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Abstract

The field of immuno-oncology has expanded rapidly over the past decade, but key questions 

remain. How does tumour-immune interaction regulate disease progression? How can we 

prospectively identify patients who will benefit from immunotherapy? Identifying measurable 

features of the tumour immune-microenvironment which have prognostic or predictive value 

will be key to making meaningful gains in these areas. Recent developments in deep learning 

enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, 

integrated and analysed far beyond what is possible with conventional techniques, and to do 

so efficiently and at scale. This has the potential to reshape what can be achieved in terms of 

volume, precision and reliability of output, enabling data for large cohorts to be summarised and 

compared. This review examines applications of artificial intelligence (AI) to important questions 

in immuno-oncology (IO). We discuss general considerations that need to be taken into account 

before AI can be applied in any clinical setting. We describe AI methods that have been applied to 

the field of IO to date and present several examples of their use.
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1. Introduction

The ability to evade immune destruction is a seminal feature of cancer [58]. Agents 

designed to ramp up the anti-tumour immune response have had therapeutic traction across 

a range of tumour sites and histologies [116] with some patients experiencing durable 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Corresponding author. yinyin.yuan@icr.ac.uk (Y. Yuan).
1Joint authorship

HHS Public Access
Author manuscript
Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2022 May 03.

Published in final edited form as:
Biochim Biophys Acta Rev Cancer. 2021 April ; 1875(2): 188520. doi:10.1016/j.bbcan.2021.188520.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


disease control. Aside from this, traditional cytotoxic therapies have been shown to mediate 

some of their anti-tumour effects through immune mechanisms [18]. Clinical success 

from immunotherapy is far from universal and the majority of unselected patients have 

a poor objective response. Besides, these agents have a significant toxicity profile [50]. 

To maximise the clinical gains - and minimise harm - it is essential that we have robust 

predictive biomarkers that are able to prospectively discriminate between those more or less 

likely to benefit from IO.

1.1. Predictive assays in current use

1.1.1. IHC markers—PD-L1 expression by tumour and/or local immune cells, as 

assessed by single marker immunohistochemistry is used across a spectrum of solid tumours 

to select for benefit from immune checkpoint inhibitors. However, its utility as a biomarker 

is limited by intra-tumoural heterogeneity and dynamic changes in expression. We lack 

a standardised approach to scoring and significance thresholds. Reliability of scoring is 

affected by inter-observer variation as well as technical differences between the various 

assays in use [11].

1.1.2. Genomic tools—Genomic tools including targeted panels to estimate tumour 

mutational burden are also used to select for likely responders. Tumour mutational burden 

(TMB) correlates with neoantigen load and has been shown to predict response to IO in 

lung, bladder and head and neck tumours [23]. Cancers with defective mismatch repair 

(dMMR) tend to have high TMB as consequence, and IO is therefore of particular benefit 

in this subgroup. dMMR is most commonly seen in cancers associated with the inherited 

Lynch syndrome (colorectal, endometrial, small intestine, urothelial, central nervous system 

and sebaceous gland cancers) and can be detected through the use of antibodies against 

nuclear MMR proteins, plus or minus PCR to identify microsatellite instability - a 

downstream manifestation of dMMR [83]. Although both are predictive biomarkers for 

sensitivity to immune checkpoint blockade, TMB and PDL1 do not necessarily select for 

the same patients as illustrated by the fact that dual checkpoint blockade for NSCLC was 

beneficial with high TMB, irrespective of PDL1 status [60]. This underlines the fact that 

clinical response to IO is determined by multiple factors. A recent meta- analysis showed 

that composite biomarkers incorporating PD-L1, TMB and simultaneous quantification 

of multiple proteins via multiplex IHC/immunofluorescence performed better than either 

PD-L1 or TMB in isolation [82]. However, the increased cost and complexity of these 

techniques need to be considered if aiming to implement more widely.

1.1.3. Assays of immune reaction—The density of tumour-infiltrating immune 

effector cells also shows promise as a clinically useful biomarker. In colorectal cancer, 

the Immunoscore has been shown to be a better predictor of outcome than traditional TNM 

staging. This score is based on the density of CD3 and CD8-positive cells at the invasive 

margin and the centre of the tumour. Notably, patients who experienced disease relapse had 

low immune reaction irrespective of the T stage of the primary tumour [90]. A standardised 

system exists for the manual scoring of stromal tumour infiltrating lymphocytes (TILs) on 

H&E slides in breast cancer [106]. The score is a semi-quantitative assessment, expressed 

as an average across all assessable tumour stroma. The intensity of the baseline immune 
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infiltrate has prognostic and predictive significance in HER2- positive and triple-negative 

subtypes [37]. In triple-negative breast cancer, TILs score predicts pathological and clinical 

response to checkpoint inhibitors in the neoadjuvant and metastatic settings respectively 

[21]. Predictive power may be further increased by combining TILs scores with PD-L1 

assessment [51]. The consensus TILs scoring methodology represents a pragmatic approach 

that has shown good rates of inter-user reproducibility. However, its granularity is limited 

and it does not attempt to capture detail about how immune cells may be distributed within a 

specimen. Additionally, even a straightforward manual scoring system is time-consuming to 

implement at scale, for example to analyse a trial cohort with thousands of samples.

1.2. Opportunities

A host of clinical trials are currently evaluating novel IO therapies and treatment 

combinations [116]. Longitudinal tissue specimens collected from patients undergoing 

treatment with IO are a valuable source of potential information. Studying changes in 

the distribution and activity of immune cells with therapeutic intervention and correlating 

these with clinical outcomes can provide mechanistic insights into treatment resistance 

and identify candidates for predictive biomarkers. In particular, pathological analyses 

have the advantage of using material such as H&E stained tissue sections, which are 

widely available and retain information around tissue architecture and spatial organisation. 

Direct visual assessment of a prepared glass slide using a microscope remains the gold 

standard in the pathological assessment. However, these traditional manual methods are 

time-consuming and require a highly trained workforce, which is already under pressure 

from increasing volume and complexity of histopathology requests [10]. Use of minimally 

invasive procedures has expanded at the same time as our interest in tissue biomarkers. 

Therefore pathologists are being asked to report on ever more complex continuous variables, 

but with less available tissue. Even for an experienced practitioner, manual techniques are 

inherently vulnerable to inter-and intra-observer variability. There are natural upper limits on 

precision and limited scope to describe complex topographical features in an objective and 

quantifiable manner. Digital approaches offer a potential solution to these issues.

2. Digital pathology and AI: General principles

In digital pathology (DP), glass-mounted specimens are captured as a whole-slide image 

(WSI) for downstream computer-based analysis. AI techniques applied to the digitised 

specimen can utilise various features to perform segmentation and classification tasks. 

By far the most common AI technique used in these papers and IO research to date is 

supervised classification. Classification is the task of predicting an output label for each 

input data point.

Supervised refers to the fact that the training model is shown example pairs of inputs and 

labels, and thereby learns the relationship between the two. The model attempts to draw 

boundaries – implicitly or explicitly – in the input space, separating data points which 

belong to different classes. Whilst being considerably easier to train than unsupervised 

techniques, the drawback of supervised methods is their reliance upon the input of large 

amounts of labelled ‘ground truth’ data – information collected from the real world, for 
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example, annotations by a pathologist. However it is worth noting that considerable amounts 

of annotated data are already in existence within the public domain as well as open-source 

models and easy-to-use software packages.

Unsupervised methods, on the other hand, usually bypass the need for labelled data 

[25,78,79,100,136]. Instead, they rely upon the machine being able to discover relevant 

features for tasks, such as grouping together unlabelled data points with high similarity. 

There are four major types of unsupervised methods [49]: (i) exclusive (ii) agglomerative 

(iii) overlapping and (iv) probabilistic. These models discover unknown patterns in the data, 

however, in the main, they remain experimental and computationally complex. In specific 

problems, it can be difficult for the network to converge on a globally optimal solution due 

to redundant feature representations [24] and it is likely to perform less well than supervised 

training approaches [144]. However, such methods may be the best approach for truly novel 

insights. Machine learning (ML) techniques involve a diverse set of models and algorithms 

but all centre around the concept that computers can learn from data as humans learn 

from experience, and can make decisions about novel data without the need for ongoing 

instruction. Of particular interest in our setting are deep learning (DL) models. These 

consist of cascades of trainable, multi-stage layers inspired by the organisation of neurons. 

A signal input into the model is propagated and modified in a layer-by- layer fashion 

along these networks to produce an output. DL models have a wide range of architectures 

themselves, the choice of which depends on the particular task being solved; for example, in 

image analysis convolutional neural networks (CNNs) [72], generative adversarial networks 

(GANs) [52], fully convolutional neural networks (FCNNs) [81] and recurrent convolutional 

neural networks (RCNNs) [75] are popular choices.

Histopathological image analysis methods can be broadly categorised into cell-level 

(identifying/segmenting single cells) or semantic region-based (patch-based; larger extracted 

patches from whole-slide images, i.e. 512pix × 512pix) analysis. Cell-level analysis methods 

identify structures known as histologic primitives (e.g. nuclei). These features can be 

correlated with clinical characteristics, such as response to a specific treatment. Early 

studies applied DL approaches using small patches of manually selected regions of interest 

extracted from the slides [98]. For example, object detection can be performed by training 

a deep CNN on patches centred on the objects of interest such as nuclei. These approaches 

consider only the information within these size-limited patches, which encompass the object 

and its immediate neighbourhood, and are mostly suitable for identifying small histologic 

primitives. Accurate detection of these histologic primitives serves as the basis for a larger 

number of tasks such as morphological grading, molecular profiling and IO assays. Table 1 

gives an overview of small size level analysis approaches.

The semantic region-based analysis seeks certain special regions inside the whole section 

like glands, tubules, ducts, etc. These methods are most suitable for identifying meaningful 

connectives inside an image. Cell level analysis classifies the patches (often small, i.e. 56 × 

56 pixels) of an image into different defined classes while semantic region-based analysis 

can be regarded as semantic identification of objects in a larger image (i.e. 512 × 512 

pixels) in which a pixel-level classification has resulted, i.e. it classifies the pixels into its 

corresponding classes. Both approaches (cell-level/semantic region-based methods) can be 
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used for different tasks including segmentation, detection and classification based on the 

type of annotation and ground truth being used in the methodology set-up. Table 2 gives an 

overview of region-based analysis approaches.

Many reviews of digital analysis of histopathological images exist in the literature and 

address the various problems associated with the use of different types of histopathology 

images [17,39,54,56,62,71,93,97,131]. In their recent review Schmauch et al [109] have 

described numerous recent examples of the applications of AI in oncology and highlight 

resources and datasets that can help utilise AI tools in cancer research. Table 3 gives 

an overview of the variety of problems being tackled with DL techniques that are 

demonstrating promising results.

3. Considerations for the use of AI in clinical settings

The backbone of any effective digital pathology service includes (but is not limited to): 

capturing images using WSI; storing, analysing and archiving the digital images; performing 

quality control checks; sharing images with other institutions and integrating outputs 

into clinical decision making. Regulatory requirements and financial viability need to be 

considered throughout. Workflows require continuous adaptation to evolving demands. In 

this review, we focus on three main challenges concerning the application of AI algorithms 

to DP data: (i) generalizability of the model (ii) explainability of the model (iii) limitations 

on quantity or quality of the data which can be used by the designed model.

3.1. Generalizability

This is a measure of how well the complexity of the model matches the complexity of 

the data. Problems arise when the model has merely memorised training samples but 

fails to form a general understanding - a problem known as over-fitting. In this case, the 

model will perform well with training data but fail to identify relevant information in the 

novel data. The primary goal, and greatest challenge, for any ML practitioner is for the 

model to correctly apply what it has learned when unleashed on entirely new data. This 

is crucial for the deployment of AI in DP across hospitals and laboratories. Tables 4 and 

5, gives a summary of recent studies in the IO that have evaluated the generalizability of 

the AI-based models using a large number of internal and external cases. Generalizability 

may be improved by (i) adjusting network parameters based on the complexity of target 

data (the greater the number of parameters, the greater the chance of over-fitting); (ii) using 

dropout neurons (training multiple possible configurations of a network, then calculating the 

average of all the corresponding subset network weights, which promotes accumulation of 

independent learning); (iii) weight regularization (to avoid focusing on certain features in 

the training data, which leads to a continuous increase of weights); (iv) ensuring similar 

distribution between the training and the upcoming data when deploying the model; (v) 

frequent re-training rounds (also called fine- tuning) in order to keep up with the change in 

cohorts.
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3.2. Explainability

Also known as interpretability, this refers to how well we understand the factors influencing 

the model’s decision making. It is crucial that a model is explainable when used for 

healthcare purposes, in order to ensure that predictions are being made in an ethical, 

reliable and transparent manner. Inability to detect bias could have potentially dangerous 

consequences. Traditional ‘bottom-up’ ML approaches focus their analysis on specific 

fundamental characteristics and micro- attributes of a histology image. Deconvoluting 

the decision-making processes in this scenario is more intuitive and can be approached 

in several different ways including activation maps (and its derivatives) [22], as well as 

attention methods [44] and compensating dataset bias and scarcitys [140].

By contrast, it can be very difficult to identify the salient features being used by the model 

when using an end-to-end DL approach. For example, Courtiol et al. [36] identified strongly 

associated features with either progression/survival; however, some of these features were 

unexpected (i.e. stromal regions with inflammation and other histological features that were 

not within the tumour microenvironment). However, progress has been made in this area and 

there are examples in the literature where DL has yielded biologically interpretable results. 

For example, Beck et al. [14] developed a prognostic model incorporating morphometric 

descriptors and higher-level contextual image features and implicated stromal morphologic 

structure as a prognostic determinant for breast cancer. Ali et al. [4] designed spatially 

aware cell cluster graphs to predicting tumour outcome in Oropharyngeal p16+ and 

showed that combining stromal and epithelial nuclear architectural contributions yield 

superior prognostic performances. Yamamoto et al. [136] extracted explainable features 

from histopathology images and several studies have addressed patient stratification by DL 

methods using H&E images through identifying specific areas of tissue strongly associated 

with either progression or survival [80,91,115]. As pathologists will retain overall clinical 

supervision for conclusions drawn from patient samples, transparency is needed in order for 

them to understand when algorithms should be applied and under what circumstances the 

output should be used with caution [61].

3.3. Quantity and quality of data

Digital techniques require the pathology specimens to be scanned at high resolution. 

Investment in infrastructure is required to cope with this additional step in the pre-diagnostic 

pipeline, and also to store the colossal amounts of data (e.x, one H&E slide with 20× 

magnification has a file size of 473,869,300 bytes) with appropriate security considerations 

and inventory management capabilities. The advent of a graphics processing unit (GPU) 

based processing, in which vast amounts of data is handled in a parallel fashion has 

enabled up-scaling to extremely large neural networks which allow huge training sets to 

be loaded and processed. The quality of the acquired digital images needs to be certified 

and accepted both by pathologists and the Computer-Assisted Diagnosis system. Presence of 

artefacts or unintentional loss of information during data acquisition can have a significant 

influence on down-stream processing. Digital image artefacts may be introduced at any point 

along the pathway of histopathology slide preparation, from surgical removal through to 

fixation, tissue processing, embedding, microtomy, staining, mounting, as well as the final 

digitisation step [117]. It is important to be able to identify commonly occurring artefacts 
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such as blurriness, over-straining, air bubbles and colour variation which would adversely 

affect the interpretation and cause the sample to be diagnostically useless. To address these 

issues, various preprocessing methods have been proposed to reduce noise: conversion to 

grayscale, colour normalization [30,32,42,68] or colour augmentation [73,76].

Alternatively, Janowczyk et al. [64] proposed an automated quality control approach to 

precisely localize artefacts on slides to be avoided during computational analysis. Steiner et 

al. [117] have developed a novel convolutional neural network (DeepFocus) to automatically 

identify out-of-focus regions in histopathological images. In addition, results of medical 

interest such as survival prediction are sensitively influenced by the accuracy of the designed 

algorithm. Most of these medical approaches are supervised methods therefore require 

ground truth annotations. For most problems, the expert opinion of histopathologists and 

other medical doctors provide the gold standard for training automated decision support 

systems. However, in many settings, it may be impossible for clinicians to provide this 

training information with absolute certainty. In summary, although the performance of an 

algorithm is often measured by accuracy this is not the only feature that is required if 

the tool is to be of use in everyday applications, including in the field of IO. Training a 

model on diverse and noisy clinical cohorts will cause accuracy to decrease, but is of pivotal 

importance in achieving a generalizable algorithm. It is crucial that any model undergoes 

careful and rigorous validation, preferably within the context of a multicentre prospective 

trial [12]. Once applied in real- world scenarios, a clinical team will still be required to 

make a final judgement on the utility of the output for any individual, bearing in mind the 

additional context and influencing factors.

4. AI methodology in the field of IO

In Table 4, we present some of the DP approaches that have been used to facilitate different 

pathology workflows for various immune biomarkers, some of which have characterised the 

TME through spatial analysis and multiplexing. In Table 5, we present non-comprehensive 

collections of DP approaches that have been used to facilitate different pathology and data 

integration workflows for IO. This body of work has characterised the TME through cell 

analysis, spatial analysis, multiplexing, and omics data integration. The rest of this section 

discusses four main areas in depth.

4.1. Applications in IO research

• Evaluating TME topography -—The functionality of individual cells within the TME 

is influenced by their precise location, including proximity to other cell types and features 

of the supporting stroma. Macrophages, for example, display location-dependent phenotypic 

plasticity; behaviour varies according to whether they are located in the invasive, stromal 

or hypoxic zones of the tumour [138]. Single-cell RNA sequencing has contributed to 

the discovery of functionally distinct cell subsets in the TME, which hold independent 

prognostic and predictive value in determining response to immunotherapy [13]. Tissue 

sections preserve spatial information and are therefore an ideal substrate for computational 

analysis of topographical patterns. DL-based image analysis has been used extensively to 

study the spatial organisation of the immune infiltrate across cancer types, revealing rich 

Sobhani et al. Page 7

Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2022 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and diverse patterns from routine clinical H&E [43]. Effland et al. [41] demonstrate the 

use of an ML algorithm which can detect immune cells in the immediate neighbourhood 

of tumour cells. The model could also be used to identify immune cells proximate to other 

immune cells, and thereby define immune-rich zones. One interesting aspect of this work 

was the use of an artificial training dataset, generated stochastically from a handful of 

real-life images. This approach avoids the requirement for extensive numbers of annotations 

by pathologists but may threaten generalizability. Fibroblasts may provide growth factors 

and extracellular matrix components providing an extrinsic mechanism of immune- escape. 

Using a combination of flow cytometry and spatial histology assessment, studies in 

both breast and pancreatic cancer independently identified specific immunosuppressive 

fibroblast subsets that localize to the boundary of tumour nests [35]. The observations of 

specific spatial compartmentalization of these cell subsets are intriguing, and automated 

spatial histology analysis could help accelerate and standardize such studies. For example, 

Failmezger et al. [43] have recently demonstrated the use of network topological analysis 

to define a physical barrier of lymphocytic infiltration formed by stromal cells within the 

TME of metastatic melanoma. In lung cancer, the fractal complexity of the cancer-stromal 

cell interface has been used to characterise the spatial arrangement of immune cells [1]. 

The box-counting algorithm, also known as the Minkowski–Bouligand dimension, was 

modified in order to capture coarse-to-fine geometric details of the cancer-stroma interface 

over a range of spatial scales determined by cell distributions. Using this method complex 

morphological patterns dictating cancer-stromal cell contact emerged, which were preserved 

over varying spatial scales. Fractal dimension was significantly higher in immune- cold 

tumour regions, and this could not be explained by stromal cell abundance. This supports 

the conclusion that stroma-based inhibition associated with immune cold phenotypes is a 

specific morphological pattern. Spatial measures of the immune response such as these have 

been shown to correlate with resistance to immunotherapy and with patient outcomes, and 

therefore have the potential for clinical application as predictive biomarkers.

• Optimisation of immune scoring -—The availability of AI tools in DP has renewed 

interests in the development of immune scores for predicting prognosis and response to 

immunotherapy. Koelzer et al. [69] demonstrated an example of computational quantitation 

of membranous PDL1 expression using multiplexed IHC and the HALO™ digital image 

analysis software. The authors then employed a supervised machine learning algorithm 

(random forest model) to classify and exclude immune cells from analysis. By restricting 

PD-L1 scoring to melanoma cells, the authors aimed to reduce apparent heterogeneity which 

would otherwise lead to artificially high scores. The checkpoint inhibitor ipilumimab is 

an antibody directed against cytotoxic T-lymphocyte antigen (CTLA-4). There is an unmet 

need for biomarkers predicting response to CTLA blockade. Harder et al. [59] used an 

AI approach to discover novel immune-based signatures associated with clinical response. 

WSI were generated from melanoma biopsies taken prior to exposure to ipilumimab, slides 

had been stained for CD3, CD8, and FoxP. Objects of interest (CD4 and CD8 positive 

cells) stained in a similar way to melanin and therefore a DL classification step was used 

to identify the immune cells. Image-based features from regions of interest were then 

extracted and mined for correlation with patient outcomes, although the small sample size 

was limiting in this study with respect to clinically translatable conclusions. Successful 
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digital approaches to TILs scoring not only enhance speed and precision but also permit 

the integration of spatial information [6]. For example, in early-stage lung cancer, a set of 

spatial descriptors of co-localisation patterns of TILs and tumour cells were associated 

with recurrence [34]. In bronchoscopic biopsies from pre- invasive lesions, regressive 

carcinoma-in-situ lesions harbour more infiltrating immune cells, measured by AI and DP, 

than those that progress to cancer, suggesting that host immune surveillance is strongly 

implicated in regression of such lesions [95]. Conversely, the presence of a poorly-infiltrated 

tumour is a negative prognostic indicator in solid tumours. For example, in one of the first 

studies to investigate the immune landscape across multiple metastases using pathological 

samples, the immunoscore for the least immune-infiltrated metastases was found to be the 

strongest prognosticator in colorectal cancer [89]. Similarly, multi-region sampling in lung 

cancer found a strong association between the number of tumour regions with diminished 

lymphocytic infiltration and the risk of disease relapse. Prognostic value was independent of 

tumour size and stage and further validated in an independent cohort of 970 patients with 

4324 multi-region tumour samples, representing the largest multi-region fully automated 

computational pathology analysis to date [1]. Thus, even if there is above-average immune 

infiltration across the tumour(s) as a whole, it is the presence of immune-cold regions 

which appears to drive the clinical outcome and is, therefore, the more significant feature. 

Automated techniques can enhance our ability to detect such regions. Neural networks 

enable the integration of heterogeneous data. Reiman and colleagues demonstrated a model 

which incorporated bulk RNA sequencing data and morphological features from H&E 

specimens to estimate abundance of immune cell subtypes. This enabled the identification of 

key effector immune cells without the need for more specialised laboratory techniques such 

as multiplexed immunofluorescence or single-cell RNA sequencing [99]. The approach was 

flexible and the authors envisioned that additional clinical or molecular information could be 

incorporated, such as radiological features or data from methylation assays. Thus DP and AI 

could be applied to the measurement of composite, multi-modality biomarkers.

• Accounting for intra-tumoural heterogeneity in biomarker development -—
When assessing the immunogenicity of a given tissue sample, pathological and molecular 

approaches may produce discordant results. Spatial heterogeneity may also account, at 

least in part, for the lack of reproducibility in molecular testing on diagnostic tumour 

samples, due to sampling bias. Indeed, up to 50% of patients from a multi- region dataset 

were vulnerable to this issue when using published prognostic signatures [19]. Identifying 

genes expressed uniformly (‘clonally’) across different regions within the same tumour, and 

deriving a molecular read-out on this basis is likely to be more robust to this variable than 

conventional methods. The ORACLE signature was significantly associated with mortality 

in a meta-analysis of 904 lung cancer patients sourced from five separate cohorts. In a 

study using multi-region sampling, DL pathological image analysis and RNA- sequencing 

data were derived from the same frozen tissue samples in non-small cell lung cancer [1]. 

Immune assessment based on these two data types were in agreement in the majority of 

samples, with the exception of patients that exhibited high intra-tumoural heterogeneity of 

immune cell distribution as based on RNA- and exome-sequencing data. Moreover, in the 

discordant tumour regions, pathological images showed a high level of spatial heterogeneity 

in TIL distribution, measured by immune spatial clustering. Thus, spatial heterogeneity of 
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lymphocyte distribution is likely to be the explanatory factor for the discrepancy between 

data types generated from adjacent tumour sections. Approaches such as this that consider 

intra-tumoural heterogeneity may help overcome the reproducibility problem for tumour 

molecular biomarkers.

• Deciphering cancer evolution towards immune escape -—The TME can be 

considered as an ecosystem made up of interacting populations of cancer cells and stroma 

[86,126]. Intra-tumoural genetic diversity of cancer cells provides a substrate for evolution 

according to Darwinian principles [53]. The anti-cancer host immune response, enhanced by 

IO therapeutics, exerts a selective force which favours expansion of clonal populations that 

are able to resist this pressure – this is known as immunoediting [104]. Immune-escape 

may be mediated by cancer-cell intrinsic adaptations, such as modulation of immune 

checkpoint pathways, or through selection advantages conferred by the cancer-associated 

stroma [38,122]. By combining pathological immune scoring with sequencing efforts, it has 

been shown that immune edited tumour clones of colorectal cancer were eliminated while 

progressing clones were immune-privileged, such that branched evolution across space and 

time could be traced back to immune-escaping clones [7]. In high-grade serous ovarian 

cancer, a negative association between epithelial CD8+ TILs scored using AI and DP and 

cancer genetic diversity was found, providing evidence of immunological pruning of tumour 

clones [141]. Thus, DP coupled with omics data will allow the expanded application of these 

techniques to discover unique spatial signatures that signify immune regulation and evasion.

5. Conclusion

AI and DP tools, tailored for use with routine clinical samples and cutting-edge multiplex 

tissue imaging techniques have the potential to enable precise descriptions of the complex 

spatial organisation of the tumour ecosystem to emerge. Integrating this information with 

genomic and transcriptomic data could unveil mechanisms of immune escape evolving 

with and without treatment. AI could therefore drive the discovery of novel biomarkers 

of immune sensitivity and resistance, and identify novel therapeutic targets DL approaches 

have been popular in early computational pathology efforts. However, there are unavoidable 

challenges in their application to clinical data. Many current DL algorithms are regarded 

as ‘black box’ models, for which it is difficult to produce an explanation for a particular 

predictive outcome or identify the salient features upon which a decision was made. This 

is one reason why it has not yet yielded validated, comprehensive, high-level systems. A 

collaborative approach between data scientists and clinical pathologists in this field will 

provide the optimal conditions for the development of robust solutions that are sufficiently 

interpretable to cross into clinical use.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1

Overview of papers using deep learning for digital pathology at cell level for various tasks including detection, 

segmentation, and classification.

Reference Topic Staining Method

[105] Mitosis detection H&E CNN-based pixel classifier

[84] Mitosis detection H&E combines shape based features with CNN

[123] Mitosis detection H&E CNN and handcrafted features

[110] Mitosis detection H&E CNN-based patch classifier

[120] Mitosis detection –H&E –CNN-based mitosis detection

[26] Mitosis detection –H&E CNN

[3] Mitosis detection H&E fCNN, CNN for segmentation

[85] Mitosis detection – hierarchical CNNs for patch sequence classification

[77] Mitosis detection – survey on nuclei analysis

[62] Nuclei detection IHC review on nuclei detection

[111] Nuclei detection H&E spatially constrained CNN

[129] Nucleus detection H&E, Ki-67 CNN-based structured regression model

[128] Nucleus detection Ki-67 CNN model

[2] Cell detection H&E CNN

[112] Nucleus detection H&E CNN

[66] Nucleus detection H&E combination of CNN and hand- crafted features

[135] Nucleus detection – general deep learning framework

[127] Nucleus detection FL, H&E fully convolutional regression networks

[102] Tubule nuclei detection H&E CNN-based classification

[119] Nucleus detection H&E CNN-based classification of superpixels

[133] Nucleus detection H&E stacked sparse auto-encoders (SSAE)

[121] Nuclear area measurement H&E CNN

[28] Nucleus classification IFL Deep regression network (DRN)

[57] Nucleus classification IFL H&E CNN

[88] Classification of mitochondria EM EM CNN-based patch classifier

[96] Nucleus classification FL H&E pre-trained CNN

[3] Nucleus classification IHC CNN

[139] Nucleus classification
H&E

H&E –DNN

[125] Subtype cell detection H&E combination of two CNNs

[132] Nucleus segmentation H&E, IHC CNN and selection-based sparse shape model

[47] Nucleus classification IFL IFL CNN

[142] Classification of leukocytes RM RM CNN-based patch classifier

[114] Nuclei segmentation H&E multi-scale CNN and graph- partitioning-based method

[103] Cell segmentation – U-Net with deformation augmentation

[63] Nucleus segmentation H&E H&E deep hierarchical learning scheme

[2] Nuclei segmentation – extracted bounding box information

[137] Glial cell
segmentation TPM

TPM fCNN with an iterative k- terminal cut algorithm
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Reference Topic Staining Method

[113] Cell segmentation H&E H&E multi-scale CNN

[95] Cell detection H&E,IHC deconvolving convolutional neural network

[55] Cell detection H&E,IHC Concordent

[143] Tissue classification H&E multispectral unsupervised feature learning
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Table 2

Overview of papers using deep learning at tissue level for various tasks including detection, segmentation, and 

classification.

Reference Topic Staining Method

[33] Segmentation of neuronal membranes EM Ensemble of several CNNs with different architectures

[65] Segmentation of colon glands H&E Used two CNNs to segment glands

[8] Detection of lobular structures in breast IHC CNN and a texture classification

[15] Segmentation of colon glands H&E fCNN with a loss accounting

[16] Segmentation of colon glands H&E A multi-loss fCNN

[29] Neuronal membrane, fungus segmentation EM Combination of bi- directional LSTM-RNNs and kU-Nets

[27] Segmentation of colon glands H&E deep contour-aware CNN

[31] Segmentation of xenopus kidney CM 3D U-Net

[40] Segmentation of neuronal structures EM fCNN with skip connections

[74] Segmentation of colon glands H&E compares CNN with an SVM using hand-crafted features

[124] Segmentation of messy, muscle regions H&E conditional random field jointly trained with an fCNN

[130] Perimysium segmentation H&E 2D spatial clockwork RNN

[134] Segmentation of colon glands H&E used three CNNs to predict gland and contour pixels

[128] Segmenting epithelium & stroma H&E, IHC CNNs applied to over- segmented image regions

[48] Detection and classification of cancer in whole slide 
breast

H&E detection, classification and pixel-wise labeling of WSI

[101] Pixel-wise classification H&E, IHC semantic segmentation using a FCN
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Table 5

Overview of different collections of DP approaches that have been used to facilitate data integration work-

flows for IO.

Reference Topics Aim Summary

[108] A deep learning model to 
predict RNA-Seq expression 
of tumour from whole-slide 
images

Predict RNA-Seq profiles from whole-slide 
images

The developed model (HE2RNA) could predict 
subsets of genes expressed in different cancer 
types and the expression of a subset of 
proteincoding genes. It could also quantify 
immune infiltration, including genes involved in 
immune cell activation status and immune cell 
signalling

[46] PanNuke Dataset Extension, 
Insights and Baselines

Release the PanNuke dataset for nucleus 
segmentation and classification; eliminate the 
process of verification and quality control by 
the clinical professionals.

Comparing instance segmentation performance 
of several models using the prepared PanNuke 
dataset. The models trained on PanNuke 
generalise to other unseen tissues.

[45] Pan-cancer computational 
histopathology reveals 
mutations, tumour 
composition and prognosis

pan-cancer computational histopathology 
(PCCHiP) study associations between 
computational histopathological features 
and genomic driver alterations, whole 
transcriptomes and survival within the 
pan-cancer computational histopathology 
(PCRCHiP)

Pan-cancer computational histopathology 
analysis with deep learning extracts 
histopathological patterns and accurately 
discriminates 28 cancer and 14 normal tissue 
types. Computational histopathology predicts 
wholegenome duplications, focal amplifications 
and deletions, as well as driver gene mutations

[67] Pan-cancer image-based 
detection of clinically 
actionable genetic 
alterations

Use deep learning to predict point mutations, 
molecular tumour subtypes and immune-
related gene expression signatures directly 
from routine histological images of tumour 
tissue

Deep learning can predict point mutations, 
molecular tumour subtypes and immune-related 
gene expression signatures directly from routine 
histological images of tumour tissue

[91] Predicting cancer 
outcomes from histology 
and genomics using 
convolutional networks

Developed a computational approach based 
on DL to predict the overall survival of 
patients diagnosed with brain tumours from 
microscopic images of tissue biopsies and 
genomic biomarkers, present an approach 
called survival convolutional neural networks 
(SCNNs), which provide a highly accurate 
prediction of time-toevent outcomes from 
histology images

Approach surpasses the prognostic accuracy 
of human experts using the current clinical 
standard for classifying brain tumours and 
presents an innovative approach for the 
objective, accurate and integrated prediction of 
patient outcomes.

[92] Unmasking the tissue 
microecology of ductal 
carcinoma in situ with deep 
learning

Automate the identification of DCIS; quantify 
the spatial relationship of DCIS with TILs, 
providing a new way to study immune 
response and identify new markers of 
progression improving clinical management

Developed a deep learning pipeline 
that integrates tissue segmentation, DCIS 
segmentation, single cell classification and 
spatial analysis in routine H&E histology 
images

[94] An artificial intelligence 
algorithm for prostate 
cancer diagnosis in WSI 
of core needle biopsies: a 
blinded clinical validation 
and deployment study

Predict slide-level scores for probability of 
cancer, Gleason score, Gleason pattern, and 
perineural invasion and calculation of cancer 
percentage present in CNB material

The trained model was tested on internal and 
external datasets elucitating generalizability of 
the algorithm
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