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ABSTRACT

Introduction: The diagnosis of melasma is
often based on the naked-eye judgment of
physicians. However, this is a challenge for
inexperienced physicians and non-profession-
als, and incorrect treatment might have serious
consequences. Therefore, it is important to
develop an accurate method for melasma diag-
nosis. The objective of this study is to develop
and validate an intelligent diagnostic system
based on deep learning for melasma images.

Methods: A total of 8010 images in the VISIA
system, comprising 4005 images of patients
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with melasma and 4005 images of patients
without melasma, were collected for training
and testing. Inspired by four high-performance
structures (i.e., DenseNet, ResNet, Swin Trans-
former, and MobileNet), the performances of
deep learning models in melasma and non-
melasma binary classifiers were evaluated. Fur-
thermore, considering that there were five
modes of images for each shot in VISIA, we
fused these modes via multichannel image
input in different combinations to explore
whether multimode images could improve
network performance.

Results: The proposed network based on Den-
seNet121 achieved the best performance with
an accuracy of 93.68% and an area under the
curve (AUC) of 97.86% on the test set for the
melasma classifier. The results of the Gradient-
weighted Class Activation Mapping showed
that it was interpretable. In further experi-
ments, for the five modes of the VISIA system,
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we found the best performing mode to be
“BROWN SPOTS.” Additionally, the combina-
tion of “NORMAL,” “BROWN SPOTS,” and “UV
SPOTS” modes significantly improved the net-
work performance, achieving the highest accu-
racy of 97.4% and AUC of 99.28%.
Conclusions: In summary, deep learning is
teasible for diagnosing melasma. The proposed
network not only has excellent performance
with clinical images of melasma, but can also
acquire high accuracy by using multiple modes
of images in VISIA.

Keywords: Convolutional neural network;
Deep learning; Diagnosis; Melasma; Network
performance

Key Summary Points

To reduce misdiagnosis and missed
diagnosis, an effective and accurate
method for melasma diagnosis is
necessary.

On the basis of deep learning, we
developed an intelligent diagnostic model
for melasma.

Our model was trained with a large sample
of melasma and non-melasma facial
images and acquired a high accuracy and
area under the curve.

In further experiments, we found that
multichannel image input obtained by
fusing multiple modes of images in VISIA
increased our network performance.

More data from multiple centers and
improved applicability are needed to
make the model a likely valuable tool in
clinical practice.

INTRODUCTION

Melasma is a commonly acquired pigmentation
disorder characterized by symmetrical brown
macules and patches on the face with irregular

borders, which has a negative effect on appear-
ance and self-esteem of patients [1-3]. Its
pathophysiology is complex and unknown, but
it is believed to relate to genetic and environ-
mental factors [4]. Melasma mainly affects
women and people with high pigmentation
phenotypes. The prevalence of melasma is
higher in East Asians, Indians, Latin Americans,
and Hispanics [5-7]. However, the specific epi-
demiological data are still unclear.

The diagnosis of melasma usually depends
on the naked-eye judgment of physicians
according to the clinical characteristics of
lesions. However, for pigmented skin lesions,
the diagnostic ability of non-dermatologists is
not at a comparable level to that of dermatolo-
gists [8, 9]. Melasma and other atypical hyper-
pigmentation like nevus of Ota are often missed
and misdiagnosed [10]. Thus, the correct diag-
nosis of melasma with the naked eye alone may
require physicians to have certain clinical
experience, especially in complicated facial
conditions. In addition, the use of diagnostic
assistant tools, such as wood lamps and der-
moscopy, is time consuming and inappropriate
to accurately distinguish melasma from other
pigmentation disorders [10]. These tools also
need to be assessed by physicians, which could
be a subjective process.

The misdiagnosis and missed diagnosis of
melasma might have undesirable effects on
patients in which treatment such as CO, laser is
required for other skin diseases that is not
acceptable for melasma [11-13]. The treatment
for melasma should be selected cautiously
because of its high rate of recurrence [14].
Moreover, improper treatment under misjudg-
ment of melasma might result in serious
sequelae, such as pigmentation and scarring
after CO, laser [11-13]. In addition, the
remoteness of certain regions and lack of
knowledge make some patients with melasma
seek help from beauty salons and estheticians
instead of dermatologists. Nevertheless, owing
to the lack of professional expertise and accu-
rate diagnostic tools, such non-professionals
usually cannot make a correct diagnosis and
choose the wrong treatment. Thus, it is neces-
sary to develop an accurate and rapid diagnostic
method for melasma.
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The purpose of this study was to develop and
validate an intelligent diagnostic system for
melasma images on the basis of deep learning
and provide a reference for accurate and rapid
diagnosis of melasma. In this study, we col-
lected a large number of clinical melasma ima-
ges and evaluated the performances of four deep
learning models in melasma and non-melasma
binary classifiers. We further conducted image
fusion via multichannel image input and found
an improvement in network performance.

METHODS

This study was approved by the Ethics Com-
mittee of the First Affiliated Hospital of
Chongqing Medical University (no.
2022-K349). This study was performed in
accordance with the Declaration of Helsinki of
1964. In the absence of any exclusion criteria,
we retrospectively collected images of all
patients with melasma that visited the Derma-
tology Clinic of Chongqing Medical University
between January 2017 and September 2021. All
images were stored in a VISIA imaging system
(Canfield Scientific, NJ, USA). A similar number
of images from patients without melasma were
randomly selected from the VISIA system.
Considering that the problem we intended to
solve in this study was to judge the presence or
absence of melasma on the basis of facial image,
which required that the binary classifier be able
to work in a variety of situations, the “non-
melasma” images in this study were obtained
from non-pigmentary diseases (such as rosacea
and acne), other pigmentary diseases except
melasma (such as freckles, lentigines, nevus of
Ota), and healthy people.

With a resolution of 3128 x 4171 pixels, the
VISIA system included an imaging chamber
with a 15 megapixel resolution camera. Using
three types of light sources, i.e., standard
incandescent light, ultraviolet (UV) light, and
polarized light, five images of different modes
were obtained for each shot. The “NORMAL”
mode was taken under standard incandescent
light and used to identify spots, wrinkles, tex-
ture, and pores. The “UV SPOTS” and “POR-
PHYRINS” modes were taken under UV light to

detect UV spots and porphyrins, respectively.
The “BROWN SPOTS” and “RED AREAS” modes
were taken under polarized light to observe
brown spots and prominent blood vessels,
respectively [15]. Thus, five different modes of
images were obtained in one shot, i.e., “NOR-
MAL”, “UV SPOTS”, “PORPHYRINS”, “BROWN
SPOTS”, and “RED AREAS”, which could show
different skin characteristics (Supplementary
Material Fig. S1).

A total of 4005 melasma and 4005 non-me-
lasma images were collected. The detailed clin-
ical data of patients were not collected due to
confidentiality requirements and inapplicabil-
ity. The diagnosis of all patients was based on
the discussion of three experienced dermatolo-
gists in accordance with the images, which was
regarded as the ground truth in this study. For
different patients, we randomly divided all
images into the training and test sets with a
ratio of approximately 2:1 to ensure that the
images of the same patient did not appear
simultaneously in the training and test sets
(Fig. 1). To achieve a balanced distribution, the
number of melasma and non-melasma images
was approximately equal. Thus, there were 2650
melasma and 2670 non-melasma images in the
training set, while 1355 melasma and 1335 non-
melasma images were in the test set. The images
of the training set were augmented by rotation,
random erasing, and gray level adjustment. The
resolution of all images was then adjusted to
480 x 640 pixels.

Our task was to build a binary classifier with
“melasma” as the positive class and “non-me-
lasma” as the negative class. Considering that
there are five different modes of images in one
shot, both single-mode and multimode binary
classifiers were studied. The images of “NOR-
MAL” mode were the same as those seen by
clinicians with the naked eye; therefore, we
used this mode to explore a network for direct
and rapid diagnosis. Four deep learning models,
i.e., MobileNetv2, Swin Transformer, ResNet50,
and DenseNet121, were used to build the binary
classifiers of melasma and non-melasma. The
records with the best performance were saved.
To visualize the features selected by the net-
work, we used Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) to demonstrate the
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P— input and input the integrated multimode fea-
images tures to the network. A flowchart of the network
[ for multimode images is shown in Fig. 2. For
v v data analysis, the performance of all models on
4005 images of 4005 images of the test set was evaluated using the performance
melasma non-melasma . .
indices of accuracy, area under the curve (AUC),
$_‘_$ rl—¢ sensitivity, and specificity. All analyses were
conducted using Python 3.7.3. All patient ima-
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Fig. 1 Flowchart of data collation and preprocessing

interpretability of the optimal network via gra-
dient-based localization. Subsequently, we fur-
ther investigated the differences in network
performance for four different modes of images:
“UV SPOTS,” “PORPHYRINS,” “BROWN SPOTS,”
and “RED AREAS.” Next, we studied multimode
images to examine whether they had the
potential to further improve the performance of
our diagnostic system. We fused different
modes of the same shot through a multichannel

covering the eyes manually for privacy
purposes.
RESULTS

Performance of Four Models

We examined the receiver operating character-
istic (ROC) curves for the four models trained in
this study, and the results of the test set are
shown in Fig. 3. In terms of AUC (i.e., an indi-
cator that describes the confidence of the pre-
diction results and is considered to be an
important performance index for binary classi-
fiers), the DenseNetl121 model outperformed
the others with a value of 97.87%. In addition,
confusion matrices were used to visualize the
performances of the four models (Supplemen-
tary Material Fig. S2). The ResNet50 model
achieved the highest sensitivity with a value of
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Fig. 2 Visual representation of network on multimode input. The eyes are covered manually for privacy purposes
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ROC Curve of Four Models
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Fig. 3 Receiver operating characteristic (ROC) curves of
four deep learning models on test set AUC area under the
curve

97.14%, but obtained a relatively poor speci-
ficity of 88.76%, resulting in an accuracy of
91.45% for the test set. In contrast, the Dense-
Net121 model performed well in identifying
both negative (95.88% specificity) and positive
(94.29% sensitivity) samples. After comparing
the performances of the four deep learning
models, we found that the network based on
DenseNet121 achieved the highest accuracy,
with 93.68% (Table 1). Therefore, among these
four deep learning models, DenseNet121 was
regarded as the optimal model for melasma
diagnosis on the basis of clinical images.

Interpretability of Optimal Model

Subsequently, Grad-CAM was used to imple-
ment model interpretability. According to the
results of Grad-CAM presented in Fig. 4, the red

regions represent areas activated by the net-
work, whereas the blue regions represent areas
that were not activated. Activation was focused
on the lesions of melasma, which mainly
appeared in the cheek and malar area. Notably,
in images of patients with melasma coexisting
with facial skin conditions (such as seborrheic
keratosis and post-acne hyperpigmentation),
the network was able to focus more on melasma
lesions on the face than other skin disorders.

Network Performance Using Multimode
Input

Since different modes in the VISIA system
showed different skin characteristics, we inves-
tigated the performance of the network on the
basis of each image mode. From the five modes,
“BROWN SPOTS” had the best performance,
with an accuracy of 94.42% and AUC of 98.57%
(Table 2 and Fig. 5). Additionally, the accuracy
and AUC of “UV SPOTS” were 93.49% and
97.55%, respectively, which were similar to
those of the “NORMAL” mode. The “POR-
PHYRINS” and “RED AREAS” modes performed
slightly worse, with accuracy values of 88.29%
and 82.34%, respectively. The results of the
confusion matrices are shown in Supplementary
Material Fig. S3.

To date, we have acquired the ranks of the
five modes in our network. The performance of
the network on multimode input was further
explored. On the basis of the results of each
mode, we determined the combinations of
multimode input as follows: “NORMAL +
BROWN SPOTS,” “NORMAL + BROWN SPOTS +
UV SPOTS,” “NORMAL + BROWN SPOTS + UV

Table 1 Performance of four deep learning models on test set

Model Accuracy AUC Sensitivity Specificity
MobileNetv2 0.8587 0.9498 0.8 0.9213
SwinTransformer 0.8848 0.9313 0.8857 0.8652
ResNet50 0.9145 0.9666 0.9714 0.8876
DenseNet121 0.9368 0.9786 0.9429 0.9588

AUC area under the curve
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Fig. 4 Visual explanations of melasma cases via gradient-
based localization: A a patient with facial dark brown
melasma lesion; B a patient with facial hazel melasma
lesion; C a patient with facial melasma and seborrheic

Table 2 Network performance on single mode

High

Low

High

Low

keratosis; D a patient with facial melasma and post-acne
hyperpigmentation. The color of the pixel, from dark blue
to red, indicates the importance ranging from lowest to
highest. Eyes are covered manually for privacy purposes

Image mode Accuracy AUC Sensitivity Specificity
NORMAL 0.9368 0.9786 0.9429 0.9588
BROWN SPOTS 0.9442 0.9857 0.9714 0.9288
UV SPOTS 0.9349 0.9755 0.8857 0.9288
PORPHYRINS 0.8829 0.94 0.9429 0.8727
RED AREAS 0.8234 0.8811 0.8857 0.8165
AUC area under the curve

SPOTS + PORPHYRINS,” and  “NORMAL + DISCUSSION

BROWN SPOTS + UV SPOTS + PORPHYRINS +
RED AREAS.” Finally, for these combinations, the
accuracy of “NORMAL + BROWN SPOTS + UV
SPOTS” mode achieved the highest accuracy of
97.4% (Table 3). The AUC was 99.28%, which was
slightly higher than those of the others (Fig. 6).
Supplementary Material Figure S4 shows the
confusion matrix results for these multimode
combinations.

In recent years, deep learning has gained wide-
spread attention for medical diagnosis, grading,
and efficacy evaluation. In particular, deep
learning shows superior performance in image
classification and recognition tasks and has
been applied in the field of dermatology. A
previous study reported an artificial intelli-
gence-assisted decision making system for skin
tumors with a recognition rate of 91.2% for
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ROC Curve of Each Image mode
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Fig. 5 Receiver operating characteristic (ROC) curves for
network performance on single-mode input AUC area
under the curve

benign and malignant skin tumors [16]. Lim
etal. used a convolutional neural network to
grade the severity of facial images of patients
with acne, and obtained the best classification
accuracy of 67% [17]. Additionally, in rosacea,
psoriasis, eczema, and atopic dermatitis, deep
learning has been proven to have excellent
diagnostic or classification capabilities [18-21].

So far, there have been a few reports on the
application of deep learning to melasma. One
study used a voting-based probabilistic linear
discriminant analysis to classify non-tumorous
skin pigmentation diseases, including melasma,
with an accuracy of 67.7% for melasma [22].
Another study presented a spatial compound-
ing-based denoising convolutional neural net-
work for quantifying and evaluating melanin in
melasma optical coherence tomography images
[23]. However, there is still a lack of research on

Table 3 Network performance on multimode input

ROC Curve of Multi-mode Combination
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Fig. 6 Receiver operating characteristic (ROC) curves for
network performance on multimode input AUC area
under the curve

large training datasets and high accuracy diag-
nostic systems for melasma facial images. In this
study, a large number of images were used as
the training set in deep learning models, and we
developed an accurate diagnostic system on the
basis of DenseNet121 for clinical melasma facial
images. In a further experiment with multi-
mode image input, we fused different modes of
images in the VISIA system and fed them to the
network to simulate how a dermatologist used
multiple modes of images to diagnose melasma.
Finally, in the experiment with the “NOR-
MAL + BROWN SPOTS + UV SPOTS” combi-
nation, we acquired a high accuracy of 97.4%
and AUC of 99.28%.

In this study, we chose four deep learning
models for comparison purposes, including
three traditional convolutional neural networks
(.e., MobileNetv2, ResNet50, and

Combination

Accuracy AUC  Sensitivity Specificity

NORMAL + BROWN SPOTS
NORMAL + BROWN SPOTS + UV SPOTS

NORMAL + BROWN SPOTS + UV SPOTS + PORPHYRINS 0.961

NORMAL + BROWN SPOTS + UV
SPOTS + PORPHYRINS + RED AREAS

0.9535 0.9887 0.9429 0.9438
0.974 0.9928 0.9714 0.9625
0.9919 0.9429 0.97

0.9498 0.9898 0.9143 0.9476

AUC area under the curve
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DenseNet121) and a novel network (i.e., Swin
Transformer). In previous studies, MobileNet v2
was able to work on lightweight computing
devices and had high accuracy in classification
of skin disease images [24]; ResNet50 showed
superior performance for segmentation and
classification in multiple skin lesions diagnos-
tics [25]; DenseNet121 was also used to segment
skin and lesion [26]; and Swin Transformer was
a novel fine-grained recognition framework and
showed more powerful and robust features in
medical image segmentation [27]. Therefore, we
selected these mainstream and high-perfor-
mance deep learning networks to explore their
performance in melasma diagnosis task. Our
results indicated that in MobileNetv2,
ResNet50, and DenseNet121, the performance
of DenseNet121 was slightly better than that of
ResNet50, and MobileNetv2 had the worst per-
formance in our study. In recent studies, the
comparison of DenseNet and ResNet has been
discussed for the identification of ductal carci-
noma in situ and microinvasion of the breast
using ultrasound images [28], recognition of
digital dental X-ray images [29], and classifica-
tion of glaucomatous fundus images [30]. For
each of these applications, DenseNet has been
reported to perform better than ResNet. The
ResNet bypass signals from one layer to the next
through identity connections and combines
features by summing them before passing them
into a layer. In contrast, to ensure maximum
information flow, all layers of DenseNet could
take additional input from the previous layer,
pass on their own feature maps to all subse-
quent layers, and combine features by concate-
nating them. These features of DenseNet appear
to be useful in our clinical images of melasma
and non-melasma. Similarly, in another set of
images with pigmented facial skin lesions,
DenseNet also had better performance evalua-
tion than ResNet; this is consistent with our
results [31]. On the other hand, Swin Trans-
former was proposed in 2021 as a novel model
for computer vision, which constructed hierar-
chical feature maps and had linear computa-
tional complexity to image size. At present,
only a few studies have reported the application
of Swin Transformer in medical images [32, 33].
To the best of our knowledge, this is the first

study to apply Swin Transformer in clinical
dermatology images. Although Swin Trans-
former was not the best model for our task, its
accuracy reached 88.48%. The medical applica-
tion of Swin Transformer is worthy of further
study.

In clinical practice, dermatologists usually
combine clinical information of patients, such
as age, medical history, dermoscopy results, and
multimode images of the VISIA system, to make
the final diagnosis. This could increase the
likelihood of dermatologists making the correct
decision; additionally, it is worth investigating
whether this could be applicable to artificial
intelligence. Previous studies have shown that
multiple types of information can improve the
diagnostic ability of deep learning models. In a
study by Tschandl etal., both dermoscopic
images and clinical close-ups were used to train
the network; the combination was found to
acquire a better result than the individual
modalities [34]. Jin etal. found that multiple
extracted histological features, including nuclei,
mitosis, epithelial, and tubular cells, could fur-
ther improve the detection of lymph node
metastasis in patients with breast cancer [35].
This study used a multichannel image input
method to fuse multiple mode images in the
VISIA system and discovered that it could
improve the accuracy of our network to some
extent. As the amount of image information
increased, the network performance improved.
However, we found that the optimal combina-
tion was the “NORMAL + BROWN SPOTS +
UV SPOTS” mode, which had slightly higher
accuracy and AUC than the other five modes. It
also seems that the “PORPHYRINS” and “RED
AREAS” modes did not improve the network
performance under this multimode input
method. This is noteworthy because it was
previously believed that more information in
training data could improve network perfor-
mance [36]. The five modes had the following
characteristics: (1) the “NORMAL” mode image
could identity spots by their color and contrast
from the surrounding skin; (2) the “UV SPOTS”
mode image was generated by the selective
absorption of UV light from epidermal melanin;
(3) the “BROWN SPOTS” mode could reflect the
detection of deeper deposition of melanin
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under cross-polarized light; (4) the “PORPHYR-
INS” mode image was photographed in UV light
on the basis that porphyrin could fluoresce in
UV light; and (5) the “RED AREAS” mode image
was used as a measurement of hemoglobin
content through cross-polarized light [15].
Since the pigmentation of melasma was con-
sidered to be a combination of epidermis and
dermis [37], the “NORMAL,” “UV SPOTS,” and
“BROWN SPOTS” modes might be more useful
for dermatologists in melasma diagnosis.
Although the classification basis of the deep
learning model was unrevealed and regarded as
a black box, the information from “PORPHYR-
INS” and “RED AREAS” mode images might
cause confusion to our multichannel input
network in multiple information fusion,
thereby degrading the network performance.
Hence, the specific reason for this outcome
requires further investigation.

On the basis of common clinical images, we
developed a straightforward and rapid melasma
diagnosis network, thus eliminating time-con-
suming invasive or noninvasive methods such
as wood lamps, dermoscopy, and reflectance
confocal microscopy. In the subsequent clinical
transformation, we expected to develop a
remote diagnostic tool using smartphones or
networks on the basis of single-mode imaging
for convenient self-diagnosis of patients, and a
downstream medical software of the VISIA sys-
tem based on multimode image input, aiming
to become an accurate assistant diagnostic tool.

However, this study has some limitations.
First, the data were obtained from a single cen-
ter, and it was better to validate our network in
multiple centers to include more patients with
different skin conditions. Second, owing to the
fixed background and lighting, almost all image
backgrounds were black. Thus, in future practi-
cal applications, it might be necessary to add
content to our diagnostic system to mask the
background and better simulate various training
conditions. Third, this study was conducted in
Southwest China and the Fitzpatrick types of all
included patients were III and IV. Since higher
phototypes exhibited more melanocytes [38],
there was a possibility that the network perfor-
mance might variate in people of different
Fitzpatrick phototypes. This required further

exploration in the datasets of different skin
types. In addition, our model was not able to
quantify melasma severity on the basis of the
Melasma Area and Severity Index. It required
higher performance networks and more
sophisticated algorithms. Finally, our results
lacked further validation of the model use, i.e.,
whether it could play a role in the diagnosis of
melasma by non-dermatologists. This would
need further investigation.

CONCLUSIONS

This study is the first one to use a large sample
of melasma images to compare the diagnostic
performance of multiple deep learning models
and develop a diagnostic system for melasma.
Multimode image combination evaluation was
performed using images under different lighting
conditions in the VISIA system, which further
increased the diagnostic accuracy of melasma.
Our study could provide a basis for the devel-
opment of clinical diagnostic applications for
melasma and other skin disorders. However,
more available clinical images of patients from
multiple centers are needed to further improve
the proposed diagnostic system.
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