
Research Article
A Marine Terpenoid, Heteronemin, Induces Both the Apoptosis
and Ferroptosis of Hepatocellular Carcinoma Cells and Involves
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Hepatocellular carcinoma (HCC) is a leading cause of death, resulting in over 700 thousand deaths annually worldwide.
Chemotherapy is the primary therapeutic strategy for patients with late-stage HCC. Heteronemin is a marine natural product
isolated from Hippospongia sp. that has been found to protect against carcinogenesis in cholangiocarcinoma, prostate cancer,
and acute myeloid leukemia. In this study, heteronemin was found to inhibit the proliferation of the HCC cell lines HA22T and
HA59T and induce apoptosis via the caspase pathway. Heteronemin treatment also induced the formation of reactive oxygen
species (ROS), which are associated with heteronemin-induced cell death, and to trigger ROS removal by mitochondrial SOD2
rather than cytosolic SOD1. The mitogen-activated protein kinase (MAPK) signaling pathway was associated with ROS-induced
cell death, and heteronemin downregulated the expression of ERK, a MAPK that is associated with cell proliferation. Inhibitors
of JNK and p38, which are MAPKs associated with apoptosis, restored heteronemin-induced cell death. In addition,
heteronemin treatment reduced the expression of GPX4, a protein that inhibits ferroptosis, which is a novel form of
nonapoptotic programmed cell death. Ferroptosis inhibitor treatment also restored heteronemin-induced cell death. Thus, with
appropriate structural modification, heteronemin can act as a potent therapeutic against HCC.

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 7689045, 12 pages
https://doi.org/10.1155/2021/7689045

https://orcid.org/0000-0001-5622-8299
https://orcid.org/0000-0002-9270-2194
https://orcid.org/0000-0002-4550-9535
https://orcid.org/0000-0001-5689-9850
https://orcid.org/0000-0001-9760-5804
https://orcid.org/0000-0001-6734-4172
https://orcid.org/0000-0002-3340-8577
https://orcid.org/0000-0003-2569-1314
https://orcid.org/0000-0003-4335-3837
https://orcid.org/0000-0002-0681-3796
https://orcid.org/0000-0001-7307-2468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7689045


1. Introduction

Natural products are the leading source of chemotherapy
drugs [1–4]. Over 70% of the Earth’s surface is covered by
oceans, which have vast biodiversity and are the origin of life
[5]. Natural marine products have been found to have bioac-
tivity against cancer progression [6, 7]; for example, makalu-
vamines, a group of pyrroloiminoquinone alkaloids isolated
from marine sponges, have been identified to induce DNA
cleavage [8] and protect against skin cancer [9] and lung can-
cer [10]. Heteronemin is a metabolite found in the sponge
Hippospongia sp. that exerts potent effects to inhibit carcino-
genesis in cholangiocarcinoma [11], prostate cancer [12, 13],
and acute myeloid leukemia (AML) [14]. Although the
mechanism by which heteronemin inhibits cancer is not
entirely clear, heteronemin has been found to regulate the
Bcl-mediated apoptotic pathway [12, 15] and autophagy
[15]. Topoisomerase II, which is associated with DNA repli-
cation [16], has also been found to be inhibited by the hetero-
nemin treatment [12], and topoisomerase II inhibition is the
mechanism underlying the effect of many clinical anticancer
drugs, such as topotecan and irinotecan, which are topoisom-
erase I inhibitors [17, 18]. Therefore, heteronemin shows
adequate potential as an anticancer agent.

Liver cancer is a leading cause of cancer-associated death
around the world, particularly in Asia, and caused over 700
thousand deaths worldwide in 2018 [19, 20]. Approximately
80% of all liver cancer cases are classified as hepatocellular
carcinoma (HCC) derived from hepatocytes [19]. Although
many therapeutics for HCC, including surgery, organ trans-
plantation, and chemotherapy [21], are available, chemother-
apy is the major therapeutic strategy for advanced HCC
patients [22]. Targeted therapy is a new approach to chemo-
therapy that utilizes small molecules or antibodies to target
cancer-specific markers and results in cytotoxicity and cell
death [23]. Heteronemin was found to target Ras signaling
and downregulate NFκB, thus showing potential as a targeted
therapeutic agent [14]. A major outcome of chemotherapy is
apoptosis, which is the fundamental programmed cell death
process [24]. Loss of apoptotic pathways commonly occurs
in cancer and results in the survival of tumor cells. Therefore,
chemotherapy often targets apoptosis [25]. In recent years, a
novel form of programmed cell death called “ferroptosis,”
which is iron-dependent cell death that is associated with
reactive oxygen species (ROS) and lipid peroxides, has been
found to induce cell death and activate inflammation. It
underlies the effect of many chemotherapeutic drugs, such
as cisplatin [26] and sorafenib [27], which are the first-line
treatment for advanced HCC [28].

ROS, including superoxide anions (O2∙
–), hydrogen per-

oxide (H2O2), and hydroxyl radicals (∙OH), play a vital role
in chemotherapy and mediate several cellular pathways,
including apoptosis and ferroptosis. ROS are also associated
with the mitogen-activated protein kinase (MAPK) pathway,
a conserved regulatory pathway that regulates signal trans-
duction and is involved in several cellular processes, such as
proliferation [29], differentiation [30], cell cycle arrest [29],
survival [31], and death [32]. Extracellular signal-regulated
kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38

are the major MAPKs, and they respond to stimulation by
regulating cell proliferation, apoptosis, ferroptosis, and
inflammation [33]. In this study, we demonstrate that the
anticancer effect of heteronemin on HCC is associated with
ROS-associated MAPK activation and that heteronemin
induces HCC death through apoptosis as well as ferroptosis.

2. Materials and Methods

2.1. Cell Culture. The human HCC lines HA22T/VGH
(HA22T, #60168) and HA59T/VGH (HA59T, #60169) were
purchased from the Bioresource Collection and Research
Center (BCRC; Taiwan) and maintained in Dulbecco’s mod-
ified Eagle’s medium and Ham’s F-12 Nutrient Mixture
(DMEM/F12, 3 : 2; Gibco; Waltham, MA, USA) supple-
mented with 8% fetal bovine serum (FBS; Gibco), 2mM
glutamine, and antibiotics at 37°C and 5% CO2.

2.2. Cell Viability. Cell viability was measured with a trypan
blue exclusion assay [34]. Briefly, the treated cells were
exposed to 0.2% trypan blue reagent. Viable cells were not
stained by the trypan blue dye, and the bright cells were
counted as living cells.

2.3. Apoptosis Measurement. The HCC cell apoptosis was
evaluated by annexin V/7AAD double staining. An apoptosis
detection kit (Strong Biotech Corporation, Taipei, Taiwan)
was used for annexin V/PI staining according to the manu-
facturer’s instructions. Briefly, the treated cells were har-
vested, stained with annexin V/7AAD, and analyzed with
an LSR II flow cytometer (BD Biosciences, San Jose, CA,
USA) and FlowJo 7.6.1 software (Tree Star, Inc., Ashland,
OR, USA).

2.4. Western Blot Analysis. To evaluate the changes in protein
expression, western blotting was performed as follows. Briefly,
cells were lysed with lysis buffer and centrifuged at 4°C. The
protein concentration was determined by a bicinchoninic acid
(BCA) protein assay kit (Pierce, Rockford, IL, USA). Protein
lysates (30μg) were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and electro-
transferred to polyvinylidene difluoride (PVDF) membranes
(PALL, Ann Arbor, MI, USA). The membranes were blocked
with 5% nonfat milk in TBS-T buffer (TBS buffer containing
0.1% Tween 20) for one hour and incubated with primary
antibodies such as Bax (AP1302a, Abgent, San Diego, CA,
USA), ERK1/2 (GTX50868, GeneTex, Irvine, CA, USA),
SOD1 (Ab13498, Abcam, Cambridge, UK, Eng.), SOD2
(Ab68155, Abcam), GPX4 (Sc-8007, Santa Cruz, Dallas, TX,
USA), and β-actin (Sc-47778, Santa Cruz) as well as HRP-
conjugated secondary antibodies. HRP luminescence was
detected with an enhanced chemiluminescence (ECL) detec-
tion kit (Amersham Piscataway, NJ, USA).

2.5. ROS Detection. Briefly, 2′,7′-dichlorofluorescin diacetate
(DCFDA) and dihydroethidium (DHE) were used to detect
intracellular H2O2 and O2∙

– formation. Treated cells were
incubated with 10μMDCFDA or DHE for 20 minutes. After
incubation, the cells were washed with phosphate-buffered
saline (PBS) and analyzed by the FlowJo 7.6.1 software (Tree
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Star, Inc.) and SigmaPlot 11.0 software (Systat Software, San
Jose, CA, USA).

2.6. Statistical Analysis. Differences between the groups were
analyzed by one-way analysis of variance (ANOVA) or
Student’s t-test at least in triplicate. p < 0:05 was considered
significant.

3. Results

3.1. Heteronemin Modulates the Proliferation of HCC Cell
Lines. The cytotoxicity of heteronemin, as a marine drug with
potential anticancer effects, was measured in the HCC cell
lines HA22T and HA59T. Significant cell death was observed
in both HA22T and HA59T cells after the heteronemin
treatment, and HA59T cells exhibited higher sensitivity to
heteronemin (Figures 1(a) and 1(b)). The IC50 values of het-
eronemin after 24 hours of treatment were 10.4 and 5.25μM,
in HA22T and HA59T cells, respectively. The cell morpho-
logical change was also observed after the heteronemin
treatment (Figure 1(c)). The results indicated the cytotoxicity
of heteronemin in HCC.

3.2. Apoptosis Is a Major Regulatory Mechanism Underlying
Heteronemin-Associated Programmed Cell Death. Apoptosis

plays a vital role in the anticancer mechanism of most che-
motherapy drugs, such as cisplatin and sorafenib [35, 36].
We stained cells with the apoptosis markers annexin V and
7-amino-actinomycin D (7AAD) to determine whether het-
eronemin induced apoptosis (Figure 2(a)). Over half of
20μM heteronemin-treated HA22T and HA59T cells were
apoptotic (annexin V+) cells, including early-stage apoptotic
cells and late-stage apoptotic cells, and HA59T cells were
more sensitive than HA22T cells to the effects of heterone-
min (Figures 2(b) and 2(c)). In addition, the numbers of
annexin V- and 7AAD+ nonapoptotic cells were increased
in 20μM heteronemin-treated HA22T cells and 10μM
heteronemin-treated HA59T cells (Figures 2(d) and 2(e)).
The caspase family of proteins plays a vital role in apoptosis
initiation and progression. To clarify the role of heteronemin-
induced apoptosis, we inhibited caspase activity in HA22T and
HA59T cells with the pan-caspase inhibitor Z-VAD-FMK.
Approximately 20% of growth inhibited by heteronemin was
restored by the Z-VAD-FMK treatment (Figures 2(f) and 2(g)).
The apoptosis markers cleaved caspase-8, cleaved PARP-1, and
Bax were upregulated, and the antiapoptotic protein Bcl2 was
downregulated after the heteronemin treatment (Figures 2(h)
and 2(i) and Supplementary Figure 1). These data suggested
heteronemin showed anticancer potential by activating
apoptosis to inhibit cancer growth and induce cell death.
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Figure 1: The cytotoxicity of heteronemin against HCC cell lines. The viability of (a) HA22T and (b) HA59T cells was determined 24 and 48
hours after the heteronemin treatment. ∗∗p < 0:01, ∗p < 0:05 compared with the control group; all data are presented as the mean ± S:D: of
three independent experiments. (c) The morphological changes of HA22T and HA59T cells after 24 hours of heteronemin treatment.
Magnification: 100x and 200x.
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Figure 2: Continued.
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3.3. ROS Formation and MAPK/JNK Activation Play a Vital
Role in Heteronemin-Mediated Cell Death. ROS are small
molecules with high reactivity and play a vital role in many
processes that maintain intracellular homeostasis, including
autophagy and apoptosis [37, 38]. ROS, such as superoxide
anions (O2∙

–), hydroxyl radicals (OH∙), and hydrogen perox-
ide (H2O2) [39], are primarily generated during the process
of oxidative phosphorylation (OXPHOS), are elevated by
many chemotherapeutics, and induce apoptosis [40]. ROS
accumulation has been shown to activate the G protein axis,
tyrosine kinase receptors, and the p53 pathway and to induce
downstream biological pathways depending on the amount
of ROS [41]. ROS accumulation also disrupts oxidative bal-
ance homeostasis and induces lipid peroxidation, resulting
in ferroptosis, which is a novel programmed cell death
induced by the disruption of the GSH/GSSH balance [42].
ROS accumulation has been observed in many studies on
chemotherapeutic agents, such as 5-fluorouracil, erlotinib,
and rituximab, and plays a vital anticancer role [43–45]. To
confirm that ROS were formed after heteronemin treatment,
2′,7′-dichlorofluorescein diacetate (DCFDA) and dihy-
droethidium (DHE) were used to indicate H2O2 and O2∙

–

formation, respectively. The number of H2O2 and O2∙
–-pos-

itive cells was increased in HA22T and HA59T cells after
heteronemin treatment (Figures 3(a)–3(d)). The superoxide
dismutase family is associated with the removal of ROS
and catalyzing ROS into water and oxygen. Heteronemin
treatment downregulated the expression of SOD1 but
upregulated the expression of SOD2 (Figures 3(e) and
3(f)). Furthermore, heteronemin-induced cell death was
reversed after treatment with the ROS inhibitor N-acetyl-L-
cysteine (NAC) (Figures 3(g) and 3(h)).

Many studies have demonstrated that ROS induce the
MAPK signaling pathway and activate caspase-dependent
apoptosis. Therefore, we next investigated the role of the
MAPK/JNK axis in heteronemin-induced apoptosis. ERK
1/2, classical MAPKs that are activated by growth factors
and play critical roles in cell proliferation and tumor progres-
sion [46], were downregulated in heteronemin-treated cells
(Figures 4(a) and 4(b)). In contrast, the expression of the

JNK downstream substrate c-Jun was upregulated, and
SP600125, a JNK inhibitor, reversed the heteronemin-
induced cell death (Figures 4(c) and 4(d) and Supplementary
Figure 1). Additionally, treatment with the p38 inhibitor
SB203580 restored the viability of HA22T and HA59T cells
after the heteronemin treatment (Figures 4(e) and 4(f)).
The results revealed that heteronemin treatment-induced
cell death through inducing ROS formation and activating
JNK/p38 MAPKs, resulting in cell apoptosis.

3.4. Ferroptosis, a Novel Form of Programmed Cell Death, Is
Involved in Heteronemin-Induced Cell Death. Treatment with
the caspase inhibitor Z-VAD-FMK or the p38 or JNK
inhibitor reduced heteronemin-induced cell death by
approximately only 20%. Heteronemin induced cell death
not only through apoptosis but also through other forms of
programmed cell death. Ferroptosis is a novel form of pro-
grammed cell death and is involved in cell death induced
by many chemotherapeutics [26, 27]. GPX4 is a vital protein
that protects against lipid peroxidation and inhibits ferroptosis
initiation, and a reduction in the GPX4 expression is a critical
feature of ferroptosis. Cells treated with heteronemin
expressed lower levels of GPX4 protein (Figures 5(a) and
5(b)), showing that ferroptosis was involved in heteronemin-
induced cell death. Additionally, the ferroptosis inhibitors fer-
rostatin and liproxstatin reversed heteronemin-induced cell
death by approximately 15% (Figures 5(c)–5(f)). Interestingly,
treatment with the ferroptosis inhibitor significantly decreased
the number of late-stage apoptotic (annexin V+/7AAD+) cells
and increased the proportion of healthy cells (Figure 5(g)).
Therefore, like other drugs, heteronemin acts as a potential
anticancer drug by inducing cell apoptosis and ferroptosis
and may effectively suppress HCC progression.

4. Discussion

HCC is a severe disease that causes 700 thousand deaths
annually worldwide [19, 20]. In this study, we demonstrated
that heteronemin is an effective natural marine product that
induces HCC cell proliferation and has potent anticancer
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Figure 2: Heteronemin induces cell apoptosis via the caspase cascade. (a) HA22T and HA59T cells were treated with control or 5, 10, 20, or
30μM heteronemin for 24 hours and stained with annexin V/7AAD to analyze apoptotic cells. (b) and (c) Quantification of apoptotic
(annexin V+) cells in (a). ∗p < 0:05, ∗∗∗∗p < 0:0001 compared with the control. (d) and (e) Quantification of nonapoptotic (annexin V-

/7AAD+) cells in (a). ∗∗p < 0:01 compared with the control. #p < 0:05 compared with 20 μM and 30 μM heteronemin-treated cells. (f) and
(g) Cell viability of HA22T and HA59T cells pretreated with 20 μM Z-VAD-FMK, a pan-caspase inhibitor, for 4 hours and treated with
20μM heteronemin for 24 hours. ∗∗∗p < 0:001. (h) and (i) Western blot analysis of the Bax expression in heteronemin-treated HA22T and
HA59T cells. All data are presented as the mean ± S:D: of three independent experiments.
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Figure 3: ROS formation is associated with heteronemin-induced cell death. The number of H2O2-positive cells in (a) HA22T and (b)
HA59T was detected with DCFDA and analyzed by flow cytometry. In addition, O2∙

–-positive cells in (c) HA22T and (d) HA59T cells
were detected with DHE and analyzed by flow cytometry. Western blot analysis of the SOD1 and SOD2 expression in (e) HA22T and (f)
HA59T cells after the heteronemin treatment. (g) HA22T and (h) HA59T cells were treated with NAC (10mM) for 2 hours before being
treated with 20μM heteronemin, and cell viability was measured after 24 hours. All data are presented as the mean ± S:D: of three
independent experiments. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗∗p < 0:0001; all data are presented as the mean ± S:D: of three independent experiments.
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potential. Heteronemin was first isolated from Hyrtios erecta
by Kobayashi et al. in 1994 [47], but research showing that
heteronemin induces apoptotic cell death by inhibiting NF-
κB activation was not published until 2010 [5]. In recent
years, heteronemin has been shown to have anticancer
potential in several cancer types by inducing apoptosis,
which is usually associated with oxidative stress [11, 12, 48,
49]. Here, we demonstrated that heteronemin has anticancer
potential in HCC by inhibiting HA22T and HA59T cell
growth and inducing cell apoptosis (Figures 1 and 2).

The ability of heteronemin to induce ROS formation was
demonstrated in HCC cell lines (Figures 3(a) and 3(b)).
Interestingly, the expression of SOD family proteins, which
are essential for ROS removal, was found to be altered. After
heteronemin treatment, SOD2 was overexpressed, and SOD1
was downregulated. Similar alterations in expression have
been found in C8-ceramide-induced apoptosis in lung can-
cer, and opposing alterations have been observed in breast
cancer development [50, 51]. SOD1 is a Zn-Cu-associated

dismutase located in the cytoplasm, and SOD2 is a Mn2+-
associated dismutase located in mitochondria [52]. As shown
in Figures 3(e) and 3(f), SOD2 was upregulated, and SOD1
was downregulated in cells in response to heteronemin,
showing that mitochondrial oxidative stress is harmful and
suggesting that heteronemin may play a role in mitochon-
drial dysfunction. Consistently, heteronemin was previously
found to induce mitochondrial dysfunction and apoptosis
in leukemia [49].

The MAPK signaling transduction pathway plays a vital
role in various physiological processes and responses to oxi-
dative stress [33]. Three major MAPKs, namely, ERK, JNK,
and p38, are involved in this signaling pathway and result
in cell proliferation, autophagy, apoptosis, and inflammation.
ERK-mediated MAPK signaling has been found to be trig-
gered by stimulation with growth factors (such as epidermal
growth factor (EGF) [53]), and the activation of the down-
stream RAS/RAF/MEK/ERK cascade results in cell prolifera-
tion [54]. This cascade is commonly dysregulated in many
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Figure 4: The MAPK signaling pathway regulates the heteronemin-mediated cell death. Western blot analysis of ERK1/2 expression in (a)
HA22T and (b) HA59T cells after heteronemin treatment. (c) HA22T and (d) HA59T cells were pretreated with 30 μM SP600125, a JNK
inhibitor, for 1 hour before being treated with 20 μM heteronemin, and cell viability was observed. (e) HA22T and (f) HA59T cells were
pretreated with 30μM SB203580, a p38 inhibitor, for 1 hour before being treated with 20μM heteronemin, and cell viability was analyzed.
∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001; all data are presented as the mean ± S:D: of three independent experiments.
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Figure 5: Heteronemin initiates ferroptosis, which is associated with heteronemin-induced cell death. Western blot analysis of ferroptosis
markers and the reduction in GPX4 in (a) HA22T and (b) HA59T cells after heteronemin treatment. Liproxstatin and ferrostatin were
used to determine the effect of ferroptosis on heteronemin-associated cell death. (c) HA22T and (d) HA59T cells were cotreated with
5μM liproxstatin and 20 μM heteronemin, and cell viability was measured. (e) HA22T and (f) HA59T cells were cotreated with 15 μM
ferrostatin and 20μM heteronemin treatment, and cell viability was measured. (g) HA22T was cotreated with 15μM ferrostatin and
20μM heteronemin, and apoptosis was measured with annexin V/7AAD double staining. ∗p < 0:05, ∗∗p < 0:01; all data are presented as
the mean ± S:D: of three independent experiments.
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cancers [55, 56]. ROS-dependent JNK activation has been
found to be a robust activator of apoptosis that induces Bcl-
Bax signaling and is involved in caspase-dependent apoptosis
[57–59]. The ROS/p38/p53 cascade is also a key regulator of
cytochrome c release, and Bax-initiated caspase activation
results in extrinsic and intrinsic (mitochondrial) apoptosis
[60–62]. As shown in Figures 4(a) and 4(b), heteronemin
effectively reduced the expression level of ERK. On the other
hand, treatment with the p38 or JNK inhibitor reversed the
cell death caused by heteronemin (Figures 4(c)–4(f)). The
results suggested that heteronemin induced ROS formation
and initiated apoptosis via the JNK/p38 MAPK signaling
pathway.

Ferroptosis is a novel form of programmed cell death
associated with oxidative stress, iron accumulation, and lipid
peroxidation. Many clinical chemotherapy drugs have been
found to not only initiate apoptosis but also induce ferropto-
sis and protect against cancer growth [63–65]. In addition,
immunotherapy has also been found to regulate ferroptosis
by enhancing the accumulation of lipid peroxides and regu-
lating the expression of SLC3A2 and SLC7A11, the subunits
of the chloride-dependent cystine-glutamate (xCT) antipor-
ter system, which regulates redox homeostasis and oxidative
stress [66] to inhibit lipid peroxidation and ferroptosis [67].
GPX4 is a phospholipid-hydroperoxide glutathione peroxi-
dase that protects against lipid peroxidation and ferroptosis
[68]. GPX4 is commonly inactivated during ferroptosis [69].
Heteronemin treatment downregulated GPX4, and the ferrop-
tosis inhibitors liproxstatin and ferrostatin significantly
reversed heteronemin-induced cell death (Figures 5(a)–5(f)).
Interestingly, treatment with the ferroptosis inhibitors liprox-
statin and ferrostatin reduced the level of late-stage apoptotic
cell death (Figure 5(g)); previous research has shown that
annexin V/PI-positive cells may be late-stage apoptotic cells,

necroptotic cells, or ferroptotic cells [70–72]. The MAPK
signaling pathway has also been found to be involved in fer-
roptosis initiation. In AML cells, the inhibition of MAPKs,
especially p38 and JNK, but not ERK, results in AML insensi-
tivity to erastin [73]. In addition, in 2018, Poursaitidis et al.
[74] showed that inhibiting MAPK signaling protects lung
cancer cells against ferroptosis. Consistently, MAPKs also play
a vital role in heteronemin-induced ferroptosis.

Finally, we performed an animal experiment to validate
the anticancer potential of heteronemin in vivo (data not
shown). We treated mice with three different doses of hetero-
nemin (1mg/kg, 5mg/kg, and 10mg/kg), and tumor volume
was significantly reduced after treatment with 1mg/kg het-
eronemin; however, due to the cytotoxicity of heteronemin,
the 5mg/kg and 10mg/kg doses of heteronemin were lethal,
and even the mice treated with 1mg/kg heteronemin died
after two weeks of treatment. The results indicated that het-
eronemin is cytotoxic to HCC cells but also has severe side
effects in mice. Thus, it is critical to determine the side effects
of heteronemin. In addition, it is crucial to further investigate
the cytotoxicity of heteronemin in healthy cells. In this exper-
iment, heteronemin was administered via intraperitoneal
injection, which caused the drug to spread to all organs of
the mice. Hepatic arterial infusion chemotherapy (HAIC),
which directly delivers drugs to tumors and minimizes
systemic toxicity, is a feasible strategy for administering
heteronemin [75].

5. Conclusions

In conclusion, heteronemin is an effective agent against HCC
that induces HCC cell apoptosis and ferroptosis by inducing
intracellular ROS formation and the p38/JNK MAPK
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Figure 6: The potential anticancer mechanism of heteronemin. Heteronemin was found to induce ROS formation, resulting in p38/JNK
activation and caspase-associated apoptosis and ferroptosis and leading to cancer cell death.
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signaling pathway, revealing the potent MAPK-mediated
crosstalk mechanism between apoptosis and ferroptosis
(Figure 6).
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