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Abstract 

The circadian rhythm (CR) is a set of autonomous endogenous oscillators. Exposure to the 24-hour 
day–night cycle synchronizes our CR system, maintaining homeostasis and human health. Several 
mechanisms for the CR system have been proposed, including those underlying the function 
(transcriptional–translational negative-feedback loops, or TTFLs), mechanisms regulating the TTFLs, 
and the mechanism by which the “server clock” is synchronized to environmental time. Several 
pathways downstream of the “server clock” perform well-characterized biological functions. 
However, the synchronization between the “server clock” (the endogenous master clock seated in 
the suprachiasmatic nucleus within the hypothalamus) and the “client clock” (imbedded in nearly 
every cell in the form of interlocking TTFLs) is difficult to explain with current theories. Extracellular 
vesicles (EVs), which are involved in intercellular communication and have recently been found to 
participate in regulation of the “client clock”, might be the answer to this question. In this review, we 
summarize the current knowledge of CRs, TTFLs, and EVs, examine research findings about the 
functions of EVs in the CR system, and discuss the issues requiring attention in future research. 
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1. Introduction 
Almost every life-form on Earth is exposed to 

environmental changes over the 24-hour day–night 
cycle (environmental time), resulting in the evolution 
of circadian rhythms (CRs) to adapt to daily changes 
[1]. A wide variety of physiological processes are 
influenced by CRs, which are essential for 
maintaining the health of mammals, including 
humans [2]. In addition to the sleep–wake cycle—the 
most conspicuous output of CRs—there are diurnal 
variations in other physiological systems, including 
the cardiovascular system, digestive system, 
endocrine system, body temperature regulation, 
metabolism, and immune functions [3-7].  

The molecular-level core of the CR system 
consists of oscillating clock-related genes that 
constitute the transcriptional–translational negative- 

feedback loops (TTFLs) [8]. Although the oscillators of 
the CR system are endogenous, exposure to the 
normal light/dark cycle is essential for the CR system 
to synchronize with environmental time and keep the 
body functioning normally by adapting to the 
environment [9-11]. However, in modern society, 
sun-free environments in the daytime and the use of 
artificial light at night have become commonplace, as 
these technologies have allowed human lifestyles to 
become increasingly flexible—people can eat, sleep, 
work, and exercise whenever they want [2, 9-11]. 
These lifestyle changes correlate with rising rates of 
several disorders, including heart disease [12], ulcers 
[13], cancer [14], somnipathy [15], diabetes [16], 
depression [17], and cognitive disorders [18]. There is 
solid evidence that night-shift work increases the risk 
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of malignant tumours, diabetes, and cardiomyopathy 
[19-25]. Thus, a thorough understanding of the 
operating mechanism of the CR system is essential for 
disease prevention, early diagnosis, and effective 
intervention. 

The endogenous CR system is mainly composed 
of two parts: the endogenous master clock (or “server 
clock”) and subordinate clocks (or “client clocks”). 
The endogenous “server clock” of the CR system is 
seated in the suprachiasmatic nucleus (SCN) in the 
hypothalamus [26, 27]. Through specialized retinal 
ganglion cells, the “server clock” is calibrated by 
environmental time rather than simply obeying the 
endogenous rhythms generated by TTFLs [28, 29]. 
The “client clocks” are imbedded in nearly every cell 
in the form of interlocking TTFLs, which are 
composed of clock genes that exert their biological 
effects via target genes (clock-controlled genes) [30, 
31]. Hence, understanding of the synchronization 
mechanisms between “client clock” and “server 
clock” is crucial for a complete understanding of the 
CR system. 

Recently, post-translational modifications 
(PTMs) and noncoding RNAs (ncRNAs) have been 
found to regulate the physiological processes of CRs 
[2, 32-35]. In addition, extracellular vesicles (EVs), 
important intercellular couriers of proteins and 
ncRNAs, have attracted increasing attention [36]. EVs 
might carry the synchronization signal to correct the 
“client clocks” in accordance with the “server clock”. 

In this review, we will first introduce the 
molecular mechanism of CRs. Then, we will highlight 
the current knowledge concerning EVs and the 

regulatory mechanisms in the CR system. Finally, we 
will discuss how EV-mediated gene regulation could 
regulate the CR system. Given their emerging 
potential in diagnostics and even therapeutics, a 
thorough understanding of the role of EVs in the CR 
system could help tackle CR-related diseases. 

2. Circadian Rhythms 
The most basic structure of the CR system is the 

“client clock”, a cell-autonomous circadian oscillator 
that exists in all cells, which is composed of 
clock-related proteins and is described as a network of 
interlocking TTFLs (Figure 1) [21, 37-40]. The core 
loop of TTFLs is constituted by both transcriptional 
activator genes [CLOCK, Brain and muscle Arnt-like 
protein 1 (BMAL1)] and repressor genes [Period-1 
(PER1), PER2, PER3, Cryptochrome-1 (CRY1) and 
CRY2] [21]. The CLOCK-BMAL1 complex binds to the 
E-box-containing regulatory elements in repressor 
genes [41-43]. The working mechanism of the core 
loop, in brief, is that CLOCK-BMAL1 transactivation 
activates the transcription of repressor genes 
(including CRYs and PERs) together with the output 
genes (clock-controlled genes), and then, after 
translation, the accumulated CRY and PER proteins 
interact with each other to suppress CLOCK-BMAL1 
activation (negative feedback) [38]. As the repression 
progresses, the protein levels of repressors, which 
have short half-lives and can be degraded by 
proteasomes, decrease, allowing a new CR cycle to 
begin [33, 44].  

 

 
Figure 1. The network of interlocking TTFLs. 
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In addition to the core loop, there are two 
sub-loops, which are coupled to the core loop to 
consummate the oscillation. The first sub-loop 
consists of retinoic acid receptor-related orphan 
receptors (RORs) and nuclear receptors called 
REV-ERBs (including REV-ERBα and REV-ERBβ) [21, 
38, 39, 45-47]. REV-ERBs compete with RORs for 
binding to ROR-binding elements (RORE): REV-ERBs 
repress, whereas RORs activate, CLOCK and BMAL1 
[39, 45]. The second sub-loop consists of D-box-related 
proteins, including D‐box binding protein (DBP), 
thyrotroph embryonic factor (TEF), and hepatic 
leukaemia factor (HLF) [39, 48, 49]. These proteins 
interact with nuclear factor interleukin-3-regulated 
protein (NFIL3), a downstream protein of 
RORs/REV-ERBs, at D-boxes [39, 48, 49]. This 
molecular-level oscillator network is the foundation of 
the CR system. 

The “server clock” seated in the SCN is the 
master of the CR system in mammals [50]—it receives 
the input signal (light from the external environment) 
via the retinohypothalamic tract to synchronize the 
“server clock” to environmental time [51]. The “server 
clock” then communicates with the wider central 
nervous system (CNS) and non-CNS organs [52]. 
Ablation of the SCN leads to dysregulation of clock 
genes in the “client clock” of most tissues, causing 
arhythmicity of behaviours and physiological 
functions [8]. Thus, the duty of the “server clock” is to 
synchronize the “client clock” to environmental time 
[53]. 

There are three classical neuroendocrine 
pathways governing the peripheral effects induced by 
the “server clock”. First, the “server clock” induces 
the release of epinephrine/norepinephrine via the 
nerve endings of the autonomic nervous system [54]. 
Second, it induces the release of glucocorticoids by the 
adrenal gland via the hypothalamic–pituitary–adrenal 
axis [55]. Third, it induces melatonin release by 
activating the pineal gland [56]. These 
neuroendocrine pathways and their downstream 
effects can explain many of the peripheral functions of 
the “server clock” [56]. However, these pathways 
cannot explain how the “client clocks” synchronize 
with the “server clock”. 

There is mounting evidence that disruption of 
the CR system is intimately implicated in the 
pathology of neurodegenerative diseases [57-59], 
metabolic disorders [60], chronic inflammatory 
diseases [61], cardiovascular disease [62], and 
malignant tumours [19]. The peripheral blood cells of 
Parkinson’s disease patients have abnormal clock 
gene expression [63, 64]. Kim et al. found that deletion 
of the secretory vesicle proteins IA-2 and IA-2β, which 
have also recently been found to be closely related to 

EV secretion, affects the CR system [65, 66]. These 
findings suggest that the pathogenesis of CR-related 
diseases is complicated and multi-dimensional (at the 
level of the “server clock”, the “client clock”, or in the 
signal transduction between them, for example). 

3. Regulatory Mechanisms of the TTFLs 
Recent research has been focused on the 

multi-level regulatory mechanisms of TTFLs, which 
can be classified into groups depending on their main 
level of action: PTMs and ncRNAs. Both the “server 
clock” and the “client clock” are precisely regulated 
by PTMs [33-35]. 

Both the total level and the phosphorylated level 
of PER proteins dramatically influence the oscillations 
of the CR system [38, 67]. The main modification of 
PERs are shown in Figure 2A. In most cases, PER1–3 
are phosphorylated by casein kinase I (CKI) and then 
poly-ubiquitinated by the Skp–Cullin–F-box (SCF) 
complex containing the F-box type E3 ligase β-TrCP1 
or β-TrCP2, before degradation by the proteasome 
[38, 68, 69]. PER2 is phosphorylated at Ser53 by CKII 
and then degraded [38]. However, the different 
phosphorylation sites on PER2 seem to have different 
effects on the stability of PER2 and thus on 
oscillations. Phosphorylation of Ser662 (and the four 
downstream serines Ser665, Ser668, Ser671, and 
Ser674) leads to the stabilization of PER2 (Figure 2D) 
[38, 70, 71]. 

The opposite of phosphorylation is 
de-phosphorylation. Phosphoprotein phosphatase 1 
(PPP1) can de-phosphorylate PERs and thus 
antagonize the CKI-mediated degradation of PERs 
[38, 72]. PPP5 regulates the stabilization of PERs and 
the CR cycle by preventing the auto-phosphorylation 
of CKI [72, 73]. Moreover, de-ubiquitination and 
acetylation can also stabilize proteins. For example, 
BMAL1, PER1, and CRY1-2 can be de-ubiquitinated 
by ubiquitin-specific protease 2 (USP2), stabilizing 
them [72, 74, 75]. SIRT1 binds to PER2, inducing its 
de-acetylation and promoting its degradation [76, 77]. 

The phosphorylation and ubiquitination of CRY 
proteins is also important, and a diagram showing the 
main modification of CRYs is shown in Figure 2B. 
AMP-activated protein kinase (AMPK) 
phosphorylates CRY1 at Ser71 to induce the 
degradation of CRY1 by recruiting FBXL3 [78]. The 
FBXL3-containing SCF complex induces the 
ubiquitination of CRY proteins and terminates their 
transcriptional repression activity by promoting their 
degradation [79, 80]. Dual-specificity tyrosine- 
phosphorylation-regulated kinase 1A (DYRK1A) 
phosphorylates Ser557 on the C-terminus of CRY2 
[81], and glycogen synthase kinase 3 (GSK-3) induces 
the secondary phosphorylation of CRY2 at Ser553 [81, 
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82]. After this two-step phosphorylation, CRY2 is 
degraded by an unknown E3 ligase [81]. The 
phosphorylation of CRY1 at Ser588 blocks the 
interaction between FBXL3 and CRY1, stabilizing 
CRY1 (Figure 2E), but the responsible kinase remains 
unknown [83]. 

The mechanisms regulating CLOCK and BMAL1 
act in a completely different way to those just 
described (Figure 2C). First, the total protein levels of 
CLOCK and BMAL1 are relatively stable, but their 
phosphorylation levels are circadian [67, 84]. 
Phosphorylation decreases the stability of CLOCK 
and BMAL1 but promotes their activity [85, 86]. 
Cyclin-dependent kinase 5 (CDK5) phosphorylates 
CLOCK at Thr451 and Thr461 [87]. GSK-3 
phosphorylates CLOCK at Ser427 and BMAL1 at 
Ser17 [85, 86]. 

Noncoding RNAs are also involved in the 
regulation of the CR system. Researchers have 
developed a computational model involving PERs, 
CRYs, CLOCK, BMAL1, and two microRNAs 
(miRNAs; miR-219 and miR-132) [88-90]. Using this 
model, it was found that the most studied CR-related 
miRNAs to date, miR-219 and miR-132, can activate 
the translation of PER1 and regulate the mammalian 
CR system [88, 89, 91, 92]. MiR-219 in the SCN shows 
a rhythmicity correlated to the CR and has its peak 
expression level at midday [88, 93]. Photo-activated 
expression of miR-132 requires CREB and 
MAPK/ERK [88, 94, 95].  

In addition, circulating miR-494 and miR-142-3p 
can modulate CRs by targeting the clock gene BMAL1 
[96, 97], while miR-433 regulates the expression of 
PER2 and BMAL1 [98]. BMAL1 is also targeted by 
miR-27b-3p [113] and miR-155 [99], while PER1 is 
targeted by miR-34a [100], and the miR-192/194 
cluster can inhibit the PER family [101]. Finally, 
translation of CRY1 is regulated by miR-185 [102].  

The lncRNA TUG-1 is required for 
photoreceptor differentiation, but the underlying 
mechanism is still unknown [88, 103]. The level of the 
lncRNA HULC is positively correlated with the 
expression level of CLOCK and can upregulate its 
downstream output genes [104]. However, it is 
essential to screen more potential CR-related ncRNAs, 
and study their mechanisms and functions in order to 
broaden understanding of the regulatory network of 
CR. 

4. Basic Concepts of Extracellular Vesicles 
EV secretion was initially regarded as a process 

to eliminate unwanted compounds from cells [105, 
106]. However, pioneers in the field (Raposo et al.) 
found, in 1996, that EVs play important roles in 
immune responses [107]. Since then, the functions of 
EVs in intercellular communication have drawn 
increasing attention and the number of annual 
citations has dramatically increased, from 28 in 1996 
to 24,765 in 2016 [108]. Almost all eukaryotic cells take 
up and secrete EVs, and these minute EVs contain 

 
Figure 2. Regulatory Mechanisms of the TTFLs. The modification of (A) PERs, (B) CRYs and (C) BMAL1-CLOCK as well as some special cases (D and E). 

 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

1614 

genetic instructions (nucleic acids and proteins) that 
regulate the function of the recipient cells, whether 
under normal or pathological conditions, sometimes 
mildly, sometimes strongly [108]. Moreover, the 
communication process mediated by EVs is conserved 
from bacteria to plants and animals [109, 110]. Most 
interestingly, there is much evidence of cross-species 
communication via EVs, even between 
micro-organisms and mammals [111].  

EVs can be roughly classified into three 
categories: exosomes (EXOs), microvesicles (MVs), 
and apoptotic bodies (ABs) [106, 112-114]. EXOs and 
MVs are the most important EVs in intercellular 
communication, while ABs are rapidly eliminated by 
immune cells [115]. EXOs (also known as 
inward-budding vesicles; 30–100 nm in diameter) are 
generated on endosomal membranes by inward 
budding during the maturation process of 
multi-vesicular bodies (MVBs) [105, 106, 116, 117]. 
Before MVBs fuse with the plasma membrane and 
release EXOs, EXOs in MVBs are called intra-luminal 
vesicles [106, 116, 117]. MVs (also known as 
outward-budding vesicles; 50–1,000 nm in diameter) 
are generated and released on the plasma membrane 
by outward budding [106, 113] and were initially 
studied for their important roles in blood coagulation 
[106, 118, 119]. However, new research suggests MVs 
are important players in intercellular communication 
[106, 120].  

Although there are differences between MVs and 
EXOs in terms of their biogenesis and release, most 
research on the biological function of EVs has not 
strictly accounted for the differences in their 
intracellular origins. Many researchers do not strictly 
consider small EVs, isolated by gradient 

centrifugation or 0.22 μm filters, as EXOs [121, 122]. 
The mainstream view now holds that there is no need 
to make a detailed distinction between EXOs and 
MVs, if the research is focused on their pathological 
and physiological functions, rather than their 
biogenesis. In this review, we have called them both 
EVs, in accord with most reviews discussing EVs [123, 
124]. 

5. Extracellular Vesicle-Mediated 
Intercellular Communication 

EVs contain and transport several types of 
molecules, including membrane proteins and 
cytosolic proteins, messenger RNAs, and ncRNAs 
(such as miRNAs, lncRNAs, and circular RNAs) 
(Figure 3A) [113, 115, 125]. The regulatory functions of 
EVs in signalling pathways of recipient cells are based 
on either receptor–ligand interactions or direct 
content delivery after internalization [115, 123]. Their 
phospholipid bilayers enable EVs to protect their 
cargo from the external environment, and they are 
found in almost all body fluids [124, 126, 127]. The 
different surface proteins expressed on EVs give them 
different targeting properties [128].  

EVs can be derived from nearly every type of 
cell, both normal [129, 130] and malignant [131, 132]. 
Normal cells use EVs to coordinate, communicate, 
and cooperate with their “colleagues” [115]. 
Malignant cells use EVs to mislead normal cells and 
issue aberrant orders. EVs derived from malignant 
cells can deliver signals to establish a pre-metastatic 
niche, a suitable environment for metastasis [133-136]. 
The constitution of EVs derived from malignant cells 
is markedly different from that of EVs derived from 
normal cells [137, 138], and this makes them potential 

biomarkers in liquid 
biopsies. EVs also show 
potential as diagnostic 
markers and progression 
markers of infectious 
diseases [139-141]. Hence, 
it is also possible to choose 
EVs as potential markers 
to monitor the functions of 
the CR and to detect early 
warning signals related to 
dysfunction of the internal 
CR system. 

EVs are also potential 
therapeutic tools to 
regulate and maintain the 
internal CR system and 
prevent/treat disease 
caused by dysfunction of 
the internal CR system. 

 

 
Figure 3. Potential Participants in CR Synchronization. (A) The constitution of EVs. (B) The cargoes of EVs might be the 
key of CR synchronization. 
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Stem cells once showed great potential in regenerative 
medicine because of their unparalleled 
proliferation/differentiation potential [142]. 
However, embryonic stem cells and induced 
pluripotent stem (iPS) cells have shown key 
weaknesses, including immunological rejection, 
tumour formation, and circulation damage [124, 143]. 
In recent years, EVs have become rising stars in the 
field of regenerative medicine for use in cell-free 
therapy. Increasing evidence suggests that 
stem/progenitor cell-derived EVs have therapeutic 
functions similar to or even better than their parent 
cells [124, 144]. In addition, EVs are stable and easy to 
preserve because they can retain bioactivity during 
lyophilisation and other extreme conditions during 
handling, owing to the protective effect of their lipid 
bilayer [124, 145]. Moreover, EVs can cross barriers 
such as the blood–brain barrier [136], so the route of 
administration is relatively easy. Above all, 
therapeutic use of EVs is safer than direct use of their 
parent cells because of their hypoallergenic nature 
and lack of oncogenic potential [124]. Evidence of 
their hypoallergenicity includes the fact that 
human-derived EVs work well upon first injection 
and repeated injections in animal models, including 
rats, mice, and pigs [108]. Adamiak et al. found that 
over half of the mice they injected with iPS cells 
developed teratomas, whereas mice injected with EVs 
derived from iPS cells (even from the same cells that 
had caused teratomas) did not develop teratomas 
[144]. Stem/progenitor cell-derived EVs (or even EVs 
derived from fragments of cytoplasm such as 
platelets) regulate the biological processes of the 
target cells by delivering parent cell-originated 
nucleic acids and proteins [124, 126, 146-148]. 

Natural EVs cannot always meet therapeutic 
needs, and developing improved/modified EVs will 
be an exciting area of future research [124, 126, 127, 
149, 150]. For example, EVs derived from synovial 
mesenchymal stem cells enhance the proliferation and 
migration of chondrocytes, but reduce the formation 
of extracellular matrix [127]. This problem can be 
solved by enhancing the levels of miR-140-5p in these 
EVs [127]. Modified or optimized EVs might therefore 
be the future of EV-based therapeutic medicine. With 
advances in deep knowledge of the CR system and of 
the technology of EV-based therapy, preventing or 
reversing malfunctions, caused by modern life such as 
night shift work and jet lag, will become a reality. 

6. Circadian Rhythms and Extracellular 
Vesicles 

Recent research has suggested that EVs act as a 
bridge between the “server clock” and “client clock” 
(Figure 3B). Khalyfa et al. employed a mouse model of 

chronic nocturnal shift work and found altered 
intestinal flora and increased colonic cell permeability 
accompanied by changes in the components of plasma 
EVs, including clock genes [36]. SIRT1, which is 
involved in the regulation of PER acetylation (see 
previous section), is regulated by EVs [151, 152]. EVs 
also regulate the phosphorylation of GSK-3 [153], 
which plays an important role in the regulation of 
CRYs and BMAL1/CLOCK (see previous section). 
AMPK, which participates in the regulation of CRYs 
(see previous section), is regulated by EVs and is 
probably related to ncRNAs in EVs [154-156].  

MiR-132, which plays an important role in 
regulating PERs (see previous section), is enriched in 
EVs derived from fibrocytes, adipose tissue-derived 
stem cells, cardiac progenitor cells, neurons, serum, 
and umbilical cord blood [157-162]. MiR-219, which 
participates in activating PER1 translation (see the 
previous section), is enriched in serum-derived EVs 
[163]. Therefore, although direct links have yet to be 
shown, these results suggest that EVs in the 
circulatory system are communicators between the 
“server clock” and the “client clock”. 

An online database of EVs, EVpedia 
(http://student4.postech.ac.kr/evpedia2_xe/xe/), 
could help to discover the existence of CR-related 
genes in EVs [164-168]. The database confirmed the 
existence of PER2, PER3, CKI families, AMPKβ, 
AMPKγ, GSK-3α, and GSK-3β, as well as miR-219a, 
miR-219b, miR-132, miR-494, miR-142, miR-433, 
miR-27b-3p, miR-192, and miR-194 in EVs. Thus, EVs 
contain enough bioactive molecules to regulate the 
“client clock” of recipient cells, so it is essential to 
verify whether EVs participate in liaising between the 
“server clock” and the “client clock”. It is important 
not only to detect any additional CR-related 
molecules carried by EVs but also to verify the 
idiographic functions of these molecules. 

Shende et al. found that several circulating 
miRNAs (miR-152, miR-494, and miR-142-3p) 
correlate with diurnal oscillation (expression peaks 
near midday and 8/12 h later) and participate in the 
regulation of clock genes in a mouse model [96]. 
However, this study did not distinguish whether 
these miRNAs were free in the plasma or packaged in 
EVs. Circulating miR-494 and miR-142-3p can 
regulate CRs by targeting the clock gene BMAL1 [96], 
but the locations of these miRNAs were not 
confirmed. 

In blood, there are two major forms of circulating 
miRNAs: miRNAs as “cargos” of EVs (miRNA-EVs) 
and miRNAs bound to Argonaute (AGO) proteins 
(miRNA-AGOs) [169]. It is generally believed that 
miRNA-AGOs cannot be internalized by recipient 
cells because of their size and lack of bioactivity for 
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penetration [169-171], but miRNA-EVs can be 
efficiently internalized with their miRNAs by 
recipient cells via penetration [170, 172]. When 
viewed from this perspective, the circulating miRNAs 
that regulate CR-related functions stand a good 
chance of being carried in EVs. Nonetheless, it is 
important to evaluate not only the total content of 
genetic material in plasma but also their specific 
locations (whether enclosed in EVs or not). 

7. Discussion and Outlook 
As outlined above, the mechanism underlying 

the CR appears to be a complicated, interconnected, 
and multi-level system. Although the fundamental 
structure and some regulatory mechanisms have been 
identified, many questions remain. In particular, 
current knowledge cannot explain the specific 
synchronization methods between “server clock” and 
“client clock”. Before reaching full understanding of 
the synchronization methods, the regulation of TTFLs 
at the molecular level needs to be better understood. 
In this review, we have summarized current 
understanding of the regulation of TTFLs, including 
by PTM and ncRNAs, in mammals. It is possible that 
the “server clock” transports PTM-related molecules 
or ncRNAs to the “client clock” through some as-yet 
unidentified mechanism, which may be EVs.  

In addition to the transport of EVs in blood, the 
transmission of EVs between neurons is also worthy 
of serious attention [173] (Figure 4). The release of EVs 
has been found to be dependent on synaptic activity 
[174], and could be an important intermediary in 
neuron–neuron communication [175, 176]. In the 
larvae of Drosophila, EVs have also been found to be 
involved in controlling the retrograde postsynaptic 
signal [177]. The function of EVs related to synaptic 
activity could be explained by the function of 
EV-containing cargos including miRNAs and 
synaptic-associated proteins [178]. This might be not 
only an important addition to the communication 
between “server clock” and CNS besides 
electroneurographic signals, but also a potential 
jigsaw of the entirety of CR synchronization. Hence, 
this research area also merits much further attention. 

Some evidence indicates that EVs participate in 
the regulation of individual cells’ “client clocks”. 
Circulating RNAs also have important roles in the 
regulation of “client clocks”. Although the 
localization of these RNAs is not known, it is well 
recognized that circulating RNAs with biological 
effects are mainly found in EVs. It is very important to 
verify the localization of these circulating RNAs and 
their specific biological effects in the regulation of 
“client clocks”. An online database containing a large 

amount of high-throughput data such as 
EVpedia can greatly advance the progress 
of research. However, it will be necessary 
to establish an online database of the CR 
system, and carry out multi-database joint 
analysis to bring a breakthrough in this 
research area. 
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