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Statins have been reported to suppress CD40 expression and nuclear factor (NF)-κB

activation, which are both up-regulated in the intestines following traumatic brain

injury (TBI)-induced intestinal injury. In this study, we aimed to investigate the effects

of the statin rosuvastatin on post-TBI jejunal injury in rats, focusing on potential

mechanisms involving the CD40/NF-κB signaling pathway. The jejunal CD40 expression

was determined by western blotting. The DNA-binding activity of NF-κB was assessed

by electrophoretic mobility shift assays (EMSAs). The tumor necrosis factor (TNF)-α

and interleukin (IL)-1β levels were assessed by enzyme-linked immunosorbent assays

(ELISAs). The severity of the jejunal mucosal injury was assessed by hematoxylin

and eosin (HE) staining and histopathological evaluation. We found that the post-TBI

upregulation of both CD40 expression and NF-κB activity in the jejunal tissues were

significantly inhibited by rosuvastatin, while the post-TBI expression of TNF-α and

IL-1β was significantly suppressed by rosuvastatin. In addition, rosuvastatin significantly

ameliorated TBI-induced effects on the villus height, crypt depth, and villous surface area.

Rosuvastatin suppressed TBI-induced intestinal injury in rats, which may be associated

with the blockade of the CD40/NF-κB pathway.
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INTRODUCTION

Traumatic brain injury (TBI) is a serious medical problem worldwide, with extremely high
disability and mortality rates (1). Although intensive investigations of TBI have been carried
out, researchers have focused mainly on the pathophysiologic processes of the brain injury itself.
However, it is also important to realize that extracranial complications following the initial brain
injury might, to some extent, impede treatment efficacy, and recovery. Therefore, understanding
the etiology and underlying mechanisms of post-TBI extracranial complications is important (2).

Organ dysfunction, especially gastrointestinal dysfunction, has frequently been observed in
TBI patients (3). In previous research, we demonstrated that TBI can induce marked damage
to intestinal mucosal structures and barrier functions (4). Additionally, we found that TBI
up-regulated the intestinal expression of CD40, nuclear factor (NF)-κB, and pro-inflammatory
cytokines, which may play pivotal roles in the pathogenesis of acute intestinal mucosal injury
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(5–7). Several studies have suggested that the inflammatory
responses mediated by NF-κB and other inflammatory cytokines
are key factors in intestinal mucosal damage (8–10). Notably,
both in vivo and in vitro studies have reported that statins
regulate CD40 expression (11), block NF-κB activation (12, 13),
and further exhibit anti-inflammatory properties, in addition to
exhibiting lipid-lowering effects (14).

The statin rosuvastatin, a new 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase inhibitor, has increased
affinity for the active site of HMG-CoA reductase compared
to other statins. The protective role of rosuvastatin in
preventing ischemic injury has been clearly documented (15,
16). Yuji et al. reported that rosuvastatin reduced intestinal
ischemia-reperfusion injury in animal models (17). This
indicates that rosuvastatin is a potential candidate drug for
protecting against post-TBI intestinal injury. Hence, in this
study, we aimed to investigate whether rosuvastatin treatment
could regulate the CD40/NF-κB signaling pathway, and tried
to clarify the potential role of this pathway in post-TBI
intestinal injury.

MATERIALS AND METHODS

Rat Model of TBI
Male Sprague-Dawley rats, weighing about 250–300 g, were
purchased from the Experimental Animal Center of Anhui
Medical University. They were housed at about 25◦C in
a controlled environment with 12 h of artificial light per
day. They were randomized into three groups: the sham
operation + normal saline group (SN, n = 6), TBI +

normal saline group (TN, n = 6), and TBI + rosuvastatin
group (TR, n= 6).

TBI was induced using a modified version of Feeney’s weight-
drop model technique (18). Briefly, the rats were anesthetized
with 4% isoflurane and the anesthetic effect was maintained
with 2% isoflurane (0.6 L/min) delivered by a small-animal
anesthetic machine. Thereafter, a right parietal craniotomy
(5mm in diameter) was performed at 1mm posterior and
2mm lateral to the bregma. A steel rod (weighing 40 g with
a flat end and a diameter of 4mm) freely fell from a height
of 25 cm onto the exposed intact cranial dura to produce
a standardized parietal contusion. The rod was allowed to
compress the tissue a maximum of 5mm. The rats in the sham
operation group were anesthetized, mounted in the stereotaxic
apparatus and had their scalps cut and sutured but did not
undergo trephination.

At 30min after the TBI, rosuvastatin (AstraZeneca UK,
Ltd., London, UK) was dissolved in isotonic normal saline and
administered at 30 mg/kg intraperitoneally. In the SN group, an
equivalent amount of saline was administered intraperitoneally
under the same time condition.

All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed.

Preparation of Jejunal Tissues
The rats were decapitated 24 h after the TBI to conduct tissue
assays. A-3 cm segment of the mid-jejunum was obtained,

flushed with ice-cold saline, and opened longitudinally. For the
histopathological evaluation, jejunal tissues were immersed in 4%
buffered formalin.

Western Blotting (WB) Analysis
The total proteins of the jejunal tissue homogenates were
extracted using a radioimmunoprecipitation assay (RIPA) buffer
kit (Beyotime Biotechnology, Shanghai, China) according to
the manufacturer’s protocol. They were then measured using
a bicinchoninic acid (BCA) protein quantification kit (Thermo
Scientific, Waltham, MA, USA), according to the manufacturer’s
protocol. The CD40 protein levels were assessed as previously
described (7). Briefly, the proteins were separated by 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis and then
transferred to polyvinylidene difluoride membranes (Millipore
Corp., Bedford, MA, USA). The membranes were blocked
with 5% non-fat milk (w/v) dissolved in Tris-buffered saline
with Tween 20 for 1 h at room temperature. The proteins
were then labeled with the following primary antibodies: anti-
CD40 antibody (1:100; Santa Cruz Biotechnology, CA, USA)
and anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
antibody (1:1,000; Sigma, St Louis, MO, USA) at 4◦C overnight.
This was followed by incubation with secondary goat anti-
mouse IgG (H+L) antibody (peroxidase/horseradish peroxidase
conjugated; 1:1,000; E-AB-1001; Elabscience, Wuhan, China) for
1.5 h at room temperature. The optical density of the resulting
bands was determined using UN-SCAN-IT graph digitizing
software (UT, USA), with densitometry values normalized to the
GAPDH values.

Electrophoretic Mobility Shift Assay
(EMSA)
We performed EMSA to detect the NF-κB DNA-binding
activity as previously described (5). Briefly, a consensus
oligonucleotide probe containing the DNA-binding site for
NF-κB (5′-AGTTGAGGGGACTTTCCCAGGC-3′) was end-
labeled with [γ-32P]-ATP (Free Biotech, Beijing, China)
using T4-polynucleotide kinase. Competitive reactions
were performed by adding a 100-fold excess of unlabeled
NF-κB consensus oligonucleotide. HeLa nuclear extract
was used as the positive control. Data were expressed
as arbitrary densitometry units (ADU) obtained from the
densitometric scans.

Enzyme-Linked Immunosorbent Assay
(ELISA)
The concentrations of tumor necrosis factor (TNF)-α and
interleukin (IL)-1β in the jejunal tissue supernatants were
determined using ELISA kits according to the manufacturer’s
protocols (TNF-α ELISA kit from Diaclone Research,
Besançon, France; IL-1β ELISA kit from BioSource Europe
SA, Nivelles, Belgium).

Histopathological Evaluation
The formalin-fixed jejunal tissues were embedded in paraffin,
sectioned at 4-µm thickness with a microtome, and stained
with hematoxylin and eosin (HE). The villus height, diameter
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FIGURE 1 | Western blotting analysis of CD40 protein expression. (A) Representative western blots of CD40 levels in the jejunal tissues in the SN, TN, and TR groups.

(B) Quantitative analysis of the western blotting results for CD40. CD40 expression was up-regulated following traumatic brain injury (TBI; TN vs. SN), but the

increased level of CD40 was suppressed by rosuvastatin (TR vs. TN). Bars represent mean ± SD (n = 6 per group). *P < 0.05 vs. SN group; #P < 0.05 vs TR group.

SN, sham operation + normal saline; TN, TBI + normal saline; TR, TBI + rosuvastatin.

FIGURE 2 | Electrophoretic mobility shift assays (EMSAs) of NF-κB DNA-binding activity. (A) EMSA results showing NF-κB DNA-binding activities in the SN, TN, and

TR groups. (B) Quantitative analysis of the NF-κB DNA-binding activity. NF-κB DNA-binding activity increased following traumatic brain injury (TBI; TN vs. SN), but the

increased activity was suppressed by rosuvastatin (TR vs. TN). Bars represent mean ± SD (n = 6 per group). *P < 0.05 vs. SN group; #P < 0.05 vs TR group. SN,

sham operation + normal saline; TN, TBI + normal saline; TR, TBI + rosuvastatin.

FIGURE 3 | Changes in inflammatory mediators in jejunal tissues as determined by enzyme-linked immunosorbent assays (ELISAs). Traumatic brain injury (TBI)

significantly increased the concentrations of IL-1β and TNF-α in rat jejunal tissues. In the TR group, the jejunal concentrations of IL-1β (A) and TNF-α (B) were

markedly suppressed compared to those in the TN group. Bars represent mean ± SD (n = 6 per group). *P < 0.05 vs. SN group; #P < 0.05 vs TR group. SN, sham

operation + normal saline; TN, TBI + normal saline; TR, TBI + rosuvastatin.
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of the middle of the villus, and crypt depth in the tissues
were determined using an HPIAS-1000 image analysis system
(Champion Image Engineering Company, Wuhan, China).
The villous surface area was calculated on the basis of the
following formula: surface area= πdh (d, villus diameter;
h, villus height). At least 10 well-oriented crypt-villus
units per sample were assessed and average values were
calculated by an independent pathologist who was blind to the
animal grouping.

Additionally, pathology grades were determined based on
the following criteria, as described in a previous study (19):
0: normal; 1: mild focal infiltration of the lamina propria;
2: mild infiltration of the lamina propria, multifocal, and
mild glandular separation; 3: infiltration with multifocal mild
edema; 4: mixed infiltration of the submucosa and lamina
propria, extensive separation of glands, plaque enlargement,
and edema.

Statistical Analysis
We used SPSS (version 19.0. IBM Co., Ltd., Armonk, NY, USA)
for the statistical analysis. Each parameter was expressed as
mean ± SD and compared between groups using Kruskal-
Wallis test or one-way analysis of variance (ANOVA),
followed by Tukey’s post-hoc test. P < 0.05 was considered
statistically significant.

RESULTS

CD40 Protein Levels in the Jejunal Tissues
CD40 protein levels were measured by WB. As shown in
Figure 1, compared to the SN group, the level of CD40 protein
significantly increased in the TN group (P < 0.01), while the
rosuvastatin (in the TR group) significantly suppressed the CD40
protein level compared to that in the TN group (P < 0.05). The
replicates of CD40 proteins in other 5 groups were provided as
request (Supplementary Figure 1).

NF-κB DNA-Binding Activity in the Jejunal
Tissues
The results of EMSAs of NF-κB DNA-binding activity in the
jejunal tissues are shown in Figure 2. Low NF-κB DNA-binding
activity (i.e., weak EMSA autoradiography) was found in the SN
group. In contrast, NF-κBDNA-binding activity was significantly
up-regulated in the TN group compared to the SN group (P
< 0.01), while it was significantly suppressed in the TR group
compared to the TN group (P < 0.05).

Concentrations of IL-1β and TNF-α in the
Jejunal Tissues
ELISAs were performed to assess the concentrations of IL-1β
and TNF-α in the jejunal tissues. The results showed that the

FIGURE 4 | Hematoxylin and eosin (HE) staining of the mucosal structures of the jejunum. (A) Rats in the SN group exhibited normal mucosal architecture with intact

villi. (B) Traumatic brain injury (TBI) resulted in shedding of epithelial cells, broken villi, focal ulcers, fusion between adjacent villi, dilation of central chyle duct, mucosal

atrophy, and edema in the villus interstitium and lamina propria. (C) Rosuvastatin significantly suppressed the TBI-induced morphologic alterations of the jejunal

mucosa. Scale bar = 200µm. (D) Quantitative analysis of morphology of the jejunal mucosa with Kruskal Wallis tests. *P < 0.05, **P < 0.01 vs. SN group; #P < 0.05

vs TN group. SN, sham operation + normal saline; TN, TBI + normal saline; TR, TBI + rosuvastatin.
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concentrations of both IL-1β and TNF-α were extremely low in
the SN group, and they were greatly enhanced in the TN group
(P < 0.01). Rosuvastatin significantly suppressed the post-TBI
concentrations of IL-1β and TNF-α in the jejunal tissues (P <

0.05) (Figure 3).

Histopathological Evaluation
Villus height, crypt depth, and villous surface area were
determined as specific evaluation indices of mucosal damage.
Histopathological assessment showed that the morphology of
the jejunal mucosa was approximately normal in the SN group.
TBI caused considerable damage to the mucosal structures.
However, this damage was ameliorated by rosuvastatin
administration (Figure 4). Quantitative analyses demonstrated
that the villus height, crypt depth, and villous surface area
significantly decreased in the TN group compared to the
SN group (P < 0.01). In the TR group, these parameters
were significantly increased compared to those in the TN
group (P < 0.05) (Table 1).

DISCUSSION

In the present study, we found increases in the CD40 protein
level, NF-κB DNA-binding activity, and concentrations of IL-1β
and TNF-α in the jejunal tissues of rats at 24 h after TBI. However,
the administration of rosuvastatin partially inhibited CD40
expression, decreased the NF-κB activation, and reduced the
concentrations of IL-1β and TNF-α. Moreover, histopathological
evaluation confirmed that the TBI-induced damage to the jejunal
structures was ameliorated by rosuvastatin.

Previous studies demonstrated that the CD40/CD40L
pathway plays a key role in intestinal inflammation by increasing
the secretion of multiple pro-inflammatory cytokines and
chemokines (20, 21). Although the specific mechanisms
underlying how statins inhibit CD40 expression remain poorly
understood, several studies have supported the hypothesis that
these effects are mediated by nitric oxide synthase (NOS)- or
peroxisome proliferator-activated receptor (PPAR)-dependent
pathways (11, 22, 23). We hypothesize that the inhibitory effect
of rosuvastatin on post-TBI CD40 expression in the jejunum was
mediated by the same pathway.

It has been reported that NF-κB, a pivotal cytokine
downstream of CD40, plays a fundamental role in regulating
cytokine-mediated inflammatory processes (6, 24). The
functional importance of NF-κB in acute inflammation is related
to its ability to regulate the transcription of numerous genes, such
as IL-1β, TNF-α, IL-6, intercellular adhesion molecule (ICAM)-
1, and acute phase proteins, which have been shown to be
critical in inflammatory processes (25, 26). Increasing evidence
has convincingly indicated that corticosteroid hormones,
antioxidants, protease inhibitors, and other compounds may
treat pathological inflammatory conditions by inhibiting NF-κB
activation (27). In our previous research, we demonstrated that
progesterone suppressed TBI-induced NF-κB activation in the
gut, decreased the intestinal production of pro-inflammatory
cytokines, and protected the structures of the ileal mucosa
(6). In the present study, we found that rosuvastatin blocked

TABLE 1 | Changes in villous height, diameter, crypt depth, and surface area of

mucosa.

Groups Villous height

(µm)

Villous

diameter (µm)

Crypt depth

(µm)

Surface area

(mm2)

SN 241.4 ± 28.1 47.4 ± 7.5 81.6 ± 12.6 0.0362 ± 0.0041

TN 191.2 ± 17.6# 38.7 ± 3.2 69.3 ± 9.5# 0.0235 ± 0.0022#

TR 211.2 ± 22.3* 38.5 ± 5.5 75.2 ± 7.2* 0.0257 ± 0.0036*

Values were expressed as mean ± SD.
#P < 0.0.05 vs. SN group, and *P < 0.05 vs. TN group.

NF-κB activation, and subsequently down-regulated IL-
1β and TNF-α levels. The inhibition of NF-κB activation
might be attributable to the reduced phosphorylation and
degradation of the NF-κB inhibitor protein IκB, as well as
the absence of mevalonate caused by inhibiting HMG-CoA
reductase (28).

Our study had a notable limitation concerning the focus
on rosuvastatin rather than multiple statins. Although
researchers have reported that other statins beside rosuvastatin
(such as simvastatin and atorvastatin) might exhibit anti-
neuroinflammatory effects in animal models of TBI (29, 30),
we did not compare these other statins with rosuvastatin. Xu
et al. found that acute atorvastatin administration effectively
modulated post-TBI neuroinflammation, probably by altering
peripheral leukocyte invasion and the alternative polarization of
microglia/macrophages (29). Additionally, Chong et al. found
that the neuroprotective effect of simvastatin in TBI might be due
to its anti-neuroinflammatory effects rather than its cholesterol-
lowering effects (30). However, there are few studies on the
regulation of post-TBI intestinal inflammation by simvastatin
and atorvastatin and, as the aim of our study concerned post-
TBI extracranial complications, we did not assess the effects of
rosuvastatin on neuroinflammation.We believe that rosuvastatin
might share anti-inflammatory effects with the abovementioned
statins, as activated neuroinflammation predominantly relies
on the activation of peripheral immunocytes, and 70–80%
immunocytes are located in the gut associated lymphoid tissue
(GALT) (31). However, mechanistic research should now be
conducted to determine whether different statins have different
effects regarding inflammation.

In conclusion, we found that rosuvastatin has an anti-
inflammatory effect, in addition to its ability to reduce
cholesterol levels (32). This anti-inflammatory effect might
involve both HMG-CoA reductase-dependent and -independent
mechanisms (33, 34). Our results suggest that rosuvastatin
can partially prevent acute TBI-induced injury to the rat
jejunum, probably due to its blockade of the CD40/NF-
κB pathway. The specific protection mechanisms require
further exploration.
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