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Abstract: End stage renal disease (ESRD) is characterized by complex metabolic abnormalities,
yet the clinical relevance of specific biomarkers remains unclear. The development of multiplex
diagnostic platforms is creating opportunities to develop novel diagnostic and therapeutic approaches.
SOMAscan is an innovative multiplex proteomic platform which can measure >1300 proteins. In the
present study, we performed SOMAscan analysis of plasma samples and validated the measurements
by comparison with selected biomarkers. We compared concentrations of SOMAscan-measured
prostate specific antigen (PSA) between males and females, and validated SOMAscan concentrations
of fibroblast growth factor 23 (FGF23), FGF receptor 1 (FGFR1), and FGFR4 using Enzyme-Linked
immunosorbent assay (ELISA). The median (25th and 75th percentile) SOMAscan PSA level in
males and females was 4304.7 (1815.4 to 7259.5) and 547.8 (521.8 to 993.4) relative fluorescence
units (p = 0.002), respectively, suggesting biological plausibility. Pearson correlation between
SOMAscan and ELISA was high for FGF23 (R = 0.95, p < 0.001) and FGFR4 (R = 0.69, p < 0.001),
indicating significant positive correlation, while a weak correlation was found for FGFR1 (R = 0.13,
p = 0.16). In conclusion, there is a good to near-perfect correlation between SOMAscan and standard
immunoassays for FGF23 and FGFR4, but not for FGFR1. This technology may be useful to
simultaneously measure a large number of plasma proteins in ESRD, and identify clinically important
prognostic markers to predict outcomes.
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1. Introduction

Chronic kidney disease (CKD) represents an important public health problem, affecting 11.1%
of the population worldwide [1]. End-stage renal disease (ESRD), which is defined as a glomerular
filtration rate (GFR) of less than 15 mL/min/1.73 m2 or receiving renal replacement therapy, is also

Diagnostics 2018, 8, 71; doi:10.3390/diagnostics8040071 www.mdpi.com/journal/diagnostics

http://www.mdpi.com/journal/diagnostics
http://www.mdpi.com
https://orcid.org/0000-0002-3363-5673
https://orcid.org/0000-0002-8204-911X
http://www.mdpi.com/2075-4418/8/4/71?type=check_update&version=1
http://dx.doi.org/10.3390/diagnostics8040071
http://www.mdpi.com/journal/diagnostics


Diagnostics 2018, 8, 71 2 of 9

showing an increasing prevalence: in the US alone there were 57,420, 391,121 and 678,383 prevalent
ESRD patients in 1980, 2000 and 2014, respectively [2]. Despite significant amounts of resources
being spent on technological research and clinical trials, mortality rates in patients with ESRD remain
approximately 5-fold higher than the age- and gender-adjusted mortality of general Medicare patients
in all age groups [2]. New approaches are needed to identify potential treatment targets which might
have beneficial effects on these patients’ survival.

Patients with ESRD suffer from a high burden of morbidity and mortality, in large part related to
cardiovascular disease complications, but also from other causes such as infections [3,4]. This high
burden of morbidity and mortality cannot be fully explained by current prevailing risk factor
paradigms, such as hypercholesterolemia, hypertension, or diabetes mellitus. Several previous
studies have shown that classical associations and risk profiles, which are very well established in the
general population, cannot be detected in hemodialysis patients [5,6]. A number of non-traditional
risk factors have been proposed to explain the high morbidity and mortality observed in ESRD,
such as inflammation, oxidative stress, mineral and bone disorders, anemia, other yet-to-be-identified
metabolic abnormalities linked to the uremic state, or a combination of these [7–12]. Particularly,
fibroblast growth factor 23 (FGF23) has emerged as one of the most powerful predictors of adverse
outcomes in patients with CKD and ESRD. FGF23 is a hormone produced by osteoblasts and osteocytes
in bone that acts on the bone-kidney endocrine network to regulate phosphate and vitamin D
metabolism. FGF receptor 1 (FGFR1) or FGFR4 can form complexes with α-Klotho to comprise
a functional FGF23 receptor [13,14].

There are currently no approved therapeutic interventions known to reduce mortality in
patients with ESRD. It is thus necessary to identify novel biomarkers which can assist the accurate
and early diagnosis of risk factors and conditions relevant to ESRD-associated mortality, thereby
allowing clinicians to tailor their therapy for this particular population of patients. Commonly used
biomarker screening techniques have their limitations. For example, many challenges remain for mass
spectrometry (MS) in clinical proteomics, including issues of sensitivity, specificity, reproducibility,
validation, and cost [15]; while antibody-based technology, such as Enzyme-Linked immunosorbent
assay (ELISA), is sensitive, and it cannot be multiplexed above a few dozens of simultaneous
measurements [16].

Proteomic array platforms have been developed to improve diagnostics for conditions with
large unmet clinical needs, such as oncology, renal disease, and infections. These diseases would
benefit greatly from early detection and diagnosis, which could be aided by multiplex proteomic
assays [17–21]. Recently, a modified aptamer-based technology, SOMAscan, was developed as a highly
sensitive and multiplexed proteomics platform [22–24]. SOMAscan is based on Slow Off-rate Modified
Aptamers (SOMAmers) that recognize specific conformational epitopes of natural 3D proteins with
high specificity and sensitivity [25]. The SOMAscan platform is a versatile and powerful tool that
allows the large-scale comparison of proteome profiles within discrete subpopulations. The SOMAscan
assay measures levels of 1317 analytes using only 65 µL of complex biological fluids over a wide
dynamic range.

Due to the novel nature of the technology used by SOMAscan, its large scale practical
implementation necessitates the independent validation of its measurements against those done with
standard accepted methods such as ELISA. This is especially important in populations such as ESRD,
which suffer from complex metabolic abnormalities affecting scores of biomarkers, the concentrations
of which are often several magnitudes higher compared to normal physiologic ranges. In the present
study, we used the SOMAscan platform for the investigation of the plasma proteome associated with
ESRD using 21 ESRD patients’ plasma who received maintenance hemodialysis, and validated the
SOMAscan measurements of select proteins (FGF23, FGFR1, and FGFR4) against those performed
using standard methods.
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2. Materials and Methods

2.1. Study Population and Samples

After providing informed consent, 4023 patients who received maintenance hemodialysis from
US-wide dialysis units within a large dialysis organization (DaVita, Inc., Denver, CO, USA) were
prospectively enrolled during 2011–2013, and underwent specimen collections (including plasma,
serum, and whole blood) on a quarterly basis for up to one year. Following completion of the specimen
collection phase, the biospecimens and patients’ corresponding de-identified clinical and outcome
information was allocated to four academic centers (University of Tennessee Health Science Center
(UTHSC), University of California Irvine, Harvard University, and the Johns Hopkins Hospital) for
further investigations. For the present study we used plasma samples from 21 ESRD patients randomly
selected from the repository housed at UTHSC (UT-DaVita Hemodialysis Biorepository, Memphis,
TN, USA). The study was approved by the Institutional Review Board (IRB) of the University of
Tennessee Health Science Center [UTHSC, IRB protocol numbers 16-04357-XP (approved: 24 January
2016) and 17-05299-XP (approved: 19 May 2017)].

2.2. SOMAscan Assay

Human plasma samples were analyzed using a SOMAmer-based capture array called
“SOMAscan” (SomaLogic, Inc., Boulder, CO, USA). A SOMAscan Satellite Site at Washington
University in St. Louis (St. Louis, MO, USA) performed all proteomic assessments, which were blinded
to the clinical characteristics of enrolled patients for this study. This assay was performed as described
previously [26,27]. Briefly, plasma samples were incubated with SOMAmer reagents. After washing,
the protein analytes bound to SOMAmer reagents were labeled with biotin. The SOMAmer-protein
complexes were then incubated with streptavidin-coated beads. Under denaturing conditions,
SOMAmer reagents were detached from the SOMAmer-protein complexes, and SOMAmer reagents
were then collected and hybridized to complementary sequences on a microarray. SOMAmers are
modified nucleic acid aptamers, each with both unique protein binding characteristics and a unique
identifying primary nucleic acid sequence that can be detected and quantified by DNA microarray [25].
Therefore, all SOMAscan measures are reported as relative fluorescence units (RFU). Each SOMAmer
has been validated for its specificity, upper and lower limits of detection, and intra- and inter-
assay variability.

The SOMAscan assay utilized for our study measures 1317 proteins simultaneously in a small
volume (65 µL) of plasma. The list of the 1317 proteins examined in this study is presented with their
UniProt IDs and Gene IDs in Table S1. Plasma dilutions (0.005%, 1% and 40%) were applied to capture
low-, medium-, and high-abundant proteins. Each of the proteins measured in plasma by the version of
the SOMAscan assay performed in this study has its own target SOMAmer reagent. SOMAmer reagents
were selected for 1317 human proteins (secreted proteins, extracellular domains, and intracellular
proteins) that belong to broad biological groups, including receptors, kinases, cytokines, proteases,
growth factors, protease inhibitors, hormones, and structural proteins [25,26]. Most of these proteins
are involved in signal transduction pathways, stress response, immune processes, phosphorylation,
proteolysis, cell adhesion, cell differentiation, and intracellular transport.

2.3. Quality Control Assessment

According to the SOMAscan version 3.2 assay data quality-control procedures, hybridization
control normalization, median signal normalization, and calibration normalization were employed to
remove the assay and sample bias [22,25,28]. The quality control was performed at the sample and
SOMAmer level, and involves the use of control SOMAmers on the microarray and calibration samples.
Each plate design includes a buffer well (no samples added), 2 quality control samples, and 5 calibrator
samples provided by Somalogic. Quality control and calibrator samples are pooled samples composed
of the same matrix as the plasma samples being measured in the plate. The purpose of these samples
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is to assess the quality of measurements obtained from one single plate. The hybridization control
normalization removes any variability from sample-to-sample that may have been added from the end
of the SOMAscan assay through microarray scanning, including any scanner intensity differences, so
hybridization control normalization is the source of sample-to-sample variability. The median signal
normalization uses all the SOMAmer signals on a given subarray to remove sample or assay biases
that may be due to differences between samples in overall protein concentration, pipetting variation,
variation in reagent concentrations, assay timing, and any other source of systematic variability within
a single plate run. The calibration normalization is necessary for the correction of run-to-run variations
and is performed during each run. It is achieved using common pooled calibrator plasma samples
that have been run in replicate numerous times at the manufacturer (Somalogic, Boulder, CO, USA),
to create an external reference or a set of standard values. According to Somalogic, with the quality
control assessment, a single assay was used per plasma sample, and thus, no technical replicates
were performed. The criteria for the hybridization control and median signal normalization scale
factors should be between 0.4 and 2.5; the median of the calibration scale factor should be within
1.0 ± 0.2, and a minimum of 95% of individual SOMAmer must have a calibration scale factor within
the median ±0.4.

2.4. ELISA Assays

Selected candidate proteins were validated using sandwich enzyme immunoassays. Plasma
full-length FGF23 level was measured using the FGF23 ELISA kit (Kainos Laboratories, Tokyo, Japan)
following the manufacturer’s recommendations. Plasma FGFR1 and FGFR4 levels were measured
using the FGFR1 ELISA kit (Human, Catalog number: OKEH00124, Aviva Systems Biology, San Diego,
CA, USA) and the FGFR4 ELISA kit (Human, Catalog number: OKDD00266, Aviva Systems Biology,
San Diego, CA, USA) following the manufacturer’s recommendations. The plasma was diluted to fall
within the linear range of each respective assay.

2.5. Statistical Analysis

SOMAscan proteomic data were reported in relative fluorescence units (RFU). Quantile
normalization and log-transformation were performed for all RFU-reported data. Principal component
analysis was performed to assess for the presence of plate effect. Student’s t tests and Wilcoxon’s
rank sum tests were used to compare continuous and categorical variables, respectively. Correlations
between the SOMAscan and ELISA measurements were assessed using Pearson correlation coefficients
using the transformed values of the raw values. Analyses were performed using R (https://www.
rstudio.com/products/rpackages/) and Stata MP 15 (www.Stata.com).

3. Results

3.1. Study Subjects and Sample Quality Assessment

Patients were 57.0 ± 13.7 years old, 52% were male, 48% were African American, and the median
Charlson comorbidity index score (range) was 6 (2 to 8) (Table 1). The SOMAscan run included two
buffer controls, four quality controls, and ten pooled calibrator plasma samples. Sample data was
first normalized to remove hybridization variation within a run, followed by median normalization
across all samples to remove other assay biases within the run, and finally calibrated to remove assay
differences between runs. All 21 samples passed the quality control assessment (Table S2). No plate
effect was detected by principal component analysis (Figure S1), and 1272 of 1317 proteins passed the
quality control assessment.

https://www.rstudio.com/products/rpackages/
https://www.rstudio.com/products/rpackages/
www. Stata.com
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Table 1. Characteristics of participants.

Characteristics All (N = 21) Female (N = 10) Male (N = 11)

Age 57.0 (13.7) 57.7 (10.3) 56.3 (16.9)
Race

African American 10 (47.6) 5 (50.0) 5 (45.5)
Caucasian 7 (33.3) 3 (30.0) 4 (36.4)
Hispanic 4 (19.1) 2 (20.0) 2 (18.2)

Diabetes mellitus 14 (66.7) 8 (80.0) 6 (54.6)
Charlson comorbidity index 5.0 ± 1.9 5.1 ± 1.4 4.9 ± 2.3

3.2. SOMAscan Results for Prostate Specific Antigen

In our SOMAscan assay, among males and females the median (interquartile range, IQR) prostate
specific antigen (PSA) signal level was 4304.7 (1815.4 to 7259.5) and 547.8 (521.8 to 993.4) RFU,
respectively (p = 0.002, Figure 1). For reference, the mean (±SD) RFU value of the negative control was
279.7 ± 26.8.
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Figure 1. Relative fluorescence unit (RFU) signal of prostate specific antigen (PSA) by SOMAscan
in males vs. females. The middle horizontal line represents the median. The box bounds the 25th
and 75th percentile of the points. The dotted lines connect to the thin horizontal line denoting
1.5 interquartile range (IQR) from the median. The dots denote points with values outside of the
1.5 IQR from the median.

3.3. SOMAscan and ELISA Results for FGF23, FGFR4, and FGFR1

The median (IQR) FGF23 SOMAscan signal was 3194.1 (1463.0 to 5677.7) RFU, and the median
(IQR) FGF23 concentration by ELISA was 4106.2 (1562.3 to 9078.5) pg/mL. The SOMAscan FGF23 levels
correlated well with the ELISA measurements of FGF23 (R = 0.95, p < 0.001, Figure 2A). The median
(IQR) FGFR4 SOMAscan signal was 1308.6 (954.0.0 to 2637.1) RFU, and the median (IQR) FGFR4
concentration by ELISA was 10,171.7 (6075.8 to 13,467.5) pg/mL. There was a strong correlation
between the SOMAscan and the ELISA-measured FGFR4 levels (R = 0.68, p < 0.001, Figure 2B).
The median (IQR) FGFR1 SOMAscan signal was 824.1 (732.4 to 955.9) RFU, and the median (IQR)
FGFR1 concentration by ELISA was 602.8 (381.7 to 723.6) pg/mL. Only a weak correlation was found
between the FGFR1 SOMAscan results and the ELISA measurements (R = 0.13, p = 0.16, Figure 2C).
For reference, the mean (±SD) RFU value of the negative control for FGF23, FGFR4, and FGFR1 was
322.4 ± 10.6, 1153.7 ± 58.7, and 407.4 ± 30.7, respectively.
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4 (FGFR4, panel (B)), and fibroblast growth factor receptor 1 (FGFR1, panel (C)) in human plasma.

4. Discussion

We performed quality control assessment, biological plausibility confirmation, and validation
of the SOMAscan proteomic platform on plasma samples when applied to patients with ESRD.
We examined select biomarkers of bone and mineral metabolism which are known to display marked
elevations in patients with ESRD (compared to individuals with normal kidney function) to determine
the validity of SOMAscan measurements in this population. Our results suggest that the SOMAscan
platform can be informative of the plasma proteome of ESRD patients, confirming earlier validation
studies performed in patients with normal kidney function [29].

SOMAscan has become an important platform for diagnostic and prognostic biomarker
identification. For example, De Groote et al. identified and validated a six-marker signature for
the diagnosis of active pulmonary tuberculosis using the SOMAscan assay on 1470 serum samples
from seven countries where tuberculosis is endemic [30]. Ostroff et al. also reported a large-scale
clinical application of the SOMAscan platform [31]. They identified 44 candidate biomarkers, and
developed a 12-protein panel that discriminates non-small cell lung cancer from controls with 91%
sensitivity and 84% specificity in cross-validated training, and 89% sensitivity and 83% specificity
in a separate verification set, with similar performance for early and late stage non-small cell lung
cancer. Based on this study, a clinical blood test to enable an earlier diagnosis of lung cancer is being
developed. In addition, an earlier version of SOMAscan was applied to a clinical study of 42 patients
with non-dialysis dependent CKD, and it identified 58 potential novel biomarkers of CKD [26].
However, the novelty of such technologies necessitates that they are independently validated against
traditional laboratory methods to assure their reliability.

The biological validity of the SOMAscan measurement can be evaluated by examining the
concentration of biomarkers that are expected to show significant differences in certain groups, such as
in males versus females. PSA is released primarily from the epithelial cells of the prostate gland and is
thus expected to have substantially higher concentrations in males [32], although PSA has also been
shown to be expressed in various tissues in females [33], and hence it should be detectable at lower
circulating levels. As expected, the PSA level among males was significantly higher than the PSA level
among females, suggesting biological plausibility. We also validated the SOMAscan measurement
of three proteins against commercial ELISA assays. Validation is the most important and difficult
step for high multiplex biomarker discovery. We selected FGF23 and its receptors, FGFR1 and FGFR4,
as the candidate proteins for validation. FGF23 levels are markedly elevated in ESRD, and FGF23 was
recognized as a powerful predictor of adverse outcomes in this patient population [13,14]. Among the
examined proteins, we found strong correlations for FGF23 and FGFR4, while the measurements for
FGFR1 were only weakly correlated. The correlation discrepancy between FGFR4 and FGFR1 could
be due to multiple circulating isoforms of FGFR1 and the single isoform of FGFR4 existing in plasma
samples [34,35]; such a lack of correlation was also reported by other studies [36,37], and it is most
likely related to the different epitope recognition sites between SOMAmers and antibodies for ELISA.
Cross-reactivity and negative cooperative binding could also be responsible for the lack of agreement.
Further delineation of specificity of the aptamers is needed for better validation.
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Our study is the first to formally examine the validity of SOMAscan in patients with ESRD,
yet it has limitations that need to be considered when interpreting its findings. We only examined
21 patients, which may have precluded the detection of weaker correlations, and which also precludes
more in-depth analyses such as sex- and race-associated differences. We examined only a small
number of proteins, which limits our ability to provide a wide-ranging endorsement (or lack thereof)
of SOMAscan in ESRD. Further studies may be needed to examine the validity of SOMAscan for
measurement of other circulating proteins known to have abnormal values in ESRD. We used ELISA
as the standard to compare against SOMAscan, since it is the method most often used in practice to
measure the proteins in question. However, ELISA cannot be regarded as a true gold standard, due to
problems with its standardizations and concerns about commercially available kits [38].

5. Conclusions

We evaluated the reliability of SOMAscan assay through quality control assessment, biological
plausibility, and validation. We describe a good but not perfect correlation between the SOMAscan
assay and commercially available immunoassays with selected proteins. Despite the small number of
examined patients, this pilot study provides new evidence for the utility of the SOMAscan platform
for high multiplex proteomics analysis in patients with ESRD, and suggests that this platform could be
used to identify novel and specific biomarkers in this patient population.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/8/4/71/s1.
Figure S1: Principal component analysis of plate effect. Table S1: List of 1317 proteins examined using SOMAscan
with SOMAmer SeqID, UniProt ID, and Gene ID. Table S2: Quality control assessment results for 21 samples. All
21 samples passed the quality control assessment.
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