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Abstract: Quantitative evaluation of synergic action among the different body segments is funda-
mental to swimming performance. The aim of the present study was to develop an easy-to-use
tool for stroke-by-stroke evaluation of a swimmer’s integrated timing of stroking, kicking, and
breathing. Twelve swimmers were evaluated during one trial of 100 m front-crawl swimming at
self-selected speed. Five three-axial inertial sensors were mounted on the head, wrists, and ankles.
Algorithms for the wrist entry into the water, the lower limb beat during the downward action,
and the exit/entry of the face from/into the water were developed. Temporal events identified by
video-based technique, using one sagittal moving camera, were assumed as the gold standard. The
performance was evaluated in terms of the root-mean-square error, 90th percentile of absolute error,
coefficient of variation, Bland–Altman plots, and correlation analysis. Results of all temporal events
showed high agreement with the gold standard, confirmed by a root-mean-square error of less than
0.05 s for absolute temporal parameters and less than 0.7% for the percentages of the stroke cycle
duration, and with correlation coefficients higher than 0.856. The protocol proposed was not only
accurate and reliable, but also user-friendly and as unobtrusive as possible for the swimmer, allowing
a stroke-by-stroke analysis during the training session.

Keywords: kinematics; wearable device; inertial measurement unit; gyroscope; validation; performance
analysis; training monitoring

1. Introduction

Swimming performance is strictly related to the synergic action among the different
body segments. The analysis of a singular body segment does not completely characterize
the actions, and the movement of the limbs cannot be considered independently [1,2].
Depending on swimming speed and athletic skill, swimmers change their coordination
between limbs and breathing action [3]. Furthermore, the variability characterization of the
synergic action is a way to understand the performance profile [4]. Skilled swimmers seem
able to maintain a stable pattern of the stroke parameters to standardize their motor pattern
and postpone a technique degradation, and conversely in less experienced swimmers [5].

Quantitative evaluation of synergic action and variability is fundamental to provide
reliable information to coaches and athletes. Since 1970, video cameras have been exploited
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for swimmer kinematics analysis from different points of view [6–9]: timing and distance
evaluation, velocity of center of mass, 2D/3D coordinates of anatomical landmarks, and
2D/3D joint angular kinematics. However, the use of multicamera systems requires long
processing times; therefore, data are not immediately available. Moreover, the expensive
and cumbersome camera setup with a restricted acquisition volume made this technology
not well-suited for real-time training context. Since 2000, thanks to the development of
wearable inertial sensors, these limits were overcome and ecological evaluation was made
available by recording stroke-by-stroke data over a long period [10].

Considering front-crawl, the main contribution for force exertion in the water is
attributed to the upper limbs [11,12]. The most commonly estimated quantities for the
upper limbs using inertial measurement units (IMUs) were stroke count and stroke rate,
achieved by locating the sensors on the wrist or/and back and applying a processing
algorithm on raw data, with an accuracy between 65% and 99% [13–15]. The temporal
segmentation of the different phases (entry and catch, pull, push, recovery) within the stroke
was achieved: (i) using specific features directly on the raw data of the wrist sensors [16];
(ii) from three sensors positioned on both forearms and lower back [17]; or (iii) using the
arm kinematic chain for estimating the joint angular kinematics from the orientation of five
sensors on the trunk, arms, and forearms [18,19]. Despite its key role within the stroke, the
entry event is the most critical instant to be detected by IMU, probably due to high variation
related to the swimmer specialization [20,21]. From temporal-phase parameters, together
with position and velocity of body segments, previous studies investigated start/end
propulsion of one arm with respect to the other (coordination index) [17], the interlimb
coordination (continuous relative phase) [22], and synchronization [23]. The adaptive role
of movement and coordination variability were assessed by using these motor control
indexes, highlighting how behavior functionally responds to environmental and task
constraints [4,24].

The action of the lower limbs is essential not only for trunk balance and buoyancy [11],
but also influences the arms’ propulsive action by modifying the hand trajectory and by
increasing stroke length [25]. Regarding flutter kicking, the main estimated parameters
using IMU were kick count and kick rate, showing reliable results (standard error of
the estimate: 5.9 ± 0.5%) [26] and allowing an evaluation of the fatigue effect on this
parameter [27]. In both articles, specific features drawn directly from the raw data of the
ankle sensor were exploited [26]. However, the synergic action of the lower limbs with
respect to the upper limbs or its variability were not investigated.

The breathing frequency or laterality was investigated as an independent variable
to estimate the effect on stroke parameters [28]. However, no specific analysis regarding
breathing technique was performed using IMUs. The sensor location on the head had
several advantages, as it did not affect drag, and measured overall body motion. For this
reason, this location was used to estimate the stroke parameters or intracyclic velocity of
the swimmer [29,30]. Nevertheless, Shell et al. found the accuracy of stroke parameter
estimation was not sufficient enough for the training monitoring tool [29].

As previously highlighted, the accuracy of temporal parameters for upper and lower
limb actions were investigated independently. To give a complete characterization of the
swimmer’s action and to understand the coordination between the movements of the head
and the upper and lower limbs, the combination of these features should be taken into
account. Nevertheless, a combined timing analysis of stroking, kicking, and breathing
actions has not been evaluated. Furthermore, this type of analysis must be performed in
ecological conditions, and the protocol should be friendly and plain enough to be used
by coaches during training sessions. For this reason, the aim of the present study was to
develop and validate an easy-to-use tool for stroke-by-stroke evaluation of a swimmer’s
integrated timing of stroking, kicking, and breathing. The validation of temporal parameter
estimation for the upper limbs, the lower limbs, and the breathing action were performed
singularly. We hypothesized that IMU technologies would allow the estimation of swimmer
timings regarding stroking, kicking, and breathing with sufficient accuracy for the purpose.
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2. Materials and Methods
2.1. Protocol: Participants, Trials and Instrumentation

Twelve male swimmers (age: 19.1 ± 2.3 years; mass: 76.7 ± 3.7 kg; height: 179.0 ± 5.2 cm;
level: 686 ± 82.6 FINA points long course, Tier 3 [31]) were evaluated during front-crawl
swimming at self-selected speed in a 25 m swimming pool. For each participant, one trial
of 100 m was acquired.

Five triaxial IMUs (Cometa, Milano, Italy) equipped with an accelerometer (sensitivity:
1563 mV/g; full scale: ±16 g) and gyroscope (sensitivity: 1.3 mV/g; full scale: ±2000◦/s)
were calibrated at the beginning of each acquisition session. Successively, IMUs were
attached to the head (in the occipital zone between the supreme and superior nuchal lines),
forearms (about two centimeters above the styloid), and shanks (about two centimeters
above lateral malleolus). Then, 3D acceleration and 3D angular velocity were acquired
from each sensor with a sampling frequency of 285 Hz. Biadhesive tape (0.05 m × 25 m
Eurocel, SICAD S.p.A. ITALIA, Varese, Italy) was used for all IMUs. In addition, for the
head, the sensor was inserted between two swim caps, and for the limbs, a coband (BSN
Medical Co-Plus® Lf 0.075 m × 4.5 m, BSN medical GmbH, Hamburg, Germany) was used
to firmly fix the sensors. The IMU sensor for the head had the X-axis aligned with the
longitudinal axis of the skull pointing upward, the Y-axis with the transverse axis pointing
to the left, and the Z-axis consequently aligned. The IMU sensor for the wrist had the X-axis
aligned with the longitudinal axis of the forearm pointing proximally, the Y-axis with the
radioulnar axis, and the Z-axis consequently aligned. The IMU sensor for the ankle was
aligned with the X-axis aligned to the sagittal axis of the tibia pointing forward, the Y-axis
to the longitudinal axis pointing proximally, and the Z-axis consequently aligned. Details
of the IMU attachment and axes alignment are reported on the right in Figure 1.
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Figure 1. Single sagittal camera on trolley followed the athlete at similar velocity during 100 m
front-crawl swimming (left). Positioning of wearable inertial sensors on head, wrist, and ankle
(right). Alignment of axes (X, Y, and Z) of reference system are shown for each position.

The swimming trials were also filmed using a single moving sagittal video camera
(Hero7, GoPro, San Mateo, CA, USA, sf = 240 Hz, 1920 × 1080 pixel resolution) for the event
detection gold standard (TLC). The camera was held on a sagittal plane by an operator
following the swimmer at similar velocity using a trolley (Figure 1 on the left). Stroking,
breathing, and kicking temporal events were clearly visible on the images of the video
for all the strokes within the lap. The same expert operator identified all the events in the
video. The sensors’ flashing LEDs were video-recorded to synchronize data acquired using
IMUs and video recording.
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2.2. Data Analysis
2.2.1. Stroking

In the present analysis, the entry of the wrist into the water (WRISTENTRY) was used for
the identification of the stroke cycles. The WRISTENTRY was estimated from the modulus of
the angular jerk measured by the wrist sensor. The modulus was preferred with respect to a
specific axis in order to be as independent as possible from the specific swimmer’s technique.
First, a clearly identifiable instant of the recovery phase was detected by calculating the
maximum value of the angular velocity about the radioulnar direction (Y-axis). Then, the
modulus of the angular jerk was calculated by performing the double differentiation of the
wrist angular velocity. Finally, the WRISTENTRY event was determined as the maximum
of the jerk modulus between two previously identified successive recovery phases. An
example pattern of the quantities used for the algorithm and the estimated WRISTENTRY
event are given in Figure 2a,b, respectively.
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Figure 2. A typical pattern of four strokes for one swimmer. Stroking events using the wrist
IMU: (a) angular velocity of Y axis with maximum for recovery phase identification (grey trian-
gle); (b) modulus of the angular jerk with maxima for WRISTENTRY (grey circles). Kicking events
using the ankle IMU: (c) angular velocity of Z-axis with propulsive (grey triangle) and buoyancy
(grey cross) kicking, and zero-crossing for LEGDOWNBEAT (grey circles). Breathing events using
the head IMU: (d) angular velocity of X-axis with zero-crossing (grey triangle) between maxi-
mum/minimum (black/grey circle) for HEADEXIT and HEADENTRY (before and after zero-crossing
maximum/minimum events, respectively).

2.2.2. Kicking

For the time characterization of the leg action, the event corresponding to the beat
of the lower limb during the downward action (LEGDOWNBEAT) was considered. The
mediolateral angular velocity of the IMUs on the ankle was used (Z-axis). To estimate the
beat, the zero-crossing of the angular velocity was employed, and to distinguish the down-
from the up-beat, the orientation of the axis and the sign before and after the zero-crossing
were taken into account. An example pattern of the quantities used for the algorithm and
the estimated LEGDOWNBEAT event is given in Figure 2c.

In the analysis, two types of kicking actions were observed: propulsive and buoyancy
kicks. They were first visually inspected considering the regularity of the leg movement: in
some swimmers, the pattern of the angular velocity had similar maximum values through-
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out the trials, while others showed two/three maximum comparable values followed by
one at a clearly distinguished lower maximum value. This last beat was interpreted as
a beat performed for buoyancy purposes and not for propulsion. For this reason, this
maximum was not included in the analysis: an adaptable threshold was calculated from
the mean plus two standard deviations of all maxima below 100 deg/s of each athlete.
The starting value of 100 deg/s and the results of the exclusion were established from the
video analysis, in which the difference between propulsive and buoyancy kicking was
clearly distinguished.

2.2.3. Breathing

Regarding the breathing analysis, the exit and the entry of the face from/into the
water were considered (HEADEXIT and HEADENTRY, respectively). The longitudinal an-
gular velocity of the IMUs on the head was used (X-axis). From the zero-crossing of this
variable, the start of the face rotation out of the water was first identified. Successively,
the maximum/minimum values before and after the zero-crossing corresponded to the
exit/entry of the head depending on the breathing side: the event before the zero-crossing
was the exit, the event after was the entry. An example pattern of the quantities used for the
algorithm and of the estimated HEADEXIT and HEADENTRY events is given in Figure 2d.

2.2.4. Timing

From the left WRISTENTRY, the 0% and the 100% of the stroke cycle were determined.
WRISTENTRY contralateral arm, LEGDOWNBEAT, HEADEXIT, and HEADENTRY events were
expressed in percentage of the stroke cycle.

Data processing of the three above algorithms and timing analysis were performed in
MATLAB (MathWorks, Natick, MA, USA, 2019).

2.2.5. Statistical Analysis

All data were expressed as means (±SD). The Shapiro–Wilk test was used to confirm
the normality of distribution. Regarding the WRISTENTRY, HEADEXIT, HEADENTRY, and
LEGDOWNBEAT absolute temporal values and percentages of the stroke cycle, the accuracy of
the IMU algorithms in comparison to TLC were determined by the root-mean-square error
(RMSE [32]) and 90th percentile of absolute error, and the reliability was computed using
the coefficient of variation (CV) and typical error of measurement (TEM). Considering the
sampling frequency of the video acquisition, a minimum detectable difference threshold of
0.005 s was considered. To complement the agreement analyses between the two techniques,
Bland–Altman plots and a correlation analysis were created. To calculate the concurrent
validity, the bivariate Pearson product moment correlation coefficient was used. The
correlation magnitude was interpreted as 0.1 (low), 0.3 (moderate), 0.5 (large), 0.7 (very
high), and 0.9 (nearly perfect) as proposed by Hopkins et al. [33]. All statistical tests were
performed using the software SPSS version 20.0 (SPSS, Chicago, IL, USA) and Microsoft
Excel 2010. The level of statistical significance was set at p < 0.05.

3. Results

Regarding absolute temporal variables, the average RMSEs and 90th percentile of
absolute errors for IMU vs. TLC were <0.005 s and 0.041 s for WRISTENTRY, 0.005 s and
0.197 s for HEADEXIT, <0.005 s and 0.060 s for HEADENTRY, and <0.005 s and 0.040 s
for LEGDOWNBEAT. The CVs for IMU and TLC were 0.068 and 0.069 for WRISTENTRY,
0.440 and 0.200 for HEADEXIT, 0.070 and 0.062 for HEADENTRY, and 0.209 and 0.204
for LEGDOWNBEAT. The respective TEMs for IMU and TLC were 0.083 and 0.083 s for
WRISTENTRY, 0.147 and 0.085 s for HEADEXIT, 0.081 and 0.073 s for HEADENTRY, and 0.240
and 0.232 s for LEGDOWNBEAT.

Bland–Altman and correlation procedures were employed to determine measurement
bias (Figure 3). The limits of agreement (LoA) between the IMU and TLC had a range
of −0.054 to 0.053 s for WRISTENTRY, −0.072 to 0.265 s for HEADEXIT, −0.054 to 0.074 s
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to for HEADENTRY, and −0.049 s to 0.050 s for LEGDOWNBEAT with nonsignificant biases
of <0.005 s, 0.097 s, 0.010 s and <0.005 s, respectively. In addition, the Pearson product
moment correlation coefficient showed nearly perfect correlation between the IMU and
TLC measurements for WRISTENTRY (r = 0.945, p < 0.001), HEADEXIT (r = 0.856, p < 0.001),
HEADENTRY (r = 0.916, p < 0.001), and LEGDOWNBEAT (r = 0.998, p < 0.001). In general, IMU
algorithms showed consistent results for all analyzed temporal events.
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Figure 3. Linear regression analysis (a) and Bland–Altman plots (b) for WRISTENTRY (open circles),
HEADEXIT (grey filled circle), HEADENTRY (open circle), and LEGDOWNBEAT (open circle) when
comparing measurements with IMUs and video-based technique (TLC). In (b), central lines represent
the intermethod differences (biases). Upper and lower dotted lines represent the 95% limits of
agreement (bias ± 1.96 SD of the differences).

The average timing of the analyzed temporal events in percentage of the stroke du-
ration are reported in Table 1. Regarding timing, the respective average RMSEs and 90th
percentile of absolute errors for IMU vs. TLC were 0.1 and 1.5% for WRISTENTRY, 0.7 and
8.0% for HEADEXIT, 0.1 and 2.2% for HEADENTRY, and 0.1 and 1.8% for LEGDOWNBEAT.
The respective CVs for IMU and TLC were 0.0 and 0.0 for WRISTENTRY, 0.4 and 0.1 for
HEADEXIT, 0.0 and 0.0 for HEADENTRY, and 0.1 and 0.1 for LEGDOWNBEAT. The respec-
tive TEMs for IMU and TLC in percentage of the stroke duration were 2.2 and 2.1 for
WRISTENTRY, 4.6 and 3.2 for HEADEXIT, 1.5 and 1.3 HEADENTRY, and 2.0 and 1.6 for
LEGDOWNBEAT. The mean biases of timing between measurement techniques were −0.2%
for WRISTENTRY (LoA: −2.3 to 1.9%), 4.1% for HEADEXIT (LoA: −3.1 to 11.2%), 0.3% for
HEADENTRY (LoA: −1.9 to 2.5%) and 0.5% for LEGDOWNBEAT (LoA: −1.4 to 2.3%). The
timings of the analyzed temporal events in percentage of the stroke duration using IMUs
and TLC for a single participant are reported in Figure 4.
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Table 1. Mean ± SD timing of the analyzed temporal events in percentage of the stroke duration
when comparing measurements with IMUs and video-based technique (TLC). The stroke duration
was normalized to left WRISTENTRY events.

Temporal Events IMUs TLC

First right LEGDOWNBEAT (%) 2.3 ± 7.6 3.1 ± 6.9
First left LEGDOWNBEAT (%) 15.5 ± 9.4 16.0 ± 9.3

Right HEADEXIT (%) 15.9 ± 5.7 18.7 ± 2.8
Right HEADENTRY (%) 48.0 ± 2.0 48.4 ± 2.0
Right WRISTENTRY (%) 49.3 ± 2.2 49.0 ± 2.1

Second left LEGDOWNBEAT (%) 53.7 ± 8.3 53.0 ± 7.6
Left HEADEXIT (%) 58.2 ± 3.5 65.2 ± 3.5

Second right LEGDOWNBEAT (%) 64.1 ± 8.2 64.8 ± 8.7
Left HEADENTRY (%) 96.6 ± 1.0 96.8 ± 0.6
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4. Discussion

A complete characterization of a swimmer’s action requires not only an independent
analysis of temporal parameters for the head and upper/lower limb actions, but also an
integration of these features. Furthermore, the assessment must be performed for the whole
motor task and not only for a few strokes. The present study developed an integrated
stroke-by-stroke tool for the assessment of the stroking, kicking, and breathing timing in
front-crawl swimming using wearable inertial sensors. To test our hypothesis, data for
12 athletes were collected using IMUs attached to the head, wrists, and ankles, and timing
features were compared with video analysis. Results of all temporal events showed high
agreement with the gold standard video-based technique, confirmed by an RMSE less
than 0.05 s for absolute temporal parameters and less than 0.7% for the percentage of the
stroke duration.

The WRISTENTRY event, detected from the jerk of the angular velocity of the IMU on
the wrist, showed high agreement with TLC both in terms of absolute temporal value (bias:
<0.005 s, LoA: −0.0054 s to 0.053 s) and in terms of percentage of stroke cycle duration
(bias: −0.2%, LoA: −2.3% to 1.9%) with nearly perfect correlation (r = 0.945). The present
study’s results were comparable with, and for some parameters, even more accurate than
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those of previous studies. In more detail, when arm kinematic chain and multiple IMUs
were exploited, a bias lower than 1.4%, a 95% LoA lower than 7.7%, an RMSE lower than
3.5%, and an r higher than 0.81 were found for entry, catch, pull, push, and recovery
phases [19]. When three IMUs and raw data sensors were used, the 95% LoA for stroke
phase durations was always lower than 7.9% of the stroke cycle duration [17]. Furthermore,
differently from previous studies, the proposed method did not require any specific body
segment alignment calibration or any anthropometric measurement, such as the body
segment length, and involved the use of only one sensor per limb. In this context, previous
studies highlighted how the hand entry was highly dependent on the swimmer’s technique:
palmar–dorsal acceleration can exhibit a high or near-zero value depending on a flatter
or sharper pitch angle of the hand entry [16]. For this reason, in the developed algorithm,
the modulus of the jerk was used while taking into account all three components of the
physical quantity. From the data acquired, every single stroke was automatically detected
by the present algorithm without any operator supervision.

The algorithm for the analysis of the kicking timing of the lower limbs exhibited
high agreement (bias: <0.005 s, LoA: −0.049 s to 0.050 s; bias: 0.5%, LoA: −1.4 s to 2.3 s)
and nearly perfect correlation (r = 0.998) with the video-based technique. The algorithm
proposed by Fulton et al. for counting the kicks [26] was slightly modified for the estimation
of timing in absolute temporal value and in percentage of the stroke cycle. The modification
was necessary, as two types of kicking action were noticed in our study participants.
Together with the propulsive kicks, clearly distinguishable buoyancy kicks were observed
in the videos. In this latter case, the lower limb of the swimmer exhibited a small beat,
mainly due to the rotation of the trunk/pelvis segment and not to a strong action of the leg.
From observing the angular velocity of the IMU on the ankle, the buoyancy kicks clearly
showed lower peak values, and the modification was developed to exclude them from the
analysis. These issues were not reported by Fulton et al., most likely because, differently
from the present study, maximal-effort trials were acquired [26,27]. No comparison with
existing literature regarding timing features could be performed, as the only previous
study that exploited IMUs for kicking action analysis investigated the performance of the
algorithms only for counts and rate.

The breathing features investigated showed different levels of accuracy depending
on the type of event detected. The HEADENTRY showed high agreement with video-based
techniques both in terms of absolute temporal quantity (bias: 0.01 s; LoA: −0.054 s to
0.074 s) and in terms of percentage of the stroke duration (bias: 0.5%; LoA: −1.9 s to 2.5 s),
with nearly high correlation coefficient (r = 0.916, p < 0.001). In addition, the HEADEXIT
event detection exhibited a good degree of agreement. In more detail, the larger bias found
(0.097 s; 4.1%) with respect to HEADENTRY could be explained by a fixed temporal shift
between the feature extracted from the longitudinal angular velocity and the exit of the
face from the water identified in the video. Furthermore, the LoAs of HEADEXIT showed
higher values (−0.072 s to 0.027 s; −3.1% to 11.2%) and slightly less reliability for the
analysis of this temporal feature with respect to the entry. However, considering the high
correlation coefficient (r = 0.856) of HEADEXIT, the results of both features revealed an
accuracy sufficient for analysis purposes. Indeed, the error value of HEADEXIT expressed
in percentage of the stroke cycle duration was, in any case, lower than previous studies
investigating temporal stroke features. Specific comparison with existing literature could
not be performed, as the present study was the first to validate an algorithm for timing
breathing detection using IMUs. However, it has been demonstrated how investigating
the breathing action in front-crawl swimming is fundamental not only to the energetic
efficiency, but also to the effect on upper limb kinematics and overall technique [28]. For
this reason, a reliable algorithm for the detection of breathing timing allows monitoring of
the effects of fatigability or different techniques on the breathing timing, in addition to the
intratrial variability of these effects.

Head and upper/lower limb actions of the swimmer during front-crawl swimming
were accurately and repeatably identified in terms of absolute temporal value (Figure 3).
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Furthermore, the stroking, kicking, and breathing features were integrated with the stroke
cycle duration (Table 1 and Figure 4), allowing a reliable combined timing analysis of the
action of all principal factors in front-crawl using the minimum number of inertial sensors.
Swimming is a cyclic activity, and the synchronization between the head and upper/lower
arms can only be optimal if it can be maintained along consecutive stroke cycles [23]. In
order to produce the propelling effects, the stroking, kicking, and breathing must occur at
the same relative time in each stroke. The integrated timing analysis proposed in this study
could enable swimming coaches to continuously check the whole timing technique of the
swimmers during the training session.

The accuracy and repeatability findings must be considered reliable for the motor task
and level of swimmer analyzed. Further investigations will explore the generalization of
the results for different coordination models of technique, performance level of swimmers,
and different swimming techniques. It must also be highlighted another limitation in the
stroking was identified by the entry of the wrist into the water, as the IMU was attached to
the wrist. Thus, with the aim of limiting the swimmer burden, the catch event more strictly
related to propulsion was not possible to be detected. Coaches could take advantage of the
proposed tool to continuously check the whole timing technique and monitor the effects of
fatigue or different techniques on the coordination timing.

In conclusion, a protocol for integrated analysis of stroking, kicking, and breathing
using inertial sensors in front-crawl swimming was developed and validated in comparison
with a video-analysis technique. All accuracy parameters investigated (RMSE, bias, LoA,
and correlation) highlighted high agreement with the gold standard. Furthermore, the
protocol proposed was user-friendly and as unobtrusive as possible for the swimmer,
allowing a stroke-by-stroke analysis during the training session.
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