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Abstract  
Acidosis is a common characteristic of brain damage. Because studies have shown that permeable 

Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become 

new targets against pain and various intracranial diseases. However, the mechanism associated 

with expression of these channels remains unclear. This study sought to observe the expression 

characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in 

rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive 

ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic 

injury group. Western blot assays and immunofluorescence staining results exhibited that when 

compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l 

expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was 

lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid 

artery flow was close to normal, and the pH value improved. Results verified that adaptive 

reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, 

significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of 

adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were 

better than that of one-time ischemia/reperfusion. 
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Research Highlights 
(1) Acidosis is a common characteristic of brain damage. Recent studies have confirmed that the 

decrease in extracellular pH can activate acid-sensing ion channels that are widely distributed in the 

body, but the precise mechanism remains unclear.  

(2) This study observed the characteristics of acid-sensing ion channel 3 expression and the 

distribution of calmodulin following different reperfusion flows. We revealed a relationship between 

acidosis, calcium overload and cell apoptosis following ischemia/reperfusion injury in the rat brain.  

(3) This study used adaptive reperfusion to restore cerebral blood flow following cerebral ischemia. 

Our results confirmed that adaptive reperfusion has slight effects on brain damage.  

(4) Adaptive ischemia/reperfusion inhibited acid-sensing ion channel 3 expression, and its effects on 

suppressing cell apoptosis and relieving brain damage were better than that of one-time 

ischemia/reperfusion. 
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INTRODUCTION 
    

Reperfusion after cerebral ischemia can cause serious 

reperfusion injury, and acidosis is a common 

characteristic of brain damage
[1-2]

, with calcium ion 

toxicity a key event. Acid-sensing ion channels, a sort of 

double ion channel of H
+
-Ca

2+
 and H

+
 ligand gated 

channels, are widely distributed in the brain, and 

mediate the toxic effect of calcium ions, which do not 

rely on glutamate receptors
[1, 3]

. These ion channels 

have recently become new targets against pain and 

various intracranial diseases. The intracellular calcium 

overload mechanism that occurs during cerebral 

ischemia is complex. N-methyl-D-aspartate receptors 

are considered to play a major role in calcium-mediated 

cerebral ischemic injury, and are the most important 

excitatory neurotransmitter receptors in the central 

nervous system
[4]

. However, some studies have 

reported that the independent glutamate receptor plays 

a more important role during cerebral ischemia
[5-6]

. 

Cerebral ischemic changes include oxygenation 

disorders and acid-base disorders. Changes in H
+
 and 

pH are the first and most important steps that cause a 

series of reactions. Calcium ion toxicity is a key to 

ischemic brain damage. Intracellular calcium overload 

plays an important role in nervous damage, and 

adverse factors can cause an imbalance in the calcium 

system, resulting in disorders to calcium distribution 

and abnormal increases in calcium concentrations. 

Calcium overload can disrupt the oxidative 

phosphorylation process in mitochondria, decrease 

mitochondrial membrane potential, reduce adenosine 

triphosphate content in tissue, and activate 

phospholipases and proteinases. These changes can 

induce and promote the irreversible damage of cells. 

The above-mentioned results suggested that 

controllable initial-low-flow reperfusion may mitigate 

damage during ischemic-reperfusion injury. The 

possible mechanism for this observation may be that 

low-flow adaptive ischemia-reperfusion can lower the 

expression of acid-sensing ion channels, reduce 

calcium overload, and then increase the expression of 

neuronal anti-apoptotic proteins in the ischemic area, 

thereby protecting the brain from apoptosis. This paper 

aimed to observe the mechanism of action and the 

changes in expression levels of acid-sensing ion 

channels under different reperfusion flow rates after 

cerebral ischemia, and to study calmodulin distribution 

under different reperfusion conditions, so as to reveal 

the relationship between acidosis, calcium overload and 

cell apoptosis after cerebral ischemia-reperfusion injury.    

 

RESULTS 
 
Quantitative analysis of experimental animals 
A total of 45 healthy Sprague-Dawley rats were randomly 

assigned to three groups: 1) a one-time ischemia/ 

reperfusion group: middle cerebral artery occlusion for   

2 hours, 2) an adaptive ischemia/reperfusion group: the 

common carotid artery was occluded, and blood flow was 

gradually restored, followed by reperfusion, and 3) a 

severe cerebral ischemic injury group: the common 

carotid artery was occluded to induce middle cerebral 

artery occlusion, and blood flow was not restored. A total 

of 45 rats were included in the final analysis.  

 

General morphology of the hippocampus in rats 
subjected to cerebral ischemia/reperfusion injury 
2,3,5-triphenyltetrazolium chloride (TTC) staining of the 

hippocampus in rats with cerebral infarctions after     

30 minutes of different reperfusion flow rates is shown in 

Figure 1. The adaptive ischemia/reperfusion group: the 

central parts of seven rat hippocampal brain slices were 

red, showing apparent improvement in the ischemic area. 

One-time ischemia/reperfusion group: the central parts of 

five ischemic areas were pale, and the red peripheral 

region improved. Severe cerebral ischemic injury group: 

seven slices were pale, showing infarction and ischemia.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calmodulin immunofluorescence following cerebral 
ischemia and different reperfusion flow conditions in 
the rat hippocampal CA1 region 
Calmodulin was mainly expressed in the cytoplasm. A 

few calmodulin-positive cells were detected in 

experimental rats with mild brain injury. Calmodulin- 

positive cells were visible in the adaptive ischemia/ 

reperfusion group, one-time ischemia/reperfusion group 

and severe cerebral ischemic injury group to different 

degrees. Results displayed that the ratio of calmodulin- 

positive cells was highest in the one-time ischemia/ 

Figure 1  General morphology of the hippocampal CA1 
region following cerebral ischemia/reperfusion (2,3,5- 
triphenyltetrazolium chloride staining).  

The central parts of seven brain slices in the adaptive 
ischemia/reperfusion group (A) were red, showing that 
ischemic areas improved; central parts of five brain slices 
in the one-time ischemia/reperfusion group (B) were pale; 

seven slices in the severe cerebral ischemic injury group 
(C) were pale, showing infarction and ischemia. 

A B C 



Wang J, et al. / Neural Regeneration Research. 2013;8(13):1169-1179. 

 1171 

reperfusion group, and lowest in the adaptive ischemia/ 

reperfusion group. There were significant differences in 

calmodulin-positive cells between the one-time ischemia/ 

reperfusion group and adaptive ischemia/reperfusion 

group (P < 0.05; Table 1, Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common carotid artery blood flow and pH values in 
different perfusion groups after cerebral ischemia 
Common carotid artery blood flow and pH values in the 

different perfusion groups after cerebral ischemia are 

shown in Table 1. The cerebral blood flow of the 

one-time ischemia/reperfusion group was significantly 

higher than the adaptive ischemia/reperfusion group and 

severe cerebral ischemic injury group (P < 0.05). Blood 

flow of the adaptive ischemia/reperfusion group was 

closest to original levels of blood flow (P < 0.05), and the 

pH markedly improved. Significant differences in pH 

were observed when comparing the adaptive 

ischemia/reperfusion group with the one-time 

ischemia/reperfusion group and severe cerebral 

ischemic injury group (P < 0.05). 

 

Acid-sensing ion channel 3 expression in the 
hippocampal CA1 region of rats following cerebral 
ischemia and different reperfusion flow conditions  
Acid-sensing ion channel 3 expression in the 

hippocampal CA1 region of rats is exhibited in Figure 3. 

Acid-sensing ion channel 3 expression was lowest in the 

adaptive ischemia/reperfusion group. Acid-sensing ion 

channel 3 expression was significantly upregulated in the 

severe cerebral ischemic injury group when compared to 

the adaptive ischemia/reperfusion group (P < 0.05). 

Acid-sensing ion channel 3 expression was most obvious 

in the one-time ischemia/reperfusion group. Quantitative 

analysis results displayed that the absorbance value was 

highest in the one-time ischemia/reperfusion group, but 

lowest in the adaptive ischemia/reperfusion group, 

suggesting that acid-sensing ion channel expression is 

involved in neuroprotection (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Morphology of nerve cells in the hippocampal CA1 
region after cerebral ischemia/reperfusion 
Morphology of nerve cells in the hippocampal CA1 

region 10 minutes after cerebral ischemia is shown in 

Figure 4. In the adaptive ischemia/reperfusion group, 

abundant normal nerve cells, and a few inflammatory 

cells and necrotic cells were visible (Figure 4A). Normal 

nerve cells were observed in the one-time ischemia/ 

reperfusion group, however, many microglia and 

inflammatory cells in the red-stained necrotic area were 

detected (Figure 4B). In the severe cerebral ischemia 

injury group, there was a large area of necrosis in the 

ischemic hippocampus with less normal nerve cells 

(Figure 4C).  

Table 1  Effect of reperfusion flow rate on common carotid 
artery blood flow, pH at 30 minutes following cerebral 
ischemia, and calmodulin expression at 12 hours following 

cerebral ischemia 

Group 

Common carotid 

artery cerebral 

blood flow (mL/min) 

pH value 
Calmodulin 

expression 

Adaptive ischemia/ 

reperfusion  

3.2±0.6 7.38±0.04 15.12±4.36 

One-time ischemia/ 

reperfusion 

 6.2±1.5a 7.10±0.04a 77.46±8.33a 

Severe cerebral 

ischemic injury 

0.5±0.1 7.15±0.05 52.25±6.29b 

 
Ten fields were randomly selected (12 hours after brain damage) 

from each section using high power microscopy. aP < 0.05, vs. 

adaptive ischemia/reperfusion group; bP < 0.05, vs. one-time 

ischemia/reperfusion group. Data are the average values of fifteen 

rats in each group. The results are expressed as mean ± SD     

(n = 15). Repeated measures analysis of variance and multivariate 

analysis of variance were used to compare data from different 

groups. 

Figure 2  Calmodulin immunofluorescence at different 

reperfusion flow rate conditions in the rat hippocampal 
CA1 region after cerebral ischemia (immunofluorescent 
staining, fluorescence microscope, × 400).  

(A) Adaptive ischemia/reperfusion group; (B) one-time 
ischemia/reperfusion group; (C) severe cerebral ischemic 
injury group. The red immunofluorescence represents 
calmodulin. Calmodulin-positive cells were mainly 

expressed in the cytoplasm, which were red (arrows). Blue 
fluorescence indicates the nucleus. Calmodulin 
expression in the one-time ischemia/reperfusion group 

was significantly higher than that in the adaptive 
ischemia/reperfusion group. 

A B C 

Figure 3  Acid-sensing ion channel 3 (ASIC3) expression 
in the hippocampal CA1 region of different reperfusion flow 

groups after cerebral infarction.  

(A) ASIC3 expression appeared to remain the unchanged 
in the adaptive ischemia/reperfusion group. (B) ASIC3 

expression in the one-time ischemia/reperfusion group 
was higher than the adaptive ischemia/reperfusion group 
and severe cerebral ischemic injury group. (C) ASIC3 

expression in the severe cerebral ischemic injury group 
was higher than the adaptive ischemia/reperfusion group. 

A B C 

ASIC3 

β-actin 

70 kDa 

43 kDa 
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Expression of Bcl-x/l and Bax protein in the rat 
hippocampal CA1 region following ischemia/ 
reperfusion  
The expression of the anti-apoptotic gene Bcl-x/l in the 

adaptive ischemia/reperfusion group was greater than 

the one-time ischemia/reperfusion group and severe 

cerebral ischemic injury group. The expression of the 

proapoptotic gene Bax in the adaptive ischemia/ 

reperfusion group declined markedly than that in the 

one-time ischemia/reperfusion group (P < 0.05; Figure 5, 

Table 3). 

 
 
DISCUSSION 
 

Acidosis is a common characteristic of brain damage 

following cerebral ischemia reperfusion injury. Calcium 

toxicity is a key event during brain damage that results in 

acid metabolite formation, cell toxicity, and calcium 

ion-induced dissolution of proteases, lipids and nucleic 

acids. One-time ischemia/reperfusion caused abnormal 

energy metabolism and functional damage of 

mitochondria, and induced the accumulation of acidic 

substances (usually lactic acid) and a reduction in pH 

value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

Acidosis is a pathological condition in which the 

acid-base balance is disturbed in the direction of excess 

acidity in body fluid. There are two major types of 

acidosis, respiratory acidosis and metabolic acidosis. 

Respiratory acidosis is due to a build-up of carbon 

dioxide caused by hypoventilation. Metabolic acidosis 

mainly results from the increased accumulation of 

nonvolatile acids (usually lactic acid) or due to the loss of 

bicarbonate resulting from impaired mitochondrial 

function and abnormal energy metabolism
[7]

. Additionally, 

in the nervous system, extracellular acidosis also can 

result from excessive release of acidic vesicles due to 

aberrantly high neuronal activity
[8]

, such as seizures
[9-10]

. 

In the ischemic brain, pH falls to 6.0 due to the 

accumulation of lactic acid, a by-product of glycolysis, 

and as a consequence of protons produced by 

adenosine triphosphate hydrolysis
[11-12]

. During seizures, 

brain pH is reduced from 7.35 to 6.8
[9-10]

. Furthermore, 

Table 2  Absorbance values of acid-sensing ion channel 3 
(ASIC3) protein expression in the hippocampal CA1 region 

of rats after different reperfusion flow rates 

Group ASIC3 β-actin ASIC3/β-actin 

Adaptive ischemia/ 

reperfusion 

0.19±0.01 0.61±0.04 0.31±0.03 

One-time ischemia/ 

reperfusion 

1.18±0.12 0.65±0.05 1.82±0.03a 

Severe cerebral ischemic 

injury 

0.38±0.02 0.78±0.07 0.48±0.02 

 
aP < 0.05, vs. adaptive ischemia/reperfusion group. Data are 

expressed as mean ± SD (n = 15); two sample t-test. Absorbance 

values were calculated using image quantitative software. 

Figure 4  Morphology of nerve cells in the hippocampal 
CA1 region of different reperfusion flow groups after 
ischemia (hematoxylin-eosin staining, light microscope,  
× 20).  

(A) Adaptive ischemia/reperfusion group: abundant normal 
nerve cells (arrow); (B) one-time ischemia/reperfusion 
group: normal nerve cells (arrow), many microglia and 
inflammatory cells in the necrotic area (red-stained); (C) 

severe cerebral ischemic injury group: large area of 
necrosis in the ischemic hippocampus with less normal 
nerve cells (arrow). 

A B C 

Figure 5  Bcl-x/l and Bax protein expression in the rat 
hippocampal CA1 region in following cerebral ischemia/ 
reperfusion.  

(A) Severe cerebral ischemic injury group: the expression 
of Bcl-x/l was not obvious, while the expression of Bax 
was very obvious. (B) One-time ischemia/reperfusion 
group: the expression of Bcl-x/l and Bax were more 

apparent. (C) Adaptive ischemia/reperfusion group: the 
expression of Bcl-x/l was most obvious, while the 
expression of Bax was not obvious. 

A B C 

Table 3  Absorbance values of Bcl-x/l and Bax protein in 
the hippocampal CA1 region of rats after different 
reperfusion flow rates 

Group Bcl-x/l/β-actin  Bax/β-actin  

Adaptive ischemia/reperfusion 1.63±0.08a 0.19±0.02a 

One-time ischemia/reperfusion  0.99±0.05 1.65±0.14 

Severe cerebral ischemic injury 0.38±0.04 1.13±0.06 

 
aP < 0.05, vs. one-time ischemia/reperfusion group and severe 

cerebral ischemic injury group. Data are expressed as mean ± SD 

(n = 15), two sample t-test. 

Bcl-x/I 

Bax 

26 kDa 

20 kDa 

β-actin 43 kDa 
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metabolic acidosis often occurs in neurodegenerative 

diseases. For example, cerebral acidosis (pH 6.6)
[13]

 and 

lactate accumulation in Alzheimer’s disease may be due 

to impaired oxidative energy metabolism and 

inflammation
[14]

. It was reported that acidosis increased 

the expression levels of cellular amyloid-β in cultured rat 

hippocampal neurons
[15]

. In a rodent model of 

Alzheimer’s disease, it was shown that acidosis 

contributed to the aggregation of amyloid-β
[16-17]

. These 

studies suggested that acidosis may contribute to the 

dysregulation of amyloid-β and plaque deposition, which 

may cause neuronal dysfunction in Alzheimer’s 

disease
[18]

. Lactic acidosis was also observed both in 

Parkinson’s disease patients and 1-methyl- 

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 

Parkinson’s disease mouse models due to impairment of 

mitochondrial function
[19]

. Acidosis may contribute to the 

degeneration of substantia nigra neurons induced by 

MPTP
[20]

. In addition, lactic acidosis accumulates in the 

brains of Huntington’s disease patients as well as in 

animal models of this disease. Acidosis in these 

conditions may result from aberrant energy metabolism 

that plays a role in the process of polyQ aggregation and 

the pathogenesis of Huntington’s disease
[21-24]

. It is 

generally conceded that there are adverse 

consequences of acidosis
[7, 16, 20, 24-27]

, however, there are 

reports that acidic preconditioning provides protection 

during ischemic injury
[28] 

and acidosis may contribute to 

seizure termination
[29]

. It is reasonable to suggest that 

restoration of the acid-base balance and blockade of the 

down-stream pathways of acidosis provide two promising 

approaches to eliminating the adverse consequences of 

acidosis such as neuronal death. However, considering 

the complexity of acid-base homeostasis mechanisms in 

the nervous system, the later approach would appear to 

be an easier and more operable option. In this respect, 

acid-sensing ion channels are becoming recognized as 

prime candidates as new therapeutic targets in 

acidosis-related diseases. 

 

Acid-sensing ion channels, double ion channels of 

H
+
-Ca

2+
 in the neuronal cell membrane, play a very 

important role in metabolic disorders and calcium ion 

toxicity. Although the mechanism of H
+
-Ca

2+
 double ion 

coupling remains unknown, it plays an important role in 

cerebral ischemic damage. Acid-sensing ion channels 

are widely distributed in the brain, with the H
+
 ligand 

gated channel mediating the calcium ion toxic effect. 

Acid-sensing ion channels are mainly expressed in the 

central nervous system, but have also been observed in 

the sensory ganglia of peripheral nerves. Acid-sensing 

ion channels are mainly distributed in the cortical 

hemispheres, hippocampus, bulbus olfactorius and 

cerebellum. Acid-sensing ion channels associated with 

cerebral ischemia are also Ca
2+ 

permeable ion channels, 

which allow calcium ions to flow out when activated. To 

date, seven acid-sensing ion channel subunits have 

been cloned
[30-32]

, four of which can be activated by the 

acid effect
[33]

. The detailed function of acid-sensing ion 

channels in the central and peripheral nervous systems 

needs further study. The subtype acid-sensing ion 

channel 1a participates in synaptic plasticity during 

learning and memory, and emotional communication
[33]

. 

The single subunit of acid-sensing ion channels includes 

the two transmembrane domains TM1 and TM2. The 

extracellular amino acid ring is responsible for uniting 

ions while inside the cell to the amino and carboxyl 

terminals. Four subunits form a functional unit inside the 

cell membrane. It was shown that the activation of 

acid-sensing ion channel 1a plays a very important role 

in cerebral ischemic damage, which is mediated by 

glutamic acid and acidosis
[20]

. Homomeric acid-sensing 

ion channel 1a and acid-sensing ion channel 3 channels 

are Na
+ 
and Ca

2+
 permeable channels, whereas other 

combinations are only permeable to Na
+[31, 33]

. In central 

nervous system neurons, acid-sensing ion channel 

1a-containing channels (referred to acid-sensing ion 

channel 1a channels) respond to extracellular pH 

reductions ranging from 6.9 to 5.0 to generate rapid 

depolarizing currents
[31]

, and activation of these channels 

possibly enhances action potential initiation
[34]

. The 

pathological acidosis associated with central nervous 

system diseases is in a range of pH values (ischemia, pH 

6.5–6.0; seizure, pH 6.8; Alzheimer’s disease, pH 6.6) 

that are sufficient to activate acid-sensing ion channel 1a 

channels.  

 

Numerous studies confirmed that acid-sensing ion 

channels, especially acid-sensing ion channel 1a 

channels, play an important role in these      

diseases
[20, 24-26, 29, 35-36]

. With the use of specific inhibitors 

and in animals where the channels have been genetically 

deleted, acid-sensing ion channel 1a channels were 

shown to mediate delayed ischemic neuronal death in 

the mouse middle cerebral artery occlusion ischemic 

model, which led to the hypothesis that elevated 

intracellular Ca
2+ 

resulting from entry via acid-sensing ion 

channel 1a channels induces neuronal toxicity
[25]

. In 

addition, in the experimental autoimmune encephalitis 

model, acid-sensing ion channel 1 gene deletion mice 

had both reduced axonal degeneration and reduced 

clinical deficits compared with wild-type ones, which 

suggests that acid-sensing ion channel 1a channels 

contribute to the damage in neuroinflammatory diseases 
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like multiple sclerosis
[26]

. Acid-sensing ion channel 3 

channels were considered natural acidic sensor 

channels. Normal brain tissue requires glucose to 

provide energy through aerobic oxidation, but during 

cerebral ischemia, the oxygen supply is insufficient to 

enable anaerobic glycolysis. Therefore, accumulation of 

lactic acid and hydrolysis of adenosine triphosphate 

protons (production of anaerobic glycolysis in low oxygen 

supply conditions)-induced pH value decline occurs. 

When it came to severe cerebral ischemia or 

hyperglycemia, the pH of the tissue surrounding the 

ischemic brain tissue decreased from 6.15 to 6.10. A 

stable pH value is critical for normal cell function. 

Extracellular and intracellular pH values in the 

physiological state could be adjusted by various H
+
 

transport mechanisms
[36]

. Through analyzing the 

permeability ratio of acid-sensitive channels using 

principal component analysis, we found that continuous 

inflow of calcium could lead to functional disorder of a 

cell, and this might be an important intracellular 

reaction
[37]

. Strictly speaking, acid-sensing ion channel 

inhibitors, which are prone to have side effects due to 

potential actions on other target molecules, have been 

overused in previous studies to identify the role of 

acid-sensing ion channels in models of Parkinson’s 

disease and Huntington’s disease. Thus, caution should 

be taken when evaluating the contribution of 

acid-sensing ion channels in diseases using 

pharmacological tools. Rodent genetic models such as 

acid-sensing ion channel gene deleted mice and 

molecular manipulations such as RNA interference of 

acid-sensing ion channel subunits should be sought to 

obtain supporting evidence to confirm pharmacological 

findings. The characteristics of acid-sensing ion channels 

are: (1) H
+ 
is a gated ion, and is regulated by 

neuropeptides. (2) The fastest way for H
+
 ion activation is 

ion exchange, whereby acid-sensing ion channels are 

activated by H
+
 during high-affinity site replacement of 

Ca
2+

 
[38-39]

. In this study, we needed a certain pH value to 

fully active acid-sensing ion channel channels. The pH 

value in the one-time ischemia/reperfusion group 

declined, while that of the adaptive ischemia/reperfusion 

group was near normal, which indicated that one-time 

ischemia/reperfusion could significantly enhance brain 

tissue acidification. This enhancement of acidification 

increased the acid-sensing ion channel 3 response 

markedly.  

 

From our results, we learnt that H
+
 concentration and pH 

value changes can activate acid-sensing ion channel 3 

channels during acidosis after brain ischemia, which 

involves calcium inflow via non-glutamate 

receptor-dependent changes that in turn cause calcium 

overload. The above process leads to further activation 

of acid-sensing ion channels and Ca
2+

 upstream, which 

aggravates cerebral ischemic nerve damage. 

 

When the cells were stimulated, calcium channels in the 

cell membrane opened, resulting in an influx of calcium 

into the cytoplasm, In addition, calcium was released 

from mitochondria and the endoplasmic reticulum, 

inducing calcium overload during early brain damage. 

Under pathological conditions, calcium channels in 

neuronal cells were in an abnormal activation state. A 

large number of calcium ions entered into cells, and as 

injury continued, more calcium influx occurred. Moreover, 

the intracellular calcium ion concentration became higher, 

and peaked 24 hours after injury. When calcium overload 

occurred in neuronal cells, a large amount of calcium 

transferred from the extracellular fluid into the axis of 

nerve endings, and calcium and calmodulin in the axis 

combined to form a Ca-calmodulin complex. This 

complex can activate Ca-calmodulin-dependent protein 

kinases, which induce postsynaptic protein 

phosphorylation. The interaction between calmodulin 

kinase II and calmodulin has been reported previously
[40]

. 

Calmodulin is a kind of calcium binding protein that 

widely exists in the nuclei of eukaryotic cells. Only when 

calmodulin combines with calcium ions that form the 

Ca
2+

-calmodulin complex can calmodulin play a 

physiological function. Calmodulin has two spherical 

ends, and each end has two structural domains that can 

combine with calcium ions. Calmodulin can combine with 

four calcium ions. After brain damage, a series of 

pathological and physiological changes occur, which 

mainly include calcium overload in neural cells, change 

in neurotransmitter levels, cell acidosis and many other 

complex changes. Calcium overload is considered to be 

a key event and the deciding factor in brain damage. As 

the main intracellular Ca receptor protein, calmodulin not 

only controls calcium overload, but also plays an 

important role in the synthesis and release of 

neurotransmitters, the transduction of signals, and the 

activation of apoptotic genes. 

 

The expression of apoptotic genes has a strong 

relationship with different reperfusion flow rates, and 

reperfusion flow plays an important role in reperfusion 

injury. Klawitter et al 
[40]

 have studied reperfusion 

conditions using different reperfusion flow volumes in the 

ischemic rabbit lung. Initially, the low-flow group was 60 

mL/min and was then completely restored, suggesting 

that pulmonary function in the low-flow group was 

distinctly improved when compared with the high- flow 
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group (120 mL/min for 30 minutes) and control group (60 

mL/min for 5 minutes at first then 120 mL/min for 25 

minutes). It could be considered that controllability of 

initial low-flow reperfusion could mitigate ischemic/ 

reperfusion damage. In this experiment, the average 

cerebral blood flow in the adaptive ischemia/reperfusion 

group was slightly higher than the normal carotid arterial 

blood flow value, but significantly lower than the one-time 

ischemia/reperfusion group, which was 40–50% lower 

than the one-time ischemia/reperfusion group on 

average, indicating that initial low-flow reperfusion had a 

good protective effect on the brain. Combined with the 

present experiment, adaptive ischemia/reperfusion could 

improve ischemic injury during reperfusion. The possible 

mechanism of adaptive ischemia/reperfusion may 

involve lowering the expression of acid-sensing ion 

channels, reducing calcium overload, increasing the 

expression of neuronal anti-apoptotic proteins in the 

ischemic area, and protecting brain tissue from apoptosis. 

Bcl-x/l, a member of the Bcl-2 family, is important for 

neuronal survival and plays an anti-apoptotic role. Bax, 

another member of the Bcl-2 family, is a neuronal death 

factor that has an opposite function to Bcl-x/l, and can 

induce neuronal apoptosis
[41-42]

. The anti-apoptotic 

protein Bcl-2 and the pro-apoptotic protein Bax modulate 

opening of the permeability transition pore, which is a 

non-specific ion channel that spans the inner and outer 

mitochondrial membrane
[43]

. Opening of the pore leads to 

changes in mitochondrial membrane potential and 

triggers a cascade of reactions that culminate in 

apoptosis.  

 

Hao et al 
[44]

 studied the influence of calcium 

phosphorylation regulation on calmodulin kinase II, and 

showed that L-type calcium channels were the main 

channel to bind to calmodulin. Calcium-gated ion 

channels open when an influx of calcium ions from the 

postsynaptic cleft acts on N-methyl D-aspartate 

receptors. When calcium-gated channels open, 

calmodulin phosphorylation, caused by an influx of 

calcium in neuronal cells, enhances cytosolic calcium 

leakage, elevates mitochondrial calcium levels and 

increases neuronal cell death
[45]

. The subsequent brain 

damage leads to increased concentrations of intracellular 

free calcium. Calmodulin expression depends on 

changes to calcium concentrations
[46]

. Sustained 

increases in intracellular free calcium result in 

intracellular calcium overload, which can trigger the 

release of calcium in mitochondria. Mitochondrial calcium 

accumulation can lead to adenosine triphosphate 

synthesis disruption, and energy metabolism and ionic 

pump failure
[47]

.  

The integrity and function of mitochondria are critical for 

most types of cell death, due to generation of reactive 

oxygen species and the release of pro-death proteins 

from the mitochondrial intermembrane space
[48]

. The 

mitochondrion plays a critical role in acidosis-induced 

injury in cardiac myocytes
[49]

. Under these conditions, 

hypoxia-acidosis led to cell death by opening of the 

mitochondrial permeability transition pore because 

accumulation of the Bcl-2 family member 

Bcl-2/adenovirus E1B 19 kDa interacting protein 3 was 

observed, and this could be rescued by the mitochondrial 

permeability transition pore inhibitor cyclosporine A
[49]

. 

The same mechanism was also reported in kidney 

epithelial cells, where the mitochondrial complex I 

inhibitor rotenone rescued cells from death
[50]

. A recent 

report has revealed some new insights into acid-sensing 

ion channel 1a channel-mediated neuronal death      

in vitro
 [51]

. The acid-sensing ion channels inhibitors, 

psalmotoxin1 and amiloride, both of which have been 

shown to inhibit acid-sensing ion channel 1a 

channel-mediated neuronal death, also reduced reactive 

oxygen species production. Besides causing damage 

directly, reactive oxygen species are important 

modulators of many proteins. Reactive oxygen species 

reduced the peak amplitude of acid-sensing ion channel 

1a channel currents through decreasing membrane 

trafficking due to inter-subunit disulfide bond 

formation
[52-53]

, indicating that reactive oxygen species 

may provide neuroprotection against acidosis-induced 

injury. In fact, the amount of reactive oxygen species 

produced is greatly increased in the ischemic brain 

through many different pathways
[54]

. Thus, the time and 

amount of reactive oxygen species generation are critical 

for ischemic neuronal death. Significant brain tissue 

acidosis after one-time ischemia/reperfusion activated 

acid-sensing ion channel 3 channels, induced an 

increase in acid-sensing ion channel 3 expression, led to 

an influx in calcium, and an increase in calmodulin 

phosphorylation, and an increases in cytosolic calcium 

leakage and mitochondrial calcium elevation, all of which 

contributed to apoptosis.  

 

Overall, we found differences between the two groups 

after severe brain injury. In the one-time ischemia/ 

reperfusion group, blood flow increased significantly, 

pH declined slightly, the necrotic area was large, and 

many small glial cells and inflammatory cells were 

observed using electron microscopy. In the adaptive 

ischemia/ reperfusion group, blood flow increased 

slightly, there was an improvement in pH, hippocampal 

neurons remained intact, and the area of necrosis 

significantly reduced. In the one-time ischemia/ 
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reperfusion group, acid-sensing ion channels 

expression increased more obviously than the adaptive 

ischemia/reperfusion group, which revealed that there 

was a correlation between metabolites, pH value and 

the expression of acid-sensing ion channels. The 

change in H
+
 concentration and pH after brain damage 

may activate acid-sensing ion channels, and promote 

the internal flow of calcium ions, cause calcium 

overload and aggravate nerve damage. However, 

further research is required to precisely understand the 

effect of calcium ion changes on cell function. Studies 

using the patch clamp technique to monitor changes in 

cell free calcium will provide further insights on the role 

of acid-sensing ion channels. 

 

 
MATERIALS AND METHODS 
 
Design 
A randomized, controlled animal experiment. 

 

Time and setting 
The experiment was performed at the Central Laboratory 

of Dalian Medical University, China, from January 2008 

to December 2011.  

 

Materials  
A total of 45 healthy, 50-day-old, Sprague-Dawley rats, 

weighing 160–180 g, were provided by the Laboratory 

Animal Center of Dalian Medical University in China 

(license No. SCXK (Liao)2008-0005). The rats were 

separately housed in plastic cages under a constant 

light-dark cycle and were allowed free access to food 

and water. All experiments were performed in 

accordance with the Guidance Suggestions for the Care 

and Use of Laboratory Animals, formulated by the 

Ministry of Science and Technology of China
[55]

. 

  

Methods 
Model establishment and intervention 

One-time ischemia/reperfusion group: rat models were 

established by suture occlusion of the middle cerebral 

artery after anesthesia with 1.5% (v/v) isoflurane, 70% 

(v/v) N2O and 28.5% (v/v) O2
[6]

. Ischemia was induced by 

introducing a coated filament from the external carotid 

artery into the internal carotid artery and advancing it into 

the circle of Willis to the branching point of the left middle 

cerebral artery, thereby occluding the middle cerebral 

artery
[56]

. At 2 hours following middle cerebral artery 

occlusion, the coated filament was removed. 

Achievement of ischemia was confirmed by monitoring 

regional cerebral blood flow in the area of the left middle 

cerebral artery. Cerebral blood flow was monitored 

through a disposable microtip fiber optic probe (diameter 

0.5 mm) connected through a Master Probe to a laser 

Doppler computerized main unit (PF5001, Perimed, 

Beijing, China). The microtip was attached to the skull of 

the mouse using cyanoacrilate glue. Animals that did not 

show a reduction in cerebral blood flow of at least 70% 

were excluded from the experimental group
[57]

, as were 

animals that died after ischemia induction. 

 

Adaptive ischemia/reperfusion group: After abdominal 

cavity anesthesia, the carotid artery of the remaining rats 

was separated, the common carotid artery was clipped 

with a self-made vascular clamp and different cerebral 

blood flows were chosen according to the experimental 

study. Rat body temperature was maintained at 37 ± 5°C 

during the experiment. The cerebral blood flow was 

gradually restored from 1/4 to 1/2 of the original blood 

flow, and the time for perfusion was ten minutes. The 

measuring method of cerebral blood flow was identical to 

the one-time ischemia/reperfusion group. 

 

Severe cerebral ischemic injury group: Ischemia/ 

reperfusion was performed according to the adaptive 

ischemia/reperfusion group, but the common carotid 

artery was not restored. Cerebral blood flow was 

measured as per the one-time ischemia/reperfusion 

group.  

 

TTC staining of hippocampal slices to observe 

cerebral infarction in the hippocampus  

The common carotid artery of animals was intubated, 

and the brain was infused with ice-cold saline. 

Subsequently, brains were quickly removed, then fixed in 

4% (w/v) paraformaldehyde (pH 7.3). Different regions of 

brain tissue were selected for preparing paraffin slices 

and subjected to hematoxylin-eosin staining, while the 

infarction area received TTC staining
[58]

. The PH200 

waterproof model the acidity/ORP ion cryoscope 

(Lovibond Company, Düsseldorf, Germany) was used to 

determine the local pH value. The infarct volume was 

calculated by summing the infarction areas of all sections 

and multiplying by the slice thickness. The percentage of 

the infarct was calculated by dividing the infarct volume 

by the total ipsilateral hemispheric volume. 

 

Western blot assay for acid-sensing ion channel 

expression in the hippocampal CA1 region of rats  

Brain tissue (40 mg) from each group was treated with 

phenylmethylsulfonyl fluoride to prepare sodium dodecyl 

sulfate protein lysates. Lysates were recovered by 

centrifugation at 12 000 × g for 15 minutes. After 
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denaturation, the proteins were separated at 150 V for 

1.5 hours on a 10% (w/v) sodium dodecyl sulfate 

polyacrylamide gel and then transferred to nitrocellulose 

membranes for 2 hours (wet transfer, 40 mA). After 

blocking with tris-buffered saline containing 0.1% (v/v) 

Tween-20 (TBST) and 5% (w/v) skim milk for 1 hour, 

membranes were incubated with the anti- acid-sensing 

ion channel 3 (goat anti-polyclonal IgG; 1:350; Shanghai 

Seebio, Shanghai, China) primary antibody and β-actin 

antibody (mouse anti-monoclonal IgG2a; 1:500; 

Shanghai Seebio) overnight at 4°C. Membranes were 

rinsed in TBST for 10 minutes, and incubated with 

horseradish peroxidase-labeled goat anti-rabbit IgG    

(1: 4 000; Beijing ZSGB Biological Company, Beijing, 

China) for 1 hour at 37°C. After several TBST washes for 

10 minutes, immunoblots were developed using the 

enhanced chemiluminescence system (Tongyong, 

Shanghai, China). Absorbance was measured with 

Image Quant 5.2 software (Yankebio Company, 

Hangzhou, China). 

 

Distribution of calmodulin in the hippocampal CA1 

region, as detected by immunofluorescence  

Brain slices were rapidly perfused with warm saline and 

4% (w/v) paraformaldehyde in 0.1 mol/L phosphate 

buffer (pH 7.4). Brains were then removed and postfixed 

in 4% (w/v) paraformaldehyde for 4 hours, and then 

embedded with paraffin, sliced into coronal sections, and 

immunohistochemically stained. The sections were 

deparaffinized and washed in PBS, and subjected to 

antigen retrieval using a microwave. After washing with 

PBS, the specimens were treated with 3% (v/v) H2O2 for 

10 minutes and washed again in PBS. The sections were 

blocked in 10% (v/v) fetal bovine serum at room 

temperature for 20 minutes, incubated in rabbit anti-rat 

CALM1 polyclonal primary antibody (1:100; Protech 

Company, Beijing, China) at 4°C overnight, rinsed in PBS, 

and incubated with horseradish peroxidase-labeled goat 

anti-rabbit IgG (Protech Company) for 20 minutes at 

37°C. After washing with PBS, the streptavidin-biotin 

complex was added for 20 minutes at 37°C. The 

specimens were washed with PBS, mounted on glass 

slides with 30% (v/v) glycerin and imaged using a 

fluorescence microscope (Guangzhuo Company, 

Guangzhou, China). 4′,6-diamidino-2-phenylindole 

(Sigma, St. Louis, MO, USA,) was used as a nuclear 

marker. Ten fields were randomly selected from the 

immunofluorescence-stained sections using a 

high-powered microscope (Sunny Optical Technology, 

Ningbo, Zhejiang Province, China). The ratio of positive 

cells and cell nuclei was determined, and the average 

value was calculated.   

Morphology changes of hippocampal CA1 region  

The common carotid artery of animals was intubated, 

and the brain was infused with ice-cold saline. 

Subsequently, brains were quickly removed, and fixed in 

4% (w/v) paraformaldehyde (pH 7.3). Different regions of 

brain tissue were selected for preparing paraffin slices. 

Morphological changes in the hippocampus, the size of 

the red-stained area, and the number of inflammatory 

cells were observed by light microscopy (Sunny Optical 

Technology). 

 

Expression of Bcl-x/l and Bax in the hippocampal 

CA1 region as measured by western blot assay   

Cells from each group were washed twice with PBS. 

Phenylmethylsulfonyl fluoride was added to sodium 

dodecyl sulfate protein lysates and 100 μL of 

phenylmethylsulfonyl fluoride was added to each group. 

The lysates were recovered by centrifugation for 15 

minutes and subjected to standard western blotting 

procedure as described above. Membranes were 

incubated with 1:100 mouse anti-human Bcl-x/l 

monoclonal primary antibody (Eysin Bio-Technology, 

Shanghai, China) and mouse anti-human Bax 

monoclonal antibody (1:100; Eysin Bio-Technology).  

  

Statistical analysis  
Data were expressed as mean ± SD, and processed 

with SPSS 11.0 software (SPSS, Chicago, IL, USA). 

Different time points and groups were compared using 

repeated measures and multivariate analysis of 

variance. Comparisons were made using a two-sample 

t-test. A value of P < 0.05 was considered statistically 

significant.  
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