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Abstract 

Background: Thyroid cancer (THCA) is the most common endocrine malignancy and incidence is increasing. There is 
an urgent need to better understand the molecular differences between THCA tumors at different pathologic stages 
so appropriate diagnostic, prognostic, and treatment strategies can be applied. Transcriptome State Perturbation Gen-
erator (TSPG) is a tool created to identify the changes in gene expression necessary to transform the transcriptional 
state of a source sample to mimic that of a target.

Methods: We used TSPG to perturb the bulk RNA expression data from various THCA tumor samples at progressive 
stages towards the transcriptional pattern of normal thyroid tissue. The perturbations produced were analyzed to 
determine if there are consistently up- or down-regulated genes or functions in certain stages of tumors.

Results: Some genes of particular interest were investigated further in previous research. SLC6A15 was found to be 
down-regulated in all stage 1–3 samples. This gene has previously been identified as a tumor suppressor. The up-reg-
ulation of PLA2G12B in all samples was notable because the protein encoded by this gene belongs to the PLA2 super-
family, which is involved in metabolism, a major function of the thyroid gland. REN was up-regulated in all stage 3 and 
4 samples. The enzyme renin encoded by this gene, has a role in the renin-angiotensin system; this system regulates 
angiogenesis and may have a role in cancer development and progression. This is supported by the consistent up-
regulation of REN only in later stage tumor samples. Functional enrichment analysis showed that olfactory receptor 
activities and similar terms were enriched for the up-regulated genes which supports previous research concluding 
that abundance and stimulation of olfactory receptors is linked to cancer.

Conclusions: TSPG can be a useful tool in exploring large gene expression datasets and extracting the meaning-
ful differences between distinct classes of data. We identified genes that were characteristically perturbed in certain 
sample types, including only late-stage THCA tumors. Additionally, we provided evidence for potential transcriptional 
signatures of each stage of thyroid cancer. These are potentially relevant targets for future investigation into THCA 
tumorigenesis.
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Background
Thyroid cancer is the most common endocrine malig-
nancy, with an estimated 44,280 new cases resulting in 
over 2,000 deaths in 2021 [1, 2]. The incidence of thy-
roid cancer is increasing worldwide with an annual per-
cent change around 6% in recent years [3]. This increase 
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is at least partly due to increasing diagnostic capabili-
ties through novel imaging techniques that can easily be 
used to detect potentially malignant thyroid nodules [4]. 
Early detection of thyroid cancer helps to reduce overall 
mortality, but over-diagnosis may cause individuals who 
would not have developed malignant cancer to undergo 
unnecessary treatments, subjecting them to procedural 
risks and financial burdens [5]. Thyroid cancer, how-
ever, can present in aggressive variants that grow rapidly, 
metastasize, and negatively impact normal functions like 
breathing and swallowing if left untreated [4]. There-
fore, it is important to differentiate late-stage and more 
aggressive THCA tumors so patients can receive the 
appropriate treatment.

A common treatment for thyroid cancer is thyroidec-
tomy: partial or complete removal of the thyroid gland 
[5]. The thyroid normally produces thyroid hormone 
which is essential for proper growth and regulation of 
metabolism [6]. Considering its importance for main-
taining normal functions, the unnecessary loss of this 
gland should be avoided to optimize patients’ quality of 
life. Later stages of well-differentiated thyroid carcino-
mas, especially stage 4, are associated with higher risk of 
recurrence and more aggressive variants, making this a 
necessary treatment despite the ultimate burden [7].

Well-differentiated thyroid cancer, with papillary thy-
roid cancer as the most prevalent form, most often 
involves genetic alterations that constitutively activate 
the mitogen-activated protein kinase (MAPK) cascade, 
especially chromosomal rearrangement of RET and point 
mutation of BRAF or RAS [7, 8]. Thyroid cancer may 
also be triggered by an overactive phosphatidylinositol-3 
kinase  (PI3K/AKT) pathway due to activating mutations 
in RAS, PIK3CA, or AKT1, or inactivation of PTEN [9].

There is an urgent need to better understand the 
molecular differences between THCA tumors at different 
pathologic stages. Past research in breast cancer revealed 
evidence of distinct gene expression levels in different 
tumor grades [10]. Previous studies have predicted can-
cer stage using machine learning techniques with clinical 
and pathological datasets [11, 12]. In this study, we used 
a novel deep learning tool, which has been successfully 
applied to a previous cancer study, to observe abnormal 
RNA expression levels in individuals with various stages 
of THCA and find potential signatures for each stage [13]. 
Linking these signatures to accurate diagnostic, prognos-
tic, and treatment strategies is of high importance.

The Transcriptome State Perturbation Generator 
(TSPG) is a tool created to leverage generative deep 
learning for the detection of changes in gene expres-
sion needed to transform a labeled source sample into 
the feature space of another, target sample type [13]. 

Using RNA-Seq feature data from labeled sample 
groups, TSPG first trains a deep learning model to clas-
sify samples based on their true class label. In this case, 
the model is trained to make a prediction about the 
pertinent label for a given transcriptomic expression 
vector. Given an unlabeled RNA-Seq vector, this model 
would learn to predict the true label. Then, an adver-
sarial neural network is trained to subtly perturb those 
expression vectors so that the classification model will 
make an errant prediction, instead classifying the per-
turbed sample as an assigned target class. It does this 
by changing the transcriptomic profile of the provided 
sample to look like that of the target class. By exam-
ining the most significantly perturbed genes, one can 
identify differently transitioned genes. Since the deep 
learning model relies on feature integration at multiple 
layers, the gene expression patterns of an input gene 
list (e.g. all genes) are tweaked across the whole distri-
bution. Reducing the gene set is certainly possible by 
using a limited input gene list for training. For example, 
TSPG has previously been tested on the Hallmark gene 
list subset from the Molecular Signatures Database 
(MSigDB) [13].

We demonstrate that TSPG can learn how to change 
the gene expression patterns of individual THCA 
tumors to reflect the expression profile of normal thy-
roid tissue. This method has previously been used to 
identify transcriptional aberrations for a specific patient 
diagnosed with papillary renal cell carcinoma [13]. We 
are interested in the precision medicine applications 
of this tool for thyroid cancer, so we have applied this 
technique to THCA tumors of different stages. While 
the expression levels are considered and perturbed 
separately for each individual tumor, the results were 
combined to identify patterns among stages of THCA 
tumors. We considered RNA expression data in this 
study while much of the existing similar research on 
THCA utilized medical imaging data or clinical attrib-
utes [14, 15]. Previous studies have used machine learn-
ing methods with transcriptome sequencing data in 
different cancer types to investigate things like tissue of 
origin and staging, but this study uniquely reports such 
results for thyroid cancer [16, 17].

In this study, we used TSPG to perturb the RNA 
expression data from individual thyroid tumor samples 
at various stages towards normal thyroid tissue gene 
expression. The perturbations produced were analyzed 
to determine if there are consistently up-regulated or 
down-regulated genes in the various stage progressions 
of THCA tumors. We have thus provided evidence for 
potential transcriptional signatures of each stage of 
thyroid cancer.
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Methods
Preparation of TSPG input data. Normalized and batch 
corrected FPKM gene expression matrices (GEMs) were 
downloaded from an existing dataset for The Cancer 
Genome Atlas (TCGA) THCA tumor samples, TCGA 
normal thyroid tissue, and Genotype-Tissue Expres-
sion (GTEx) normal thyroid tissue [18]. One GEM was 
formed by merging the three GEMs and then it was log2 
transformed and quantile normalized using GEMprep 
[19]. This GEM contained RNA-Seq expression levels 
for 19,239 genes in 51 TCGA solid tissue normal thyroid 
samples, 318 GTEx solid tissue normal thyroid samples, 
244 TCGA stage 1 THCA solid tissue tumor samples, 
47 TCGA stage 2 THCA solid tissue tumor samples, 95 
TCGA stage 3 solid tissue tumor samples, and 46 TCGA 
stage 4 solid tissue tumor samples. Biospecimen and 
clinical data were downloaded from GDC data portal for 
all TCGA THCA samples (Table S1 and Table S2). The 
American Joint Committee on Cancer (AJCC) pathologic 
stage was matched to the corresponding subject identi-
fier using VLOOKUP in Excel.

Perturbation of samples toward GTEx normal thyroid. 
Transcriptome State Perturbation Generator (TSPG) 
was utilized to perturb the RNA expression values of 
THCA tumor samples toward the RNA expression val-
ues of normal thyroid samples [20]. Ten of each sample 
type (stage 1 tumor, stage 2 tumor, stage 3 tumor, stage 4 
tumor, TCGA normal thyroid, and GTEx normal thyroid) 
were randomly selected and removed from the training 
dataset. The list of samples with their pathologic stage 
and primary diagnosis is available in Table S3. Labels files 
were produced in the correct format to label each sample 
ID as tumor-s1, tumor-s2, tumor-s3, tumor-s4, normal-
tcga, or normal-gtex based on the clinical data described 
above. The GEMs were formatted as required by convert-
ing to numpy arrays and transposing using GEMprep. 
GTEx normal thyroid tissue was used as the target class.

Analysis of sample perturbations made by TSPG. From 
the perturbations file produced by TSPG, significantly 
perturbed genes in each sample were defined as those 
having a perturbation value greater than 2 standard devi-
ations above or below the mean of all perturbation values 
for that individual. The appropriate genes were extracted 
for each of the sixty perturbed individuals and saved in 
text files. Then, the consistently tumor-upregulated or 
tumor-downregulated genes in each sample type were 
determined by identifying genes that were significantly 
negatively or positively perturbed, respectively, in all 10 
samples from that class. The average number of tumor-
upregulated (negatively perturbed) and tumor-down-
regulated (positively perturbed) genes were calculated 
for each class using the corresponding ten perturbed 
samples. Additional calculations included the average 

number of tumor-upregulated and tumor-downregulated 
genes shared between two samples of the same type and, 
in each direction, the average proportion of perturbed 
genes shared to the total number of unique perturbed 
genes between two samples of the same type. Bar charts 
visualizing each of these were produced in Excel.

Functional Enrichment. Functional enrichment was 
performed using FUNC-E [21]. Tumor-upregulated and 
tumor-downregulated genes from each sample type were 
used as different modules. Query lists contained the sig-
nificantly positively perturbed and significantly nega-
tively perturbed genes, separately, in any sample from 
each sample type. The genomic background was all genes 
contained in the GEM. A terms list with Gene Ontology 
(GO), Interpro (IPR), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) vocabularies was generated [22–
24]. The term mapping list was generated by downloading 
tab-separated value (TSV) files from ensemble biomart 
containing Gene name and one of GO term accession, 
KEGG Pathway and Enzyme ID, or Interpro ID. These 
TSVs were then merged into one file and filtered to con-
tain only genes present in the genomic background and 
only terms present in the terms list. The p-value cutoff 
for enrichment used was 0.01, but the resulting enriched 
terms were filtered for a Bonferroni corrected p-value of 
less than 0.00001.

Results
The classes included in this paper are stage 1 THCA 
tumor, stage 2 THCA tumor, stage 3 THCA tumor, stage 
4 THCA tumor, normal thyroid tissue originating from 
The Cancer Genome Atlas (TCGA), and normal thyroid 
tissue originating from the Genotype-Tissue Expression 
(GTEx) repository. We were able to unify the TCGA and 
GTEx samples into a unified matrix thanks to the work 
done by Wang et al. [18]. They have supplied a database 
of batch-corrected and re-normalized samples from 
both datasets, so the normal samples from TCGA and 
those from GTEx could potentially be studied as a sin-
gle data source. However, we maintained TCGA normal 
and GTEx normal thyroid tissue as two separate groups 
in this analysis based on preliminary results suggest-
ing some difference between them. An initial t-SNE plot 
created using the unified matrix showed TCGA normal 
samples forming a separate cluster from the GTEx nor-
mal samples. Normal thyroid tissue originating from 
GTEx was used as the target sample type for TSPG. The 
number of samples from each class are shown in Table 1.

Using TSPG, we perturbed 10 samples of each type 
toward the target of GTEx normal thyroid tissue, includ-
ing normal-to-normal perturbations to act as a baseline. 
This provided insight as to how THCA tumors would 
need to change to revert to normal thyroid tissue. TSPG 
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outputs a matrix containing perturbation values applied 
to each gene in an individual sample (Table S4). A posi-
tive perturbation represents a gene that must increase 
its expression level to reach the average normal expres-
sion, so it is down-regulated in the tumor (tumor-
downregulated). Conversely, a negative perturbation 
represents a tumor-upregulated gene. The terms tumor-
downregulated and tumor-upregulated will be used to 
describe genes that were positively and negatively per-
turbed, respectively, by TSPG. This is meant to convey 
their expression level in the perturbed sample relative 
to the average normal thyroid expression, so even the 
normal-to-normal perturbations may be referred to as 
tumor-downregulated (positive) or tumor-upregulated 
(negative). During the initial training for the model used 
in this study, the classifier had a reported test accuracy 
of 0.781 and the generator had a reported perturbation 
accuracy of 1.000. After the training phase, there was a 

reported perturbation accuracy of 1.000 when the 60 ran-
domly selected samples were perturbed.

The gene expression profiles of all THCA tumor sam-
ples and normal thyroid samples included in the study 
as well as the samples perturbed toward normal expres-
sion levels were visualized with a t-SNE plot (Fig.  1A). 
The normal thyroid tissue from both TCGA and GTEx 
clustered together with the perturbed samples and very 
few tumor samples. Most tumor samples segregated 
away from the normal samples. The largest difference is 
between the tumor and normal classes, however, there 
does appear to be some separation within the tumor 
class. The two tumor clusters appear to have similar dis-
tributions of pathologic stages.

Heatmaps were produced for each of the 60 perturbed 
samples. One representative heatmap for a stage 3 THCA 
tumor sample is shown in Fig. 1B. In order from left to 
right, Fig.  1B shows the expression levels of all 19,239 
genes present in the GEM for the original tumor sample 
(X), the perturbations applied to each gene in that sample 
(P), the expression levels of the sample after perturbation 
(X + P), and the average expression levels in the target 
class of normal thyroid tissue from GTEx (mu_T). The 
red region of the perturbation box represents positive 
perturbations, when the expression level of a gene must 
be increased to reach the normal level, which indicates 
tumor-downregulated gene. The blue region represents 
negative perturbations, when the expression level of a 
gene must be decreased to resemble the normal level, 
which indicates a tumor-upregulated gene.

Table 1 Samples included in the thyroid cancer gene expression 
matrix

Source Sample Type Perturbed 
Samples

Training 
Samples

Total Count

TCGA Stage 1 THCA Tumor 10 234 244

TCGA Stage 2 THCA Tumor 10 37 47

TCGA Stage 3 THCA Tumor 10 85 95

TCGA Stage 4 THCA Tumor 10 36 46

TCGA Normal Thyroid 10 41 51

GTEx Normal Thyroid 10 308 318

Fig. 1 Expression profiles of 19,239 genes in THCA tumor and normal thyroid samples. (A) The t-SNE plot shows RNA expression profiles of normal 
thyroid tissue from GTEx, normal thyroid tissue from TCGA, THCA tumor samples from TCGA of various stages, and all the perturbed samples with 
GTEx normal thyroid tissue as the target. (B) The representative heatmap shows the expression vectors of one Stage 3 THCA tumor sample (X), the 
perturbations applied (P), the perturbed sample (X + P), and average for the target class of normal thyroid tissue from GTEx (mu_T). Missing values 
in the training and perturbed sample GEMs were imputed with the minimum value of the training GEM
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Figure 2 shows that, on average, there are more signifi-
cantly tumor-upregulated genes than tumor-downreg-
ulated genes across all sample types. There are similar 
average numbers of significantly perturbed genes in both 
directions in all stages of THCA tumors and normal 
thyroid tissue from GTEx, but there were fewer signifi-
cantly down-regulated genes in normal thyroid tissue 
from TCGA. The greatest average number of significantly 

up-regulated genes was identified in the TCGA normal 
samples.

Table  2 displays the average perturbation values for 
genes that were significantly tumor-downregulated or 
tumor-upregulated in samples of the same type. All 
cancer stages have similar average perturbation values 
of tumor-downregulated genes, while both TCGA and 
GTEx normal thyroid samples have lower average values. 

Fig. 2 Number of genes found by TSPG to be significantly perturbed in samples within each sample type. Significantly tumor-downregulated 
genes, as indicated by positive perturbations toward normal thyroid tissue from GTEx, are shown in red. Significantly tumor-upregulated genes, as 
indicated by negative perturbations toward normal thyroid tissue from GTEx, are shown in blue. Error bars represent standard error

Table 2 Average perturbation values of significantly perturbed genes in each sample type

Sample type Gene set Perturbation µ Perturbation ϭ Samples

Stage 1 tumor Down-regulated 0.32 0.16 10

Up-regulated -0.26 0.19 10

Stage 2 tumor Down-regulated 0.26 0.20 10

Up-regulated -0.19 0.20 10

Stage 3 tumor Down-regulated 0.30 0.18 10

Up-regulated -0.23 0.19 10

Stage 4 tumor Down-regulated 0.34 0.20 10

Up-regulated -0.27 0.20 10

Normal thyroid (TCGA) Down-regulated 0.04 0.15 10

Up-regulated -0.18 0.19 10

Normal thyroid (GTEx) Down-regulated 0.03 0.16 10

Up-regulated -0.12 0.18 10
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There is a less drastic difference between the tumor and 
normal samples for the significantly tumor-upregulated 
genes, but the average perturbation values are still greater 
in all tumors than in normal thyroid tissue.

Figure 3 displays how many genes are significantly per-
turbed in multiple samples from each type. The average 
number of tumor-upregulated genes shared between 
two samples of the same type is greater than that of the 
tumor-downregulated genes in all sample types. Normal 
thyroid tissue from both TCGA and GTEx have a lower 
average number of shared down-regulated genes than any 
of the tumor types. Normal thyroid tissue samples from 
GTEx have fewer shared up-regulated genes on average 
than normal thyroid samples from TCGA and all tumor 
types except stage 2. Stage 2 THCA tumor samples have 
fewer shared tumor-downregulated genes between sam-
ples than any other stage of THCA tumor samples.

Figure  4 shows the average proportion of number of 
shared perturbed genes out of the total number of unique 
genes between samples of the same type. The great-
est average proportion of significantly perturbed genes 
shared between samples within a class is about 0.32 in 
the tumor-downregulated genes identified in stage 1 
THCA tumors. The lowest value, from down-regulated 
genes in normal GTEx samples, is less than 0.10. In all 
stages of THCA tumors, the average proportion of shared 

tumor-downregulated genes between two samples of the 
same class tend to be similar or slightly greater than that 
of the tumor-upregulated genes. The average proportion 
of shared tumor-upregulated genes is greater than that of 
shared tumor-downregulated genes in all normal thyroid 
tissue from either TCGA or GTEx, but there is a larger 
difference in the samples from TCGA.

The genes that were significantly tumor-upregulated 
or tumor-downregulated in all 10 samples of each type 
are seen in Table 3. There were no commonly perturbed 
genes in either direction among GTEx normal thyroid 
tissue samples, but all other sample types had at least 
one tumor-up-regulated and one tumor-downregulated 
gene common to all 10 samples. PLA2G12B and RP11-
73M18.2 are up-regulated in all tumor samples of any 
stage. All stage 1, stage 2, and stage 3 tumor samples 
tested had down-regulation of SLC6A15. Later-stage 
tumors (stage 3 and stage 4) showed down-regulated 
REN levels compared to normal thyroid tissue.

We performed functional enrichment analysis on the 
tumor-upregulated and tumor-downregulated gene sets 
for each sample type to determine the collective func-
tions of the genes in each set. Each gene set contained 
genes that were significantly perturbed, in the appro-
priate direction, in at least one individual of the given 
sample type. Functional enrichment results can be seen 

Fig. 3 Number of shared significantly perturbed genes within each sample type. Significantly tumor-downregulated genes, as indicated by 
positive perturbations toward normal thyroid tissue from GTEx, are shown in red. Significantly tumor-upregulated genes, as indicated by negative 
perturbations toward normal thyroid tissue from GTEx, are shown in blue. Error bars represent standard error
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in Table S5 and Table S6. Olfactory receptor activity 
and related terms were enriched in tumor-upregulated 
gene sets of all sample types (Table S5). There were no 
significant enriched terms for the tumor-downregulated 
gene sets from the stage 1, stage 2, and stage 3 tumor 
classes. Translation and related terms were enriched in 
the tumor-downregulated gene sets of the classes that did 
have significant enrichment (Table S6).

Discussion
In this study, we used a TSPG simulation to identify 
tumor to normal gene expression state transitions and 
determine which genes exhibit aberrant expression in 
thyroid tumors relative to the normal thyroid gland. In 
essence, this is a precision medicine approach where we 
place an individual’s tumor (n = 1) into the context of 
other tumor samples. We previously used this approach 
to identify gene shifts in a single patient with Type II pap-
illary renal cell carcinoma, but in that study we did not 
consider tumor stage [13]. Here, we examined 60 indi-
viduals consisting of 10 each of six different sample types, 
including stage 1–4 THCA tumors from TCGA and nor-
mal thyroid tissue from TCGA or GTEx. The results from 
the 10 samples in each class were pooled together to rep-
resent their sample type and used to investigate whether 
there were consistent genetic signatures for each stage 

of THCA. These randomly selected samples included 
tumors of multiple subtypes of THCA across all stages 
(Table S3). Future research might validate the results of 
this study using a limited set of samples of only one sub-
type of thyroid cancer to assess potential bias in pooling 
samples with varying primary diagnoses.

The t-SNE plot in Fig. 1A shows that the THCA tumor 
samples of all stages typically segregate from the normal 
thyroid samples. There are a few stage 1, stage 2, and 
stage 3 tumors that appear to cluster with the normal 
tissue, meaning those tumor samples have similar gene 
expression profiles to normal thyroid samples. These may 
represent tumors with very few or very small expression 
changes or could potentially be a sign of error in labeling 
or contamination with normal tissue during the RNA 
sequencing process. There is also evidence of two sepa-
rate clusters of tumor samples containing approximately 
the same proportion of each stage. Further examination 
is needed to determine the significance and cause. Some 
possible causes for this discrepancy may be gender, age, 
and race of the individuals from whom the samples were 
obtained as well as the cancer subtype, or metastasis sta-
tus of the samples.

The representative heatmap provided in Fig.  1B dem-
onstrates the importance of the perturbations discussed 
in this study. The expression vector of the tumor sample 

Fig. 4 Proportion of shared significantly perturbed genes between samples, out of their unique significantly perturbed genes, within each sample 
type. Significantly tumor-downregulated genes, as indicated by positive perturbations toward normal thyroid tissue from GTEx, are shown in red. 
Significantly tumor-upregulated genes, as indicated by negative perturbations toward normal thyroid tissue from GTEx, are shown in blue. Error 
bars represent standard error
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is distinct from that of the average expression in normal 
thyroid tissue. However, the tumor with perturbations 
applied shows expression levels that are very similar 
to the average levels from normal thyroid samples. The 
t-SNE plot also supports the success of TSPG because 
all the samples that were perturbed with a target class of 
GTEx normal thyroid tissue cluster with the normal thy-
roid samples, indicating similar gene expression profiles 
(Fig. 1A).

Across all sample types, there was a greater average 
number of unique significantly up-regulated genes than 
unique significantly down-regulated genes in the original 
sample compared to expression in GTEx normal thyroid 
tissue (Fig. 2). Despite this difference, the proportion of 
shared perturbed genes to total unique perturbed genes 
between two samples of the same type was similar in the 
tumor-downregulated and tumor-upregulated directions 
across tumor samples of all stages (Fig. 4).

We expected many of the genes related to normal thy-
roid function would be consistently down-regulated in 
all tumor samples. However, this was not supported by 
the functional enrichment because three of the tumor 
classes had no significantly enriched terms for their 
tumor-downregulated gene sets (Table S6). Addition-
ally, the stage 4 tumor-downregulated genes were mostly 
enriched for terms related to translation, none of which 
were unique to this gene set because they were also sig-
nificant for the down-regulated genes in both normal 
sample types.

There were some genes that were consistently up-regu-
lated or down-regulated in tumor samples of all or most 
stages, which suggests they play a role in tumorigen-
esis and may maintain a consistent abnormal expression 
level even as the tumor progresses (Table  3). Addition-
ally, there were some unique genes found that were sig-
nificantly up- or down-regulated in all tumor samples of 
only one stage. These are good candidate genes for future 
studies to investigate thyroid cancer progression to later 
stages.

Some genes were found to be consistently up- or 
down-regulated in certain sample types (Table  3). 
SLC6A15 was down-regulated in all individuals with 
stage 1, 2, or 3 THCA. Previous studies suggest this 
gene acts as a tumor suppressor [25]. PLA2G12B was 
up-regulated in all tumor samples. Previous studies 
have observed relationships between other genes in 
the phospholipases A2 (PLA2) superfamily with vari-
ous cancers, like over-expression of PLA2G5 correlated 
with poor prognosis in patients with glioma tumors and 
differential expression of some PLA2 genes in normal 
colons and colon adenocarcinomas [26, 27]. Proteins 
belonging to the PLA2 superfamily are involved in 
metabolism, which means they may be an important 

indicator of normal thyroid function [28]. Therefore, 
disruption of PLA2 protein expression levels, as seen 
in all THCA tumor samples in this study, may be a 
potential signal of abnormal thyroid function and thy-
roid cancer development. REN was up-regulated in all 
later stage (stages 3 and 4) tumor samples. This gene 
codes for the enzyme renin, which is a component of 
the renin-angiotensin system [29]. Previous research 
indicates that the renin-angiotensin system has a role 
in multiple cancer types, likely due to its regulation of 
angiogenesis [30, 31]. Angiogenesis is an important 
process in cancer because increased blood flow to the 
tumor allows it to grow larger [32]. Since tumor size is 
part of the staging system, with larger tumors classified 
as later stages, it is possible that the up-regulation of 
REN, which induces angiogenesis, is a factor in the pro-
gression of cancer to a later stage.

There were no significantly perturbed genes that were 
found in all 10 GTEx normal-to-GTEx normal control 
samples tested (Table  3). This suggests that the pertur-
bations applied to the GTEx normal thyroid samples, 
to make them appear as the target of GTEx normal thy-
roid tissue, were unique to individuals and represent the 
expected natural variations in expression among healthy 
individuals [33]. Whereas there were common positive 
and negative perturbations among the tumor samples 
classified as the same stage, which indicates common 
changes in expression that lead to the cancer phenotype. 
However, it should be noted that the normal thyroid sam-
ples from TCGA also had a relatively large number of 
common significantly up-regulated genes in all 10 sam-
ples. It is not clear whether this is a result of batch error 
which differentiates the TCGA and GTEx datasets, which 
was corrected using the methods described by Wang 
et al. [18]. One future experiment that may reveal more 
about this occurrence is to classify all normal thyroid 
tissue from either TCGA or GTEx together as “normal” 
to see if using the average expression of all normal sam-
ples as the target would eliminate the apparent difference 
between samples from TCGA and GTEx.

Table 2 shows that the significant perturbations applied 
to the normal thyroid samples, from either GTEx or 
TCGA, tend to be smaller than those applied to THCA 
tumor samples of any stage. This is a result of our method 
for determining the significantly perturbed genes for 
each sample which included those that were greater than 
2 standard deviations away from the mean perturba-
tion value within that sample. Since any of the genes in 
the normal samples required only small perturbations to 
match the average normal expression levels, Fig. 2 shows 
there were similar numbers of genes that were consid-
ered significantly perturbed in tumor and normal sam-
ples. There do not appear to be consistent differences in 
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the number or value of perturbations between stages of 
THCA.

In this study, genes with a perturbation value of two 
standard deviations greater or less than the mean of all 
perturbations for a particular sample were deemed sig-
nificantly perturbed. We were most interested in these 
genes that required the largest changes in expression to 
return to normal values because they would represent 
the genes that are most strongly up-regulated or down-
regulated in tumors so likely have a role in tumorigenesis. 
However, past research has suggested that small changes 
in gene dosage can have a role in cancer development 
[34]. Future research utilizing TSPG to understand an 
individual’s cancer progression could consider genes 
with a perturbation value exceeding a threshold based on 
the gene’s average expression level in normal samples in 
order to include more subtle changes to gene expression.

Functional enrichment results for the significant 
tumor-downregulated and tumor-upregulated genes in 
each sample type revealed some similarities among the 
gene sets. All sample types showed enrichment for olfac-
tory receptor activity and related terms in the tumor-
upregulated gene set (Table S5). This result for the 
tumors aligns with previous research finding connections 
between abundance or stimulation of olfactory receptors 
and cancer [35, 36]. However, the enrichment of these 
functions in both normal-to-normal perturbed gene sets 
means these findings should be considered cautiously. 
We would not expect the genes perturbed in normal 
samples with a normal target to be enriched for relevant 
functions because those perturbations are expected to be 
random. The similar functional enrichment results for 
tumor-upregulated genes in all classes may indicate bias 
in the genes perturbed by TSPG or could potentially sug-
gest the presence of unrecognized THCA tumor contam-
inating the TCGA or GTEx normal thyroid tissue. The 
lack of functional enrichment for down-regulated genes 
in tumors of stages 1, 2, and 3 was also surprising (Table 
S6). This is because we expected genes related to nor-
mal thyroid function to be down-regulated consistently 
among THCA tumor samples.

This research expands on the use of TSPG to deter-
mine how gene expression in individual tumor samples 
differs from that of the corresponding normal tissue. We 
analyzed 10 samples from each sample type perturbed 
toward a target of normal thyroid tissue (GTEx) to iden-
tify consistent changes in expression in different stages of 
THCA. This method could generate gene sets that could 
be used to classify tissue samples based on clinical attrib-
utes such as pathologic stage. Future experiments could 
explore the classification accuracy of these significantly 
perturbed gene sets using an existing public reposi-
tory [37]. Another area to develop our understanding of 

differences between stages of cancer would be to look at 
differential expression of the identified candidate genes 
in samples from each stage. We also propose the use of 
these methods in other cancer types to determine if the 
differences between stages are unique to each cancer or if 
there are similarities.

Conclusions
In this study, RNA expression levels from samples of 
THCA tumors and normal thyroid tissue were obtained 
from the TCGA and GTEx repositories and perturbed 
using TSPG with a target class of GTEx normal thyroid. 
These perturbations were analyzed and revealed com-
monly up-regulated or down-regulated genes in all or 
certain stages of THCA tumors. SLC6A15 was found to 
be down-regulated in all stage 1–3 samples, and other 
studies have identified this gene as a tumor suppressor. 
The up-regulation of PLA2G12B in all samples was nota-
ble because the protein encoded by this gene belongs to 
the PLA2 superfamily, which is involved in metabolism, 
a major function of the thyroid gland. REN was up-reg-
ulated in all stage 3 and 4, or later stage, samples. The 
enzyme renin encoded by this gene, has a role in the 
renin-angiotensin system; this system regulates angio-
genesis and may have a role in cancer development and 
progression. This is supported by the consistent up-reg-
ulation of REN only in later stage tumor samples. Func-
tional enrichment results showed that olfactory receptor 
activities and similar terms were enriched for the up-reg-
ulated genes which supports previous research conclud-
ing that abundance and stimulation of olfactory receptors 
is linked to cancer. TSPG can be a useful tool in exploring 
large gene expression datasets and extracting the mean-
ingful differences between distinct classes of data. We 
hope this research and future studies that stem from it 
will promote accurate diagnosis and appropriate treat-
ment for THCA patients.
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