–2.1) <0.001
Failure to progress labor 1.2 (1.1–1.3) <0.001
Cord prolapse 1.3 (1.1–1.6) <0.014
Nuchal cord 1.2 (1.1–1.2) <0.001
True umbilical cord knot 1.5 (1.3–1.7) <0.001
C-section 1.2 (1.2–1.3) <0.001
5 min Apgar score 1.5 (1.3–1.8) <0.001
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for delivery-associated adverse pregnancy outcomes (Table 1). 
In addition, in chromosomally normal spontaneous abortions 
the female sex ratio was 1.32 representing a 30% increased risk 
ratio for male fetuses (12). The national medical birth registry 
of Sweden, which included gestations of ≤28  weeks if the 
infant was alive at birth showed no difference in the incidence 
of stillbirth between male (3.8/1,000) and female (3.9/1,000) 
fetuses. However, the number of male newborn infants dying in 
the neonatal period or before 1 year of age was a greater than 
50%. The rate of mortality for males at 1 year was 3.44/1,000 and 
2.18/1,000 for females (13).

Hypertensive Disorders of Pregnancy
Fetal sex has been linked to hypertensive disorders pregnancy, 
especially preeclampsia. Preeclampsia is associated with an 
increased risk for both maternal and fetal morbidities and mor-
tality. In two large studies, Shiozaki et al. (14) and Zheng et al. 
(15) found that carrying female fetuses in singleton, monocho-
rionic diamniotic, and dichorionic diamniotic pregnancies was 
significantly associated with pregnancy-induced hypertension. 
They concluded that female fetal sex was a risk factor for both 
pregnancy-induced hypertension and preeclampsia (14, 15).

Prematurity
Preterm birth remains the major cause of infant mortality world-
wide with a complex and multifactorial etiology with potentially 
interacting causes (16). Preterm labor is considered idiopathic 
inasmuch as 40% of cases while the remaining 60% is associated 
with preterm premature rupture of the membranes or maternal 
and/or fetal infection. Maternal risk factors include, obesity 
(body mass index  >  25), previous preterm deliveries or abor-
tions, cesarean section, the use of reproductive techniques, twin 
pregnancy, physical extenuation, and previous preterm birth and 
ethnicity. These proportions may vary with gestational age but 
also with the economic and social development of the countries 
(17, 18). National figures from 1999 to 2000 in the national medi-
cal birth registry from Sweden showed an increased number of 
males born between 24 and 37 gestational weeks. However, the 
number of females overcame that of males between 38 and 40 
gestational weeks (13). In a register study that included almost 
two million births performed in New England (US), an excess 
of 7.2% males among white singleton preterm births over 
20–37 weeks of gestation was found; however, when black single-
ton preterm incidence was assessed only 2.8% excess was found 
(19). Similarly, Wilms et  al. found that gestational age at birth 

of pregnancies of male and female fetuses did not significantly  
differ; however, in Caucasians, they found a significantly increased 
risk for preterm delivery before 37  weeks in women pregnant 
with male fetus odds ratio (OR) 1.9 (95% CI 1.2–3.0) (20).

FeTAl-TO-NeONATAl TRANSiTiON

Delayed lung Antioxidant Defense  
System Maturation
Early in gestation sex, differences in lung development become 
already apparent. During the canalicular and initial phase of the 
saccular stage, the lungs of female fetuses are more structurally 
mature when compared to their male counterparts. However, 
differences fade along the late saccular stage and disappear by 
32 weeks gestation. Of note, most preterm neonates cared for in 
the neonatal intensive care units (NICU) pertain to the range of 
24th to 32nd weeks’ gestation, precisely when the difference in 
lung development is more apparent. This should be taken into 
consideration by the attending neonatologists. Interestingly, the 
growth of lung parenchyma significantly correlates with airway 
growth in males while other factors, such as genetics, are more 
relevant for airway growth in females. These differences become 
apparent, and despite having larger lung volumes, young males 
have decreased forced expiratory flows and other respiratory 
functions after birth than females. These functional character-
istics seem to be associated with increased smooth muscle and 
thicker airway walls in males while females have larger central 
airways and thus airway resistance (21).

In the fetal-to-neonatal transition, the initiation of breathing 
abruptly increases oxygen availability eliciting the generation of 
reactive oxygen species (ROS). ROS act as signaling molecules 
that stimulate the expression of specific metabolic pathways. 
However, preterm infants frequently need oxygen to achieve 
postnatal stabilization. In the presence of immature antioxidant 
system, oxygen supplementation causes a burst of oxygen free 
radicals, pro-oxidant imbalance, oxidative stress, and tissue 
damage (22). The “free radical disease of the newborn period” 
coined by Saugstad included the most relevant conditions in the 
newborn period such as bronchopulmonary dysplasia (BPD), 
retinopathy of prematurity (ROP), persistent ductus arteriosus 
(PDA), intra-periventricular hemorrhage (IPVH), and necrotiz-
ing enterocolitis (NEC) (23). Classical studies from Frank and 
Sosenko revealed that the maturation of the antioxidant defense 
system in different experimental models in mammals occurred 
late in gestation paralleling that of alveolar surfactant (24). In a 
prospective observational study performed in extremely preterm 
infants (<28 weeks’ gestation) administration of antenatal ster-
oids to the mother produced a significant increase in the activity 
of the antioxidant enzymes, glutathione redox cycle enzymes, 
and reduced to oxidized glutathione ratio reflecting an enhanced 
response to perinatal oxidative stress. However, antioxidant and 
clinical response to steroids was significantly lower in males than 
in females as reflected by increased urinary ortho-tyrosine/pheny-
lalanine and 8-hydroxy-2′-deoxyguanosine/2′-deoxiguanosine 
ratios in males. Clinical outcomes such as BPD, ROP, IPVH, 
NEC, or PDA were significantly better in female preterm infants 
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during the neonatal period. The degree of maturation of females 
amounted over 1  week that of male infants as deduced from 
the response to antenatal steroids and activity from antioxidant 
enzymes (25).

Pulmonary Circulatory Changes at birth
During fetal life gas, exchange takes place in the placenta. Both 
the elevated pulmonary vascular resistance (PVR) and the low 
placental vascular resistance present in the fetus diverts a large 
blood volume away from the lungs toward the placenta. The 
high PVR during the fetal period is the result of a combination 
of mechanical factors such as the presence of fluid filling the 
airways and alveoli, vasoconstrictor (endothelin 1 and throm-
boxane) and vasodilator mediators’ interactions [nitric oxide 
(NO) and prostacyclin], and relative hypoxemia. Immediately 
after birth, a series of anatomical and physiological changes 
lead to the clearance of the airways. Coinciding with birth, 
there is an involution of the medial smooth muscle of the 
pulmonary arteries and the thinning of the small pulmonary 
arteries and with the intense initial respiratory movements, 
there is the generation of high negative intra-thoracic pres-
sure. Altogether, these factors contribute to the intrusion of 
lung fluid into the interstitial tissue thus clearing the airways. 
In addition, elevation of alveolar oxygen tension also favors 
pulmonary vasodilation, elevation of arterial partial pressure 
of oxygen, and establishment of an adult-type cardiopulmo-
nary circulation (26–28). However, an adequate oxygenation 
of the pulmonary vessels is required to adequately adjust the 
vascular tone. Pulmonary vasodilation is highly dependent on 
the activation of the NO and prostacyclin (PGI2) pathways 
(Figure 2A) (29). However, brief hyperoxia secondary to high 
FiO2’s provided to preterm infants or asphyctic term babies 
may contribute to the generation of mitochondrial ROS and 
especially hydrogen peroxide (H2O2) a signaling molecule that 
induces critical changes especially in NO specific pathway (30). 
H2O2 activates phosphodiesterase 5 (PDE5) in fetal pulmonary 
artery smooth muscle cells. PDE5 degrades cyclic GMP (cGMP) 
and inhibits NO-mediated cGMP-dependent vasorelaxation 
(Figure 2A) (31). Experiments performed in different animal 
models have shown that long-lasting supplementation with 
oxygen leads to structural and functional damage in lungs and 
other organs (32). Remarkably, sex-related differences in the 
rodent survival rates have been assessed following long-term 
exposure to oxygen; thus, female rodents were more tolerant 
than their male counterparts. Remarkably, castration of young 
male rats caused an increased tolerance to chronic hyperoxia 
for as yet unknown reasons (33). Enomoto et al. (34) showed 
(Figures  2B,C) that also a brief oxygen exposure simulating 
that of the delivery room had significant effects upon vascular 
tone during the immediate postnatal transition in a newborn 
rat model. Moreover, vascular response was highly dependent 
on the sex of the rats. Hence, following 1-h exposure to 100% 
oxygen, pulmonary arteries and lung tissue were evaluated. 
Superoxide dismutase (SOD) expression in female pup’s lungs 
was greater than in males. In addition, the vasoconstrictor 
effect of thromboxane in male pups was increased by oxygen, 
whereas the opposite effect was documented in female pups. 

The increased vasoconstrictor effect of oxygen in male pups was 
abolished with the incubation with SOD or peroxynitrite scav-
engers. In addition, both increased lung SOD activity and H2O2 
were seen in female, but not in male, rats. Hyperoxia caused the 
generation of lung tissue oxidation byproducts and increased 
the activity of Rho-kinase (ROCK) in males but not in female 
pups (34). This is in agreement with previous findings in a clini-
cal study performed in extremely preterm infants by Vento et al. 
who showed that antioxidant enzyme activities (SOD, catalase, 
and glutathione peroxidase) were significantly higher in female 
preterm than in male independently of the mothers receiving 
or not antenatal steroids (25). In females, the increased activity 
of SOD dismutates excess of superoxide anion generated by 
hyperoxia to H2O2, thus reducing the formation of peroxyni-
trite and its vasoconstriction effect and favoring vasodilation 
while in male anion superoxide will bind with NO enhancing 
the formation of peroxynitrite and secondary vasoconstriction 
(Figures 2B,C) (34).

breathing After birth
Numerous experimental studies have shown delayed maturation 
of lung structure and function in males that undoubtedly hinder 
postnatal adaptation. The administration of antenatal steroids 
in a sheep model caused a significantly greater improvement in 
lung function and oxygenation in females than in males (35). 
Male rats tend to respond with pulmonary vasoconstriction as 
compared to female rats that respond with vasodilation (34).  
In addition, while estrogens contribute to lung barrier forma-
tion, alveolar development and surfactant production testoster-
one has an inhibitory effect. Thus, female lambs responded to 
inflammation caused by the instillation of lipopolysaccharides 
with significantly greater increase in lung gas volumes than did 
males (36, 37).

Human female neonates also show enhanced lung matura-
tion for similar gestational age than do males favoring postnatal 
adaptation and reducing the incidence of immaturity-associated 
lung conditions. During fetal development, female fetuses 
have shown to produce surfactant earlier, have greater swal-
low activity, develop larger airways that are more resistant to 
insult, and achieve a more mature lung (21). Consequently, 
striking differences in lung function and incidence of acute and 
chronic lung conditions between preterm boys and girls have 
been found. Hence, compared with boys, maximal expiratory 
flow at functional residual capacity was considerably higher 
whereas respiratory resistance was notably lower in girls (38). In 
a prospective observational study performed in preterm infants 
<32  weeks gestation breathing with face mask and air during 
postnatal stabilization, Vento et al. found that preterm females 
achieved significantly earlier targeted preductal saturations 
than males (39). In the NICU, males have a higher incidence of 
respiratory disorders and behave from a respiratory perspective 
as if they were 1–2 weeks younger than their female correlates 
with similar gestational age. Hence, the incidence of respiratory 
distress syndrome and chronic lung disease is significantly 
higher in males (21). Elsmén et  al. in a retrospective study 
retrieved for 5 years’ data from 236 patients (130 male and 106 
female) <29 weeks’ gestation and found significant sex-related 
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FiGURe 2 | (A) Under normal circumstances, the vasodilating action of oxygen and nitric oxide (NO) and other vasodilating agents overcome the vasoconstrictive 
action triggered by oxygen (superoxide) and nitrogen free radicals (peroxynitrite) through the action of superoxide dismutases (SOD3). (b) However, 
supplementation with high oxygen concentration may lead to an increased generation of free radicals that may overcome the neutralizing effect of SOD3 
(extracellular SOD) and lead to vasoconstriction. (C) Enhanced expression of SOD3 in females is highly protective toward the development of pulmonary 
vasoconstriction at birth especially in preterm infants.
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differences. Hence, more males than females (60.8 vs. 46.2%) 
required mechanical ventilation, more males required more 
doses of surfactant, and also males (40). A study performed in 
the Canadian Neonatal Network between 2000 and 2005 also 
showed an increased prevalence of BPD in male infants born at 
24–26 weeks gestation thus revealing that male preterm infants 
are at higher risk of respiratory complications especially in the 
lowest gestational ages (41).

birth Asphyxia and Hypoxic ischemic 
encephalopathy (Hie)
Perinatal asphyxia is one of the most important pathogenic fac-
tors leading to neonatal neurologic morbidity and mortality and a 
leading cause of long-term neurocognitive and sensorial dysfunc-
tion among survivors. The prevalence of HIE among term new-
born infants is 1–4/1,000 in industrialized countries but can reach 
significantly higher incidence in non-industrialized countries. 
Around 20–50% of infants with HIE will die in the early neonatal 
period and 25–60% of the survivors will suffer from long-lasting 
neurologic disabilities that include among others cerebral palsy 
(CP), seizures, behavioral and learning defects (42). Mohamed 
and Aly retrieved data from the Nationwide Inpatient Sample 
Database, which comprises over 1,000 hospitals in the United 
States. They included babies >36 weeks gestation and >2,500 g at 
birth and excluded babies with severe congenital malformations 
or chromosomal disorders. Birth asphyxia in males and females 
was compared. After examining >9 million registries, the OR 
for severe asphyxia in male newborn was 1.16 (CI: 1.12–1.20; 
p < 0.001) (43). These results coincide with a recent meta-analysis 
that showed that male infants have greater long-term IQ impair-
ment than females with a similar degree of HIE (44). One of 
the most relevant complications of birth asphyxia, which is the 
most frequent cause of motor deficiency in childhood, is CP. A 
network of CP surveillance in Europe retrieving registries from 
multiple centers in eight countries conferred CP a prevalence of 
in 2–3 per 1,000 live births (45). Among the predisposing factors 
for CP pregnancy-induced hypertension was the most common 
antenatal complication while prematurity and birth asphyxia 
were the most common postnatal complications. Remarkably, sex 
distribution coinciding with the European Surveillance was male 
to female ratio of 1.2 (46).

Although clinical predisposition to gestational and labor 
complications have been widely reported (8–21), the intrinsic 
mechanisms leading to enhance brain damage associated with 
birth asphyxia, prematurity, or perinatal infections remain elu-
sive. Experimental research of neonatal hypoxia ischemia (HI) 
performed in rat models has revealed a greater susceptiveness 
to behavioral and neurocognitive deficits in males as compared 
to females with a similar degree of brain damage. Hence, pro-
apoptotic signaling pathways and caspase-independent cell death 
tendency are strikingly different between males and females (47). 
Notably, the pathophysiology of perinatal brain damage of dif-
ferent etiologies (asphyxia, prematurity, and infection) is tightly 
linked to hypoxia-reoxygenation that entail alteration of mito-
chondrial function that leads to the generation of highly ROS such 
as anion superoxide and hydroxyl radical that cause oxidative 

stress, alteration of the redox code, and activation of transcrip-
tion factors NF-κ B, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, 
and Nrf2 (30). Recent experimental studies have evidenced that 
following HI mitochondrial respiratory activity was significantly 
more damaged in males than in females. Moreover, males 
endogenous glutathione reserves, the most relevant cytoplasmic 
non-enzymatic antioxidant, were substantially lower, exhibited 
a decreased glutathione peroxidase activity following HI injury. 
Under these circumstances, male rats were significantly more 
susceptible to HI as shown by increased content of oxidation 
byproducts such as protein carbonyl in different areas of the 
brain (48). Of note, female rats highly express the mitochondrial 
biogenesis-associated transcription factor Nrf2/GABPα follow-
ing HI while males do not. In the presence of free radicals, Nrf2 
translocates into the nucleus and binds to the DNA antioxidant 
responsive elements promoting the expression of multiple anti-
oxidant defense related genes (30). As a consequence, there is 
an increase in the electron transport chain proteins that could 
partially explain the increased resistance of females to respiratory 
impairment and secondary neuronal damage (49).

Sex and Response to Drugs
The influence of sex in the response to drugs has only been 
recently studied [for a review see Ref. (50)]. Traditionally sex 
was not taken into consideration as a confounder in clinical 
trials. However, its inclusion as a decisive variable in the sta-
tistical analysis of trials’ results has contributed to explain the 
different response to drugs individuals depending on their sex 
(51). In the experimental setting, animal models have shown 
sex differences in the response to drugs. Hence, experimental 
studies on the effectiveness of vasoactive drugs to overcome 
the loss of cerebral autoregulation in a traumatic brain injury 
piglet model have shown striking differences between males and 
females. Hence, after provoking a moderate fluid percussion 
brain injury, the protective autoregulation response to drugs 
such as phenylephrine, norepinephrine, and dopamine was 
age and sex dependent. These results underscore the need for 
specific targeted pharmacotherapy that takes into consideration 
additional factors such as postnatal age and sex (52).

Few clinical studies have reported sex differences in the neo-
natal period. Ohlsson et  al. performed a subset analysis in the  
course of a multicenter randomized controlled trial in extre-
mely low-birth-weight infants found that the prophylactic use 
of indomethacin prophylaxis slightly favored male regarding 
development of severe IVH (grades III and IV) and on long-term 
outcomes (53). In a recent study, human umbilical artery smooth 
muscle cells were employed to analyze sex differences in basal 
and drug-induced autophagy a process, which is involved in 
cardiovascular diseases. Cells were isolated from healthy male 
and female newborn umbilical cords. Constitutive autophagy 
was similar in both sexes; however, after starvation promoted 
autophagy increased in both sexes but was significantly higher 
in females. Moreover, response to rapamycin was exclusively 
present in females. Contrarily, no sex difference was found 
when verapamil was tested. These studies clearly show that sex 
differences already begin in utero. Moreover, they are parameter 
specific and drug specific (54).
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CONClUSiON

Although the PSR is equal in male and female embryos, there is 
a tendency toward increased survival of males in utero. However, 
functional and structural development of the lungs and regulation 
of cardiorespiratory circulation are substantially more mature in 
females and therefore they are capable to better face the difficulties 
inherent to fetal-to-neonatal transition and postnatal adaptation 
especially in babies born prematurely. As a consequence, intact 
survival in the neonatal period is significantly higher in female 
than in male infants. Sex-related response to drugs is a fertile field 
for the development of individually targeted therapy in the next 
future.
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