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Abstract: Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field
of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon
scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront
the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the
concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates
referring to the combination of luminogens showing an AIE nature with biomolecules possessing
specific functionalities are generated via the covalent conjugation between AIEgens and functional bi-
ological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration
breeds unique superiorities containing high brightness, good water solubility, versatile functionalities,
and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE
bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief
prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical
applications is presented.

Keywords: aggregation-induced emission; NIR emission; bioconjugates; biomedical applications

1. Introduction

Research on biological events is of great scientific importance and has been intensively
investigated aiming to detect the progression of diseases and implement interventions in
time [1–3]. Although multifarious imaging tools for the detection of pathological changes,
including electron-based microscopy, positron emission-based computed tomography (CT),
magnetic resonance-based imaging (MRI), etc., have been developed, the limitations of
hazardous ionizing radiation, time- and money-consuming, complex operational process,
and low spatial and temporal resolution seriously affect their widespread applications in
daily usage [4–7]. In contrast, the advent of fluorescence technology provides a powerful
alternative tool to visualize biological events, given its distinctive advantages in simplic-
ity, high sensitivity, high spatial and temporal resolution, and non-invasive operation
process [8–10].

Under the circumstances, plenty of fluorescent probes, such as fluorescent proteins,
organic dyes, and inorganic nanoparticles (NPs), have been elaborately manipulated and ex-
hibited tremendous utility in the field of bioimaging [11–13]. Among the above-mentioned
fluorescent materials, inorganic NPs such as quantum dots or up-conversion NPs bring
about inevitable biocompatibility concerns given their undefined purity and are hard
to degrade, which severely restrains the clinical translations compared to organic small
molecules [14]. In particular, fluorescence imaging in the broadly defined near-infrared
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(NIR) window which encompasses NIR-I (700–900 nm) and NIR-II (1000–1700 nm) re-
gions possesses numerous advantages, such as deeper penetration depth, reduced photon
scattering, and minimized autofluorescence background, allowing for an overall superior
imaging performance [15–18]. However, most of the NIR-emissive fluorescent probes
are prone to form aggregates in the physiological environment as the extension of the
π-conjugated backbone. In this case, conventional chromophores that are composed of
planar fragments may suffer from aggregation-caused quenching (ACQ) effects due to the
extensive prevalence of intermolecular π−π interactions, thus hampering their applications
both in sensitivity and accuracy [19].

Fortunately, luminogens displaying aggregation-induced emission (AIE) characteris-
tics that are thoroughly the opposite to ACQ effects provide a good solution for bioimaging
even in an aggregated state [20,21]. According to the mechanism of restricted intramolecu-
lar motion (RIM), the nonradiative energy decay pathway of AIE luminogens (AIEgens)
is suppressed upon the propeller-like architecture coming together (forming aggregates),
therefore boosting the fluorescence intensity [22–24]. The inherent emitting attributes of
AIEgens endow their unique behaviors, such as large Stokes shift, superior photostability,
and reliable output signal at high detection concentrations, compared to traditional fluores-
cent probes [25,26]. In addition, the AIE property permits AIEgens to show a fluorescence
turn-on feature when spontaneously aggregated in a hydrophilic environment or couple to
an analyte, providing high sensitivity and a good signal-to-noise ratio (SNR) [27–31].

AIE bioconjugates are species that are formulated by chemical strategies in which
biomolecules such as carbohydrates, peptides, enzymes, proteins, DNA, and other biologi-
cal species are directly binding to AIEgens through stable covalent bonds, or attached on
the surface of AIEgens NPs [32–37]. The resultant nanocomposites can concurrently share
the integrated merits of imaging and/or therapy functions originating from AIEgens and
targeting capacity deriving from biological elements [38,39].

Considering that AIEgens are weak or non-emissive in a soluble state, strategies
containing ionization, PEGylation, etc., are adopted for ensuring their water solubility
or hydrophilicity, thus reducing background noise, and improving sensitivity [40,41].
However, the selectivity and specificity are difficult to guarantee. The conjugation of
AIEgens with hydrophilic functional carbohydrates, peptides, or other species on the
one hand provides an alternative to endow the resultant bioconjugates with a specific
affinity [42]. On the other hand, the hydrophily of AIEgens may obviously increase after
coupling with hydrophilic counterparts, permitting a low-emission background and a
high sensitivity for subsequent bioassays [25,43]. In addition, the biocompatibility of AIE
bioconjugates is excellent owing to the inherently biological components. Hence, AIE
bioconjugates undoubtedly offer a powerful tool that not only opens new avenues for the
construction of a host of bioprobes, but also bears versatile additional functionalities [44].

Inspired by the above, we highlight the recent advancements of AIE bioconjugates
that emit NIR fluorescence and their biomedical applications (Figure 1). Furthermore,
the challenges and prospects in this field are shortly discussed. Representative examples
classified based on different conjugated biomolecules involving AIE-carbohydrate bioconju-
gates, AIE-peptide bioconjugates, AIE-protein bioconjugates, and others will be discussed
in detail.
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portant enzymatic reporter, plays a key role in a wide range of biological processes [46]. 
It is widely accepted that β-gal is tightly relevant to primary tumorigenesis and metastasis 
[47]. Thus, the development of accurate and rapid methods for monitoring the activity of 
β-gal is essential for early cancer diagnosis and biological research. Recently, Gao et al. 
elaborately designed an enzyme-instructed self-assembly (EISA) strategy to specifically 
target and ablate senescent HeLa (s-HeLa) cells [48]. Taking the feature of overexpressed 
β-gal in s-HeLa, probe TPE-ETh-R-GFFY(gal)ERGD can effectively accumulate and switch 
on its fluorescence after recognition with β-gal (Figure 2a). Moreover, the probe can gen-
erate reactive oxygen species (ROS) and then kill senescent cells under the light illumina-
tion. 

Fu et al. developed an activable β-gal probe, QM-HBT-β-gal, that is composed of an 
AIE-active core quinoline-malononitrile (QM) with a hydrophobic 2-(2-hydroxyphenyl) 
benzothiazole (HBT) moiety for prolonging the wavelength into the NIR region, and a 
hydrophilic β-gal responsive moiety (Figure 2c) [49]. As expected, the monomolecular 
disperse state in the aqueous environment endows the probe with weak fluorescent emis-
sion. When hydrolyzed by β-gal, hydrophobic QM-HBT-OH can be released and aggre-
gated with a remarkable light-up fluorescent signal, which could be well-retained in the 
reaction site and emit strong fluorescence for long-term tracking of endogenous β-gal ac-
tivity. To verify that the AIE-active strategy could achieve on-site sensing and long-term 
tracking of endogenous β-gal in living cells, SKOV-3 cells were selected to study the con-
focal laser scanning microscopy (CLSM) images after incubatation with QM-HBT-β-gal. 
As shown in Figure 2c, its fluorescence intensity gradually boosted and attained the max-
imum level 3 h post-incubation, showcasing the aggregation of QM-HBT-OH. As the in-
cubation time further extended to 12 h, the intracellular fluorescence intensity weakened 
a little. Altogether, the results of the cell experiment revealed that the probe QM-HBT-β-
gal can overcome intracellular diffusion and attain high-fidelity enzyme information, per-
mitting real-time detection of β-gal in SKOV-3 cells. Considering the high performance of 
QM-HBT-β-gal, the AIE-active strategy paves a new pathway for in situ and long-term 
tracking of enzyme activity in preclinical applications. 

Figure 1. Schematic diagram of the representative bioconjugate coupling with NIR-emissive AIEgens.

2. AIE-Carbohydrate Bioconjugates

By selectively identifying and removing senescent cancer cells, it is possible to extend
life and improve the effectiveness of cancer treatment [45]. β-Galactosidase (β-gal), an im-
portant enzymatic reporter, plays a key role in a wide range of biological processes [46]. It is
widely accepted that β-gal is tightly relevant to primary tumorigenesis and metastasis [47].
Thus, the development of accurate and rapid methods for monitoring the activity of β-gal is
essential for early cancer diagnosis and biological research. Recently, Gao et al., elaborately
designed an enzyme-instructed self-assembly (EISA) strategy to specifically target and
ablate senescent HeLa (s-HeLa) cells [48]. Taking the feature of overexpressed β-gal in
s-HeLa, probe TPE-ETh-R-GFFY(gal)ERGD can effectively accumulate and switch on its
fluorescence after recognition with β-gal (Figure 2a). Moreover, the probe can generate
reactive oxygen species (ROS) and then kill senescent cells under the light illumination.
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Fu et al. developed an activable β-gal probe, QM-HBT-β-gal, that is composed of an
AIE-active core quinoline-malononitrile (QM) with a hydrophobic 2-(2-hydroxyphenyl)
benzothiazole (HBT) moiety for prolonging the wavelength into the NIR region, and a
hydrophilic β-gal responsive moiety (Figure 2c) [49]. As expected, the monomolecular dis-
perse state in the aqueous environment endows the probe with weak fluorescent emission.
When hydrolyzed by β-gal, hydrophobic QM-HBT-OH can be released and aggregated
with a remarkable light-up fluorescent signal, which could be well-retained in the reaction
site and emit strong fluorescence for long-term tracking of endogenous β-gal activity. To
verify that the AIE-active strategy could achieve on-site sensing and long-term tracking
of endogenous β-gal in living cells, SKOV-3 cells were selected to study the confocal laser
scanning microscopy (CLSM) images after incubatation with QM-HBT-β-gal. As shown in
Figure 2c, its fluorescence intensity gradually boosted and attained the maximum level 3 h
post-incubation, showcasing the aggregation of QM-HBT-OH. As the incubation time fur-
ther extended to 12 h, the intracellular fluorescence intensity weakened a little. Altogether,
the results of the cell experiment revealed that the probe QM-HBT-β-gal can overcome
intracellular diffusion and attain high-fidelity enzyme information, permitting real-time
detection of β-gal in SKOV-3 cells. Considering the high performance of QM-HBT-β-gal,
the AIE-active strategy paves a new pathway for in situ and long-term tracking of enzyme
activity in preclinical applications.

3. AIEgen-Peptide Bioconjugates
3.1. Activatable AIEgen-Peptide Bioconjugates

In imaging-guided therapy, activity-based sensing offers unique advantages such
as low systematic interventions and excellent selectivity [25,50]. Typically, responsive
probes do not generate a fluorescent signal until they are lit-up by targeting goals, thus
showing a high SNR [51]. In the organism, enzymes are widely distributed and participate
in many physical activities. The occurrence and development of disease is closely related
to the activity or the expression level of enzymes [52–54]. For instance, matrix metallopro-
teinases (MMPs) serve a vital role in the progression of disorders, such as tissue repair
and reconstruction, arthritis, and cancer [55]. Among diverse activity-based bioprobes,
peptide-modified AIE bioprobes combine obvious advantages, such as excellent specificity,
better sensitivity, inherent biological activity, and abundant diversity [41]. Owing to the
introduction of peptides, the hydrophilicity of AIE molecules could be significantly im-
proved. Once the peptide fragment is specifically cleaved by enzymes, the fluorescence
intensity enhances due to the formation of nanoaggregates, which is applicable to test the
activity of the enzymes. In addition, the theranostic attributes of released AIEgens can be
further exploited for imaging-guided therapy [56].

Zhu and coworkers designed an AIE-type activatable probe, QM-HSP-CPP, in which
QM serves as an AIE core, HSP offers the specific recognition site of Cathepsin E (CTSE) that
is overexpressed in pancreatic cancer (PC), and CPP guarantees the desirable amphiphilic
characteristic for ensuring cell/tissue penetrating ability (Figure 3a) [57]. After incubation
with SW1990 cells for different durations, probe QM-HSP-CPP was gradually cleaved by
CTSE accompanied by the release of hydrophobic QM-HSP. The accumulation of QM-HSP
in the physiological environment leads to the boosting of AIE signals with the prolongation
of the accumulation time (Figure 3b). On the contrary, the mere usage of hydrophobic
QM-HSP did not even guarantee the uptake efficiency by cells after incubation for 24 h.
Subsequently, owing to the overexpression of endogenous CTSE in tumor sites, fluorescence
signals were distinctly observed in the tumor site upon intravenous or intra-tumoral
administration of QM-HSP-CPP for 4 h and remained at almost the same intensities within
8 h. By analysis of the fluorescence images of the tumor and normal organs, it was confirmed
that the fluorescent signal was chiefly located in the tumor tissue (Figure 3c). Overall, the
authors rationally designed an AIE probe for long-term monitoring of endogenous CTSE
enzymes in human PC cells.
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responsive bioconjugate (QM-HSP-CPP) for PC cancer detection. (c) Schematic diagram of fluo-
rescence tracking endogenous CTSE after intra-tumoral or intravenous injection of QM-HSP-CPP.
Copyright 2022, Wiley-VCH.

Recently, Wang et al. reported a strategy to monitor autophagy by synthesizing the
Atg4B-responsive AIE probe QM-GFTN [58]. The incorporated GFTN peptide endows the
probe with good hydrophilicity. Upon specific cleavage by Atg4B, the aggregation of the
QM unit emitted intensive fluorescence due to its intrinsic AIE nature. In this regard, owing
to the high specific response for Atg4B, it performed well in effectively distinguishing
“autophagy active” states from “autophagy inactive” states.

Moreover, Hu and coworkers reported a multiple mechanism-based strategy by
preparing a caged AIE-peptide probe (GCP) which can self-assemble with miR-140 to
form GCP/miR-140 NPs [59]. Cleaved by CB enzymes, the structure of GCP/miR-140
dissolved with the release of caged GO203 peptide and miR-140. Further experiments
demonstrated that the miR-140 downregulated the PD-L1 expression by suppressing its
translation process. Meanwhile, PyTPA-mediated photodynamic therapy (PDT) could
effectively activate the immune system to achieve strengthened immunotherapy. Similarly,
Dai et al. also proposed a therapeutic protocol by designing a modular peptide probe
(TCDTMP) which can be self-assembled into NPs after loading in miR-145-5p or VEGF
siRNA [60].



Molecules 2022, 27, 3914 6 of 17

3.2. Targetable AIEgen-Peptide Bioconjugates

Targetable identification of specific biomarkers can dramatically improve drug delivery
efficiency and can be used as an efficient drug delivery method [61]. Targetable AIE-peptide
bioconjugates usually contain two parts: (1) targeting modules to recognize specific cellular
or biomarkers and (2) AIE-active fluorophores [62].

In most cancer cells, the tyrosine kinase Eph receptor A2 (EphA2) is overexpressed
and plays a crucial part in deteriorating into cancer malignancy. Ding and coworkers
designed a self-assembled peptide anticancer agent, named DBT-2FFGYSA, in which
4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole (DBT) functions as the central fluorophore
incorporated with two peripheral peptides (FFGYSA) for specifically targeting EphA2
receptors (Figure 4a) [63]. Then, due to the excellent self-assembly ability of DBT-2FFGYSA
and cross-linking of the two peptide chains, the overexpressed EphA2 receptors can auto-
matically form giant clusters from nanometers to micrometers, resulting in the signaling of
the antitumor pathway. As shown in Figure 4b, the agent DBT-2FFGYSA could effectively
convert immunocompromised tumors into hot tumors by inducing immunogenic cell death
(ICD) of EphA2 receptor-overexpressing cancer cells and by recruiting large numbers of
tumor-infiltrating T cells. Cell imaging was conducted by CLSM imaging after incubation
with human prostate PC-3 cancer cells that were first stained with anti-EPhA2 monoclonal
antibody and fluorescent secondary antibody. As depicted in Figure 4c, it was found
that intracellular DBT fluorescence (red pseudo-color) was in good accordance with the
fluorescence of the antibody (green pseudo-color).
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exploited to track the vesicular transportation [67]. To evaluate the potential of nanopar-
ticles as a visualization agent, researchers compared the photostability of nanodots and 
the commercial ER tracker under continuous light exposure for 15 min in MCF-7 cells 
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nanodots compared to ER tracker. (g) Photostability of Q1-PEP nanodots in contrast to Cy 5.5 in vivo.
Copyright 2018, Wiley-VCH.
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As an important organelle, the endoplasmic reticulum (ER) is involved in many bio-
logical processes. Studies have revealed that oxidative stress in the specific ER of cancer
cells can enhance the ICD effect of cancer immunotherapy [64]. Ding et al. synthesized an
ER-targeted AIE probe as an efficient ICD inducer for tumor immunotherapy by coupling
an ER-targeting peptide (FFKDEL) with an AIE photosensitizer (TPE-PR-COOH) [65].
Besides, Zhang and coworkers developed nanodot Q1-PEP with ER-targeting capability by
conjugating quinoxalinone scaffold with a Fmoc-protected oligopeptide to observe intracel-
lular vesicular transport [66]. As shown in Figure 4d,e, the as-prepared nanodots showed a
size of around 100 nm and were first taken up by cells, then escaped from the endosome
owing to the proton sponge effect, and finally entered the ER, which can be exploited to
track the vesicular transportation [67]. To evaluate the potential of nanoparticles as a visu-
alization agent, researchers compared the photostability of nanodots and the commercial
ER tracker under continuous light exposure for 15 min in MCF-7 cells (Figure 4f). The
results suggested that the fluorescence signal of the Q1-PEP probe was barely attenuated
during the irradiation, while the fluorescence of the commercial ER tracker was severely
bleached. After that, an in vivo long-term tracking experiment was conducted. As shown
in Figure 4g, the accumulation of NIR fluorescence of Q1-PEP nanodots can be clearly
observed at the tumor site, and an evident fluorescence signal can still be detected even after
7 days. In contrast, the fluorescence signal of commercial dye Cy5.5 rapidly disappeared
at 3 days post-injection. These results further confirmed the superior stability of Q1-PEP
against photobleaching.

Due to the abuse of antibiotics, the resistance to antibiotics has posed a serious threat
to antimicrobial therapy. The advent of bacterial identification can effectively overcome this
challenge by identifying the source of the infection. Ding et al. designed and synthesized a
peptide-based AIE bioprobe (AIE-DCM-2polymyxinB) by coupling AIEgen AIE-DCM with
negative bacterium-targeting peptides of polymyxinB [68]. The strong specific binding of
polymyxin B to lipopolysaccharide (LPS) confers it the ability to selectively target Gram-
negative bacteria. Subsequently, the AIEgens can produce intensive fluorescence due to
the RIM effect under the strong interaction between the probe and Gram-negative bacteria.
Meanwhile, the probe AIE-DCM-2polymyxinB exhibited an excellent photodynamic anti-
Gram-negative bacteria effect by generating efficient ROS.

4. AIEgen-Protein Bioconjugates

As one of the most important biomacromolecules in the living systems [69], proteins
play an important role in the construction of the cell structure and substance and messages
delivery and can serve as biosensors by modification with functional materials [70]. Bene-
fiting from the advantages of NIR AIEgens, the bioconjugation between NIR AIEgens and
specific proteins is considered as an appropriate method to manufacture smart biosensors,
and numerous NIR AIEgen-protein based biosensors have been reported over the past few
years (Figure 5a) [71–75].

The development of bioimaging with high SNR is urgently needed and remains
challenging [76]. The bioconjugation between the monoclonal antibody (mAb) and the
bioimaging probe is considered as an admirable strategy to design a molecular imaging
probe with high SNR benefiting from the outstanding targeting specificity of antibodies.
Recently, a water-soluble mAb-NIR AIEgen conjugate (mAb-CSPP) with “turn on” and
“wash-free” characteristics was designed for specific cancer imaging [71]. In this work, mAb-
CSPP was prepared by the conjugation between NHS-functionalized CSPP and cetuximab,
and mAb-Cy3 with the “always-on” characteristic was also formulated as a control. The
results of SDS-PAGE revealed that the cetuximabs were successfully conjugated with
CSPP/Cy3. As illustrated in Figure 5b,c, compared with mAb-Cy3, mAb-CSPP possessed
larger Stokes shift and a bathochromic shifted emission spectrum, which significantly
reduced self-absorption and the cell autofluorescence. The water-soluble mAb-CSPP is non-
emissive in aqueous solution, but it emitted energetically after the internalization induced
by epidermal growth factor receptor (EGFR, overexpression in tumor cancer cells)-mediated
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endocytosis, which endows mAb-CSPP with the “turn on” characteristic. Subsequently,
mAb-CSPP and mAb-Cy3 were utilized for HCC827 cancer cell imaging (Figure 5d). As
expected, mAb-Cy3 with the “always on” characteristic exhibited a high background
fluorescence signal with or without washing of PBS, and it was hard to capture the clear
signals of cancer cells. In sharp contrast, neglectable background fluorescence of mAb-CSPP
was observed, and signals were only detected in HCC827 cells with a high SNR due to the
overexpressed EGFR, indicating the superiority of the “turn on” characteristic. The CLSM
imaging also revealed that mAb-CSPP was mainly located in lysosome after incubation
for 4 h and would migrate into the mitochondria at 24 h after hydrolysis in the lysosome.
This work provided a new strategy to prepare bioimaging probes for specific cancer cells
with the “turn on” characteristic and demonstrated favorable imaging performance with a
high SNR.
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The levels of IgM and IgG can serve as important indicators for infection in the
early stage, and the detection of IgM/IgG is considered as an admirable and alternative
method to diagnose COVID-19 [77,78]. Recently, a lateral flow immunoassay mediated
by an NIR AIEgen-antigen probe for early detection of IgM/IgG was reported by Chen
and coworkers [72]. The fluorescence probes AIE810NP-chicken and IgY/AIE810NP-SARS-
CoV-2 antigen were facilely synthesized and employed to carry out the NIR lateral flow
immunoassay, which could effectively eliminate the autofluorescence from the nitrocel-
lulose membrane and the biosample. As illustrated in Figure 5e, the IgM/IgG would
be initially captured by AIE810NP-SARS-CoV-2 antigen, after which it would be trapped
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by the mouse anti-human IgM/mouse anti-human IgG immobilized on the M/G line to
indicate the IgM/IgG positivity (Figure 5f). The AIE810NP-chicken IgY would bind to goat
anti-chicken IgY (immobilized on the C line) specifically to act as a control signal. After the
optimization of immunoreaction conditions, further analysis of IgM/IgG was subsequently
implemented with the assistance of the AIE810NP-based test strip for 142 pre-COVID serum
samples. The experimental results revealed that the threshold for the detection of IgM
and IgG is 0.200 (IM/IC) and 0.737 (IG/IC) (Figure 5g,h, IM, IG, and IC are the fluorescence
intensities of the M line, G line, and C line, respectively), and the limit of detection of
IgM/IgG is 0.236 and 0.125 µg mL−1, respectively. Furthermore, 172 serum samples from
patients infected with SARS-CoV-2 were tested by the AIE810NP-based test strip, ELISA,
and AuNP-based test strips (Figure 5i). The sensitivity of the AIE810NP-based test strip is
78% and 95% in terms of the detection of IgM and IgG, respectively, which is comparable
with ELISA (85% and 95%) and much better than AuNP-based test strips (41% and 85%).
This work provided an alternative way to diagnose COVID-19 with considerable sensitivity
based on the AIEgen-protein bioconjugate.

5. AIEgen-DNA Bioconjugates

DNA is another essential biological macromolecule in living systems, which carries
the genetic information for the synthesis of RNA and proteins. Interestingly, over the
past few years, DNA has emerged as an ideal candidate to construct functional materials
through bioconjugation [79,80]. Nowadays, the bioconjugation between DNA and powerful
AIEgen has invoked widespread research interests, and some prominent AIEgen-DNA
bioconjugates have been developed.

MnSOD is one of the key antioxidant enzymes involved in the conversion of superox-
ide radicals to keep cells from the destruction of ROS. MnSOD mRNA is in charge of the
transcription of MnSOD, and therefore the MnSOD mRNA expression level is considered
as an important index for cancer diagnosis [81,82]. Recently, a NIR AIEgen-DNA conjugate
(TPE-R-DNA) was reported for cancer tissue imaging and prognosis analysis by detecting
the mRNA expression level in tissues [83]. As displayed in Figure 6a, the amphiphilic
TPE-R-DNA was first synthesized via the copper-catalyzed azide-alkyne click reaction
between TPE-R-N3 and Alk-DNA, where the hydrophilic Alk-DNA with a complementary
base sequence of MnSOD mRNA acted as the recognition portion, and the TPE moiety
would endow the conjugate with AIE properties. In the presence of MnSOD mRNA and
exonuclease III (Exo III) simultaneously, the amphiphilic TPE-R-DNA undergoes a hydroly-
sis reaction to form the hydrophobic TPE-R-AT, which was demonstrated by dynamic light
scattering measurements (Figure 6b) and led to “turn on” of fluorescence emission. Notably,
the experimental results exhibited a good linear correlation between fluorescence intensity
and the concentration of mRNA, ranging from 0 to 1000 pM, with the detection limit
lowered to 0.6 pM (Figure 6c). As shown in Figure 6d,e, TPE-R-DNA exhibited admirable
photostability during 48 scans, and obvious red fluorescence signals were observed from
all the cancer tissues incubated with the TPE-R-DNA, indicating the universality of the
TPE-R-DNA probe for mRNA detection in tissue. Furthermore, the mRNA expression
levels of both cancer tissue samples and adjacent normal tissue samples from patients were
analyzed. As illustrated in Figure 6f,g, the fluorescence intensity of adjacent normal tissue
was higher than that of renal cancer tissue because of the higher mRNA expression in
adjacent normal tissues, which is consistent with previous reports. Undoubtedly, this work
offered a platform for mRNA detection based on the AIEgen-DNA conjugate, exhibiting
great potential for cancer tissue imaging and prognosis of gene-related diseases.

Gene therapy is an emerging and powerful therapeutic strategy [84]. However, gene
vectors with high efficiency and admirable compatibility are still urgently needed for the
clinical applications [85]. A series of NIR AIEgens were synthesized to serve as fluorescent
vectors by Tang et al. [86]. As illustrated in Figure 7a, the loose nucleic acid would be
condensed into positively charged nanoparticles in the presence of aneN3 [12], and then
internalized into the cell. Owing to the electrostatic interaction between the negatively
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charged endosomal membrane and the positively charged vector/DNA complexes, the
genetic cargo and AIEgens would be released. Benefiting from the best photophysical prop-
erties, vector 4 was selected as the representative to carry out further studies. Surprisingly,
the gene transfection efficiency of vector 4 was 6.7 times that of the commercial transfection
agent Lipofectamine 2000. At 24 h post-injection with vector 4/DNA for the tumor-bearing
mice, an obvious fluorescence signal was observed at the tumor site under light irradiation
(Figure 7b), and ex vivo fluorescence imaging revealed that only tumor tissue intensely
emitted (Figure 7c). Furthermore, the vector 4/DNA complexes also showed admirable
combined PDT and gene therapy for HeLa cells, which was confirmed by the standard
MTT assay (Figure 7d).
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Figure 6. (a) Synthetic route of TPE-R-DNA, TPE-R-AT, and the diagram of detecting MnSOD
mRNA. (b) Size distributions of TPE-R-DNA (left) and TPE-R-AT (right). (c) Photoluminescence
spectra of TPE-R-DNA in the presence of Exo III and different concentrations of MnSOD mRNA
(0−1000 pM). (d) CLSM images of many cancer tissues and their HE staining images. (e) Fluorescent
signal remaining percent of TPE-R-DNA in liver cancer tissue with increasing scanning numbers.
(f) Fluorescence intensity of cancer tissues and their adjacent tissues. (g) CLSM images of renal cancer
tissues (Ca) and their adjacent tissues (AT). Copyright, 2018, American Chemical Society.
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6. Other Systems

Silkworm silk has been used in textile applications for a long time because of its
unique mechanical strength, exceedingly good biocompatibility, optical transparency, and
controllable biodegradability [87]. The functionalization of silk is a promising strategy to
construct advanced material, especially fluorescent silks with great potential in functional
bio-optical devices [88,89]. Recently, a series of fluorescent silks with full-color emission
were prepared by metal-free bioconjugation [90]. As shown in Figure 8a (left), five AIEgens
with activated alkyne groups were synthesized, and the emission wavelengths of them
covered the whole visible region. The widespread amine groups on the surface of silk
proteins can efficiently react with activated alkynes in a facile manner. As excepted, after
soaking with AIEgens solutions at room temperature overnight, fluorescent silks (AIEgen-
silks) were obtained through the metal-free bioconjugation between activated alkynes
and amine groups with intensive fluorescence covering the entire visible light region
(Figure 8b). As illustrated in Figure 8c, in comparison with the fluorescein-silk obtained
by hydrogen bonding, AIEgen-silks fabricated by covalent bonding showed much higher
stability after 10 min of washing with soapy water, demonstrating the unique advantage of
chemically conjugated AIEgen-silks. As is known, the attractive white light-emitting (WLE)
materials can be constructed by mixing red, green, and blue emitters [91]. As depicted
in Figure 8d, controlling the AIEgens with blue, green, and red emission at a molar ratio
of 88:6:6, WLE silks with outstanding flexibility were manufactured successfully through
metal-free bioconjugation. The two-photon fluorescence (2PF) imaging experiment of
MTPABP-silk (Figure 8e) revealed that the structure of the silk was distinctly visualized
through the chicken tissues of 460 µm, and the red fluorescence signal can be observed
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even at a thickness of 1200 µm. This work proposed a new method to facilely fabricate
fluorescence silk through metal-free bioconjugation, but also demonstrated their great
potential in fabricating WLE material and deep-tissue imaging.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
 

 

silk obtained by hydrogen bonding, AIEgen-silks fabricated by covalent bonding showed 
much higher stability after 10 min of washing with soapy water, demonstrating the unique 
advantage of chemically conjugated AIEgen-silks. As is known, the attractive white light-
emitting (WLE) materials can be constructed by mixing red, green, and blue emitters [91]. 
As depicted in Figure 8d, controlling the AIEgens with blue, green, and red emission at a 
molar ratio of 88:6:6, WLE silks with outstanding flexibility were manufactured success-
fully through metal-free bioconjugation. The two-photon fluorescence (2PF) imaging ex-
periment of MTPABP-silk (Figure 8e) revealed that the structure of the silk was distinctly 
visualized through the chicken tissues of 460 μm, and the red fluorescence signal can be 
observed even at a thickness of 1200 μm. This work proposed a new method to facilely 
fabricate fluorescence silk through metal-free bioconjugation, but also demonstrated their 
great potential in fabricating WLE material and deep-tissue imaging. 

 
Figure 8. (a) Chemical structures of AIE-Pyo series and TVP-S. (b) Normalized fluorescence spectra 
of AIEgen-silks. (c) Fluorescence retention proportion of dyes after washing with soapy water. (d) 
Preparation and photos of WLE silk. (e) Two-photon fluorescent images of MTPABP-silk through 
the chicken tissues of 460 μm. Copyright 2021, Wiley-VCH. (f) Diagram of bacterial imaging, target-
ing, and killing driven by TVP-PAP. (g) Absorption spectra of TVP-PAP, PAP, and TVP-S. (h) DCFH 
for ROS detection of TVP-PAP. (i) Fluorescence imaging of P. aeruginosa and A. baumanni co-incu-
bated with TVP-PAP for 30 min. (j) The survival rate and colonies of P. aeruginosa and A. baumanni 
co-incubated with TVP-PAP in the present light irradiation for 30 min. (k) The survival rates and 
colonies of P. aeruginosa and S. aureus co-incubated with TVP-PAP in the present light irradiation 
for 30 min. (l) The wound-healing rates at days 2, 5, and 8 under different treatments. Copyright, 
2020, American Chemical Society. 

Historically, humankind arduously battled deadly microbes for a long time until the 
discovery and widespread use of penicillin. However, it has been repeatedly verified that 
both harmful and beneficial microbes would be simultaneously eliminated by antibiotics. 
Moreover, the emergence of multidrug-resistant bacteria caused by the abuse and misuse 
of antibiotics has triggered a serious threat to humans [92–94]. Therefore, a new antibac-
terial agent with high killing efficacy for certain species of bacteria is urgently needed. 
Tang et al. prepared a novel antimicrobial drug by the bioconjugation of AIEgens and 
phage, which can realize the specific imaging and killing of P. aeruginosa [95]. As one kind 
of virus, phage can target its hosts (including bacteria, fungi, algae, and others) with su-
perb specificity and then attack them [96]. In view of the superiorities of AIEgens in mi-
crobial detection and therapy demonstrated by substantial studies, the AIEgen-phage bi-
oconjugate is considered as a win–win integration [97]. As shown in Figure 8a,f, the acti-
vated carboxyl group in TVP-S would react with the amino group widely distributed in 

Figure 8. (a) Chemical structures of AIE-Pyo series and TVP-S. (b) Normalized fluorescence spectra
of AIEgen-silks. (c) Fluorescence retention proportion of dyes after washing with soapy water.
(d) Preparation and photos of WLE silk. (e) Two-photon fluorescent images of MTPABP-silk through
the chicken tissues of 460 µm. Copyright 2021, Wiley-VCH. (f) Diagram of bacterial imaging, targeting,
and killing driven by TVP-PAP. (g) Absorption spectra of TVP-PAP, PAP, and TVP-S. (h) DCFH for
ROS detection of TVP-PAP. (i) Fluorescence imaging of P. aeruginosa and A. baumanni co-incubated
with TVP-PAP for 30 min. (j) The survival rate and colonies of P. aeruginosa and A. baumanni co-
incubated with TVP-PAP in the present light irradiation for 30 min. (k) The survival rates and colonies
of P. aeruginosa and S. aureus co-incubated with TVP-PAP in the present light irradiation for 30 min.
(l) The wound-healing rates at days 2, 5, and 8 under different treatments. Copyright, 2020, American
Chemical Society.

Historically, humankind arduously battled deadly microbes for a long time until the
discovery and widespread use of penicillin. However, it has been repeatedly verified that
both harmful and beneficial microbes would be simultaneously eliminated by antibiotics.
Moreover, the emergence of multidrug-resistant bacteria caused by the abuse and misuse of
antibiotics has triggered a serious threat to humans [92–94]. Therefore, a new antibacterial
agent with high killing efficacy for certain species of bacteria is urgently needed. Tang et al.,
prepared a novel antimicrobial drug by the bioconjugation of AIEgens and phage, which
can realize the specific imaging and killing of P. aeruginosa [95]. As one kind of virus, phage
can target its hosts (including bacteria, fungi, algae, and others) with superb specificity and
then attack them [96]. In view of the superiorities of AIEgens in microbial detection and
therapy demonstrated by substantial studies, the AIEgen-phage bioconjugate is considered
as a win–win integration [97]. As shown in Figure 8a,f, the activated carboxyl group in
TVP-S would react with the amino group widely distributed in the protein shell of phage
to prepare the TVP−PAP probe, which was further confirmed by the absorption spectrum
analysis. The TVP-PAP possessed robust ROS generation efficiency (Figure 8h), which
is inherited from TVP-S. As demonstrated in Figure 8i, after incubation with TVP-PAP
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for 30 min, a red fluorescence signal was distinctly detected from P. aeruginosa, but no
fluorescence signal was observed from A. baumannii. Furthermore, in the presence of light
illumination for 30 min, almost all the P. aeruginosa was killed, while few A. baumannii
and S. aureus were eliminated (Figure 8j,k), demonstrating the outstanding targeted killing
ability of TVP-PAP. Considering the remarkable bacteria targeting and elimination ability,
TVP-PAP was selected to implement an in vivo antibacterial assay for P. aeruginosa and
MDR P. aeruginosa-infected animal models. As shown in Figure 8l, at day 8 post-injection of
TVP-PAP, the wound-healing rates for both MDR P. aeruginosa and P. aeruginosa infection
were more than 90%. Certainly, this novel AIEgen-phage conjugated strategy discussed
here will offer a universal approach for producing advanced antibacterial agents.

7. Summary and Perspective

AIE bioconjugates have grown into promising candidates for biomedical applications
owing to the integrated advantages of AIEgens and biomolecules. In this review, we sum-
marized several types of AIE bioconjugates, focusing on those emitting NIR fluorescence
and highlighting their applications, especially in biomedicine.

While remarkable progresses have been made, there are still many challenges and
limitations. For example, how can we facilely formulate a modulable synthesis route
to obtain AIEgens with desired properties? How do we promote the bioconjugation
in a biocompatible fashion (e.g., additive-free and smoothly proceeding, especially in
the physiological environment)? In future research, considerable attempts should be
devoted to the following aspects: (1) On the basis of the sophisticated functions of AIE
bioconjugates, we encourage more efforts to enrich the categories of AIE bioconjugates.
AIEgens possessing luminescent characteristics such as ultra-high brightness, high tissue
penetration ability, two-photon or three-photon imaging capacity, and biological species
with specific functionality are attractive. (2) Modulable synthesis of AIEgens with various
functional groups such as amino group, carboxyl group, and azide group will undoubtedly
create new possibilities in the quest for affording useful AIE bioconjugates. (3) Many facile
ligation approaches based on the feature of biological species need to be developed. Taking
the amino-yne reaction as an example, this click-type reaction allows for the conjugation
process to proceed smoothly. (4) Bioconjugation spontaneously processed in live cells
may confer the diagnosis of disease in a highly efficient way. With these prospects, it is
anticipated that this review will prompt more innovative thoughts to further advance this
area of research.
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