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Abstract

Background: Nontuberculous mycobacterial (NTM) infections are increasing in prevalence, with current estimates
suggesting that over 100,000 people in the United States are affected each year. It is unclear how certain species of
mycobacteria transition from environmental bacteria to clinical pathogens, or what genetic elements influence the
differences in virulence among strains of the same species. A potential mechanism of genetic evolution and
diversity within mycobacteria is the presence of integrated viruses called prophages in the host genome.
Prophages may act as carriers of bacterial genes, with the potential of altering bacterial fitness through horizontal
gene transfer. In this study, we quantify the frequency and composition of prophages within mycobacteria isolated
from clinical samples and compare them against the composition of PhagesDB, an environmental
mycobacteriophage database.

Methods: Prophages were predicted by agreement between two discovery tools, VirSorter and Phaster, and the
frequencies of integrated prophages were compared by growth rate. Prophages were assigned to PhagesDB
lettered clusters. Bacterial virulence gene frequency was calculated using a combination of the Virulence Factor
Database (VFDB) and the Pathosystems Resource Integration Center virulence database (Patric-VF) within the gene
annotation software Prokka. CRISPR elements were discovered using CRT. ARAGORN was used to quantify tRNAs.

Results: Rapidly growing mycobacteria (RGM) were more likely to contain prophage than slowly growing
mycobacteria (SGM). CRISPR elements were not associated with prophage abundance in mycobacteria. The
abundance of tRNAs was enriched in SGM compared to RGM.
We compared the abundance of bacterial virulence genes within prophage genomes from clinical isolates to
mycobacteriophages from PhagesDB. Our data suggests that prophages from clinical mycobacteria are enriched for
bacterial virulence genes relative to environmental mycobacteriophage from PhagesDB.
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Conclusion: Prophages are present in clinical NTM isolates. Prophages are more likely to be present in RGM
compared to SGM genomes. The mechanism and selective advantage of this enrichment by growth rate remain
unclear. In addition, the frequency of bacterial virulence genes in prophages from clinical NTM is enriched relative
to the PhagesDB environmental proxy. This suggests prophages may act as a reservoir of genetic elements bacteria
could use to thrive within a clinical environment.
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Introduction
Nontuberculous mycobacterial (NTM) infections can
cause serious pulmonary disease that may become chronic
and affect quality of life even leading to death [1]. Many of
the mycobacterial species that cause NTM infections are
ubiquitous in the environment and are known to thrive in
built environments, including premise plumbing [2–4].
The mechanism by which these organisms, which have
long been recognized as environmental, become clinical
pathogens is an active area of research with prior studies
exploring host susceptibility [5], geographic factors [6],
and changes in genetic composition [7]. Mycobacterial
species are categorized into two broad groups based on
differing growth rates in culture; rapidly growing (RGM)
and slowly growing (SGM) [8]. Of the six species/subspe-
cies examined in this study M. avium, M. chimaera, and
M. intracellulare are described as having a slow growth
rate. M. abscessus subsp. massiliense, M. abscessus subsp.
abscessus, and M. abscessus subsp. bolletii have a rapid
growth rate [9].
Bacteriophages are viruses that infect bacteria and some

are capable of transferring genetic material between bac-
teria through a process called transduction [10]. Mycobac-
teriophages are bacteriophages that target mycobacteria.
Environmental bacteria are subject to external pressures to
adapt their genomes through horizontal gene transfer, in-
cluding bacteriophage transduction [10]. Temperate bacte-
riophages are capable of exhibiting both the lysogenic and
lytic life cycles. The lysogenic cycle commonly involves a
bacteriophage integrating genetic material into a bacterial
genome and replicating in tandem until the integrated bac-
teriophage, also known as a prophage, transitions into a
lytic life cycle. In addition to chromosomal integration,
prophages can also exist within a host bacteria extrachro-
mosomally [11]. During the lytic phase, the bacteriophage
utilizes the bacterial cellular machinery to create new phage
particles that are then released during bacterial cell lysis.
Some of the newly created temperate phage particles pack-
age bacterial genes at a low frequency, which are subse-
quently transduced during a new infection [12]. This form
of transduction is called specialized transduction, which is
defined by the restriction of transducible bacterial genes to
those flanking the integration site of the prophage. Another
form of transduction, termed generalized transduction,

occurs during the lytic phase when bacteriophages engaging
in the headful packaging process include random pieces of
the host bacterial DNA [13]. Both forms of transduction
are thought to be rare events, however, given the immense
number of bacteriophage-bacterial interactions, transduc-
tion events are estimated to occur at scale in the environ-
ment [14].
Virulence is a general term that describes a pathogen’s

invasive power, ability to overcome host defenses, and the
replication efficiency of a pathogen within a host [15].
Prior studies have explored both the role of bacterio-
phages to increase virulence in bacteria and the effect of
bacteriophage resistance on reduced virulence [16, 17].
There is a selective advantage for bacteria that contain
prophages with genetic elements capable of increasing
propagative success and providing super-infection im-
munity [18]. It is possible that genes carried by mycobac-
teriophages during selective transduction events could
impact virulence as seen in other bacteria such as Escheri-
chia coli, Vibro cholerae, Corynebacterium diphtheriae,
and Streptococcus pyogenes [19]. Prophages in these
bacterial pathogens contain elements that contribute to
quorum sensing, enzymatic functions, and extracellular
toxicity [19, 20].
Here, we explore the frequency of integrated prophages

in NTM genomes and characterize the composition of
bacterial genes within predicted prophage elements. Gen-
etic elements including tRNAs act as a potential insertion
site for mycobacteriophages using a tyrosine-integrase
[21]. Our hypothesis is that increased tRNA abundance is
associated with an increased abundance of integrated pro-
phages in mycobacteria due to there being more targets
for integration with tyrosine-integrases. An important
note is that other integrases can insert mycobacterio-
phages into genetic elements other than tRNAs and extra-
chromosomal prophages do not integrate at all [22]. CRIS
PR elements provide a bacterial defense mechanism
against viral challenge, and research in Cronobacter saka-
zakii suggests CRISPR elements with fewer spacers are
more susceptible to prophage integration [23, 24].
To explore differences between clinical prophages and

environmental mycobacteriophages, we utilized Pha-
gesDB, which is a data repository mostly composed of
mycobacteriophages isolated from the environment [25].
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A majority of these mycobacteriophages were identified
using a phage plaque screening assay to identify lytic
and temperate mycobacteriophages capable of infecting
the non-pathogenic species M. smegmatis. Mycobacter-
iophages from PhagesDB are organized into sequence
clusters, indicated by letters (A-Z), based first on se-
quence similarity and then shared functional protein
families [26]. Lettered clusters typically exhibit similar
lifestyle and functional behavior. Prior research has sug-
gested PhagesDB mycobacteriophages clusters K, G, and
A are capable of infecting clinical NTM including RGM
and SGM [27, 28]. Our hypothesis is that prophages
from genomes of clinical isolates may be enriched for
bacterial virulence genes compared to environmental
mycobacteriophages from PhagesDB. Exploring this hy-
pothesis helps us to investigate the ability of prophages
to act as a genetic repository for bacterial virulence
genes within clinical NTM genomes.

Methods
Bacterial genome assembly and isolate datasets
In this study, we utilized two publically available data-
sets. First, we downloaded the complete genomes from
two NTM species in the NCBI assembly database
(Supplementary File 1), M. abscessus and M. avium
(n = 53 complete genomes). These species were se-
lected because they represent the two most common
NTM species of clinical significance [29]. All complete
genomes were isolated from clinical sources, with the
exception of an M. avium isolate from a hospital water
source [30]. Our decision to look at complete genomes
was driven by the desire to examine bacteriophage
trends between species regardless of assembly status
(complete vs. draft genome).
The second dataset includes a collection of 318 NTM

isolates from 168 individuals diagnosed with cystic
fibrosis (CF) [31]. All samples were cultured on solid
media, converted to glycerol stock aliquots, and the
DNA was extracted for whole genome sequencing using

an optimized mycobacterial DNA preparation protocol
[31, 32]. Bacterial isolates were collected in a longitu-
dinal manner, however, only one isolate genome per pa-
tient per species was retained for this prophage analysis.
Fourteen patients had multiple NTM species, and in
these cases, one isolate from each species was retained
(n = 182 draft genomes). This dataset includes six differ-
ent mycobacterial species and subspecies: M. abscessus
subsp. massiliense, M. abscessus subsp. abscessus, M.
abscessus subsp. bolletii, M. avium, M. chimaera, and M.
intracellulare (Table 1).
Paired-end reads from draft genomes in the CF dataset

were assembled using Unicycler into contiguous
sequences (contigs), known as draft genomes, with a me-
dian N50 ranging from ~ 82 kilobases to ~ 216 kilobases
(Table 1) [33]. Numbers of contigs in the draft genome
assemblies ranged from 37 to 336. Analysis of assembly
completeness based on N50 length and the number of
contigs metrics revealed three outliers, which were
removed from downstream analysis. To understand if
assembly fragmentation affected prophage prediction in
our draft genomes, we explored the edge cases, which
are defined as predicted prophages within 100 bases of
either end of a contig. Given the distinctions in assembly
statistics by growth rate, linear mixed modeling was
performed to calculate statistical significance of assembly
features against prophage frequency.
Species identifications of draft genomes were determined

using a method of average nucleotide identity (ANI) as
described previously [31] and sequence reads mapped to
active reference genomes to generate phylogenies [34, 35].
Reads were mapped using Bowtie2 software [36] and single
nucleotide polymorphisms (SNPs) were determined using
Samtools mpileup [37]. Mycobacterial genotypes were
concatenated and used to make phylogenetic trees using
maximum likelihood with 1000 bootstrap replicates in
Randomized Axelerated Maximum Likelihood-Next Gener-
ation (RAxML) [38]. SNP distances between groups in the
tree file were used to perform PERMANOVA analysis in R.

Table 1 Summary statistics of prophages predicted in the NTM draft genomes assemblies. Median counts of tRNA, N50 Lengths,
and counts of contigs in NTM draft genomes are shown with the ranges in parenthesis. The edge case average is the total number
of edge cases divided by the draft genome count

Species Genomes
Count

Genomes
with Phage

Predicted
Prophages

Median tRNA
Count

Median N50 Length Median
Contig
Count

Edge Cases
Average

M. avium 43 1 1 57 (54–108) 81,670 (56262–116,826) 206 (126–336) 1.07

M. chimera 11 1 1 55 (49–81) 86,644 (78123–101,816) 193 (116–251) 1.00

M. intracellulare 23 3 4 52 (50–54) 101,938 (82877–131,830) 104 (83–145) 0.13

M. abscessus 76 42 51 48 (45–116) 168,941 (87141–327,102) 67 (41–191) 2.60

M. bolletti 4 3 3 48.5 (48–49) 208,710 (140476–226,296) 45 (37–59) 2.50

M. massiliense 25 11 12 51 (46–84) 215,865 (97542–413,240) 53 (39–143) 2.84
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Phylogenetic trees were annotated and visualized with
ggtree [39]. Additional tree file manipulations and visualiza-
tions were performed with ETE3 [40].
ARAGORN v1.2.38 was used to quantify the tRNAs in

the mycobacterium [41]. CRISPR identification was per-
formed using CRT with default parameters (minimum 3
repeats, minimum length 19 base pairs, maximum length
38 base pairs) [42].

Integrated prophage discovery
Prophage discovery was performed using the agreement
of two prophage discovery tools, Phaster and VirSorter
[43, 44]. Phaster and VirSorter use different sequence
similarity methods against known viruses to find
prophage elements within bacterial genomes. Phaster
was utilized because of the ability to consider the com-
pleteness of a putative prophage region through identifi-
cation of elements such as attachment sites. VirSorter
differs from Phaster in that it does not find attachment
sites, however VirSorter outperforms other tools on pro-
phage identification in fragmented genomic datasets
[44]. A custom application programming interface (API)
script was used to identify prophages from the Phaster
web server, whereas VirSorter prophage identification
was performed locally. The output of Phaster contains
three confidence levels for a prophage prediction with
“intact” possessing the strongest support, “questionable”
having some support, and “incomplete” being the least
confident. VirSorter also ranks prophage predictions into
three numeric levels (4 strongest, 5 middle, and 6 low
support) in addition to predicting individual contigs
from the draft genomes as stand-alone viruses (1 stron-
gest, 2 middle, and 3 low support). Confidence levels of
Phaster predictions were manually set to the scale of
VirSorter prophages. Only Phaster predicted prophages
with overlapping ranges between the two tools were
retained. Predicted prophages were further filtered by re-
quiring identified attachment sites from Phaster, at least
10 proteins from the predicted prophage match against
the PhagesDB protein database, and the presence of an
integrase gene [45]. Edge case identifications incorporate
all predicted prophages, not only those selected by both
prophage prediction tools.
Dereplication of predicted prophage elements was per-

formed using VSEARCH [46] to identify genetically
identical prophages between different genomes, which
may be evidence of transmission or contamination.

Prophage identification and genome annotation
PhagesDB uses MMSEQ2 to cluster mycobacteriophage
gene products into gene “phamilies”, then uses Splitstree
to create functional clusters based on presence or ab-
sence of gene “phamilies” [47]. The version of PhagesDB
used was filtered to only contain mycobacteriophages.

Our approach to assign predicted prophages to clus-
ters began by calculating average nucleotide identity
(ANI) using the MUMmer toolset against known myco-
bacteriophages from PhagesDB [48]. Per prior work, an
ANI greater than 60% and with a genomic coverage of at
least 50% would cluster a phage [49]. Following ANI
clustering, we selected BLASTp because the gene
“phamilies” are not included in the data API, and the
parameters of MMSEQ2 cluster are not clearly defined
in prior works [26]. A match was based on DIAMOND
Blastp homology with default parameters (e-value <1e-12,
query coverage > = 70, identity cut-off > = 70) against pro-
teins from PhagesDB downloaded using the PhagesDB API
[50]. A minimum of 5 protein matches from the predicted
prophage to a cluster are required for cluster assignment,
otherwise all unidentified prophages are assigned to no
cluster. Gene products of predicted prophages were identi-
fied using Prodigal [51]. The aggregation of cluster identifi-
cations from gene hits was used to determine the projected
cluster of the predicted prophage. The clustering of pre-
dicted prophages was visualized using RAWGraphs.io [52].
Bacterial genes within predicted prophages were anno-

tated using Prokka [53] with an additional virulence gene
and phage protein database combining VFDB, Patric-VF,
and PhagesDB proteins added as a parameter [25, 53–55].
Proteins were predicted using Prodigal and subsequently
annotated with a combination of DIAMOND BLASTp
and HMMscan using default parameters [50, 51, 56].
Prodigal has a default minimum peptide length of 90 [51].
Pairwise significance testing, comparing the abundance of
virulence genes in the PhagesDB and the predicted
prophages, was performed using a z-score test for two
population proportions with binary success defined as
having any bacterial virulence gene in the genome.
Prophage counts by mycobacterial species were visualized

using pandas (version 0.20.3) and matplotlib (version 2.1.0)
[57, 58]. Pairwise significance testing comparing the abun-
dance of prophages between species growth rate was per-
formed using a z-score test for two population proportions
with binary success defined as having a prophage with more
than 10 gene matches against PhagesDB in the genome.
Pangenome analyses were performed using Roary [59]

to identify core genes (present in > 95% of prophages)
and shell genes (present in between 15 and 95% of
prophages) amongst all ORFs in the predicted prophages
(n = 96). In addition, assigned PhagesDB clusters of
predicted prophages with more than five prophages per
cluster were subjected to another pangenome analysis
(n = 81).

Results
Abundance of prophages in NTM species
Prophages were predicted in 81 of the 235 clinical NTM
genomes (37.7% of complete genomes and 33.5% of draft
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genomes). Within the 81 genomes with prophages, a
total of 96 unique prophages were identified. The inter-
quartile range of prophage lengths across all species was
~ 38 kilobases to ~ 58 kilobases. A Kruskal-Wallis test of
prophage lengths by growth rate failed to reject the null
hypothesis suggesting no difference in the size of inte-
grated prophages by growth rate (H = 1.93, p = 0.165).
We predicted integrated prophage elements in both
RGM and SGM, however predicted prophages more
likely to be found within RGM than in SGM (F = 6.71,
p = 1.96e-11 draft genomes and F = 3.83, p = 1.29e-04
complete genomes, proportions z-test, Fig. 1). In the
RGM M. abscessus subsp. abscessus, 61 out of 109
(56.0%) clinical NTM have predicted prophage elements,
while of the SGM, only 2 out of 63M. avium (3.2%), 3
out of 23M. intracellulare (13%) and 1 out of 11M.
chimaera (9.1%) draft genomes have intact prophage
elements. The relative genomic locations of the pre-
dicted prophages within the complete genome dataset
are shown in Supplementary Figure 1.
To test if the prophage discovery tools are biasing

prophage predictions in longer contiguous sequences
(i.e. complete genomes), we quantified the number of
edge cases by species in the 182 draft genomes. The
number of edge cases are normalized by genome count
per species to generate an average number of edge cases
per species (Table 1). Edge cases are only quantified in
the draft genome assemblies because the complete

genomes are assumed to have only one contiguous
sequence (Table 2). Linear mixed models of prophage
frequency by number of contigs (Z = -3.27, p = 1.1e-03),
N50 Length (Z = 1.94, p = 0.052), and number of contigs
> 1500 base pairs (Z = -4.10, p = 4.19e-04) approached or
achieved significance. However, additional post-hoc
testing of significant linear mixed models revealed no
significant correlations suggesting assembly fragmenta-
tion likely had little effect on the number of predicted
prophages between species.
Thus, in future figures, draft and complete genomes

are combined for downstream analysis.

Predicted prophages annotated using existing
mycobacteriophage clusters
PhagesDB is a database containing mycobacteriophage
genomes categorized into clusters and sub clusters based
on sequence similarity and shared functional genes. Pre-
dicted prophages in our study were annotated across 15
clusters (Fig. 2) using ANI and protein sequence similar-
ity. The RGM had prophages in all 15 lettered groups,
and SGM had 3 lettered groups. Most prophages (31.3%)
fell into the “no cluster” category, which represents pro-
phages matching other prophages without a defined
cluster or not being assigned a cluster using ANI or
BLASTp. The number of errors associated with the ANI
assignment to lytic clusters is on average nearly double
that of prophages assigned to lysogenic clusters (22,171

Fig. 1 Prophage Frequency by NTM Species: Bar plots show relative abundance of prophage frequency in samples. Rapidly growing
mycobacteria species are on the left, and slowly growing mycobacteria species are on the right. a) The frequency of prophages by genome in
complete NTM genomes. The presence of prophages is statistically significant by growth rate (p = 1.96e-11). b) The frequency of prophages per
draft genome from NTM draft genomes. The presence of prophages is statistically significant by growth rate (p = 1.29e-04)
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lytic against 12,385 lysogenic base pair errors, p = 0.098,
Mann Whitney U).
Across the entire dataset (draft and complete

genomes), the 96 identified prophages consisted of 84
genotypically unique sequences. Predicted prophages
that clustered with another predicted prophage were
from the same species, which could represent a shared
evolutionary sequence or a common insertion site.
The pangenome analysis using all predicted prophages

resulted in no core genes shared among 96 unique pro-
phages. The largest number of prophages that shared a
gene was 25 prophages and the gene function was un-
defined. Supplementary Table 1 details the pangenome
analyses, including shell gene counts between prophages
discretized by assigned PhagesDB cluster. No core genes
are found in any lettered cluster pangenome analysis.
Hypothetical proteins of unknown function are most com-
monly shared shell genes within the predicted prophages.

Prophage annotation results and virulence genes by
species
There was an average of 68 open reading frames (ORFs)
predicted within each of the 96 prophages from the draft
and complete genomes. The average peptide length of
ORFs was 216 (24–1937) amino acids. The total number
of ORFs among all prophages was 6550. Of these
predicted ORFs, 65.24% were labeled hypothetical pro-
teins without a known function. Almost half of the ORFs
(48.89%) were annotated using sequence similarity to a
protein within the PhagesDB mycobacteriophage data-
base. ARAGORN identified 156 tRNAs with tRNA-
threonine as the most abundant, comprising 16.0% of
the total. The number of ORFs annotated as bacterial
genes in the dataset, not including tRNAs, was 245
(3.74%). Of ORFs identified as bacterial genes, 66 ORFs
(1.01% of all ORFs) were predicted to derive from
bacterial virulence genes.

Table 2 Summary statistics of predicted prophages within complete NTM genomes selected from the NCBI assembly database.
Complete genomes are not fragmented into contigs, thus N50 statistics, contig count, and edge cases are not applicable. Additional
information about these genomes are available in Supplementary File 1

Species Genomes Count Genomes with Phage Predicted Prophages Median tRNA Count

M. avium 20 1 1 59 (54–59)

M. abscessus 33 19 23 49 (46–104)

Fig. 2 Prophage Assignments to PhagesDB Clusters: Alluvial graph depicting assignment of predicted prophages by NTM species to a PhagesDB
lettered cluster (on the right) and NTM species (on the left). Line width corresponds to the number of predicted prophages from a genome that
are assigned to a specific PhagesDB cluster
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Virulence gene annotations within the predicted
prophages comprised about 1% of the ORFs. The 66
predicted ORFs annotated as bacterial virulence genes
were present across 39 prophages from 37 different
NTM genomes. Figure 3 highlights the presence/absence
of bacterial virulence gene within the predicted prophages
across mycobacterial species. Of the genes annotated as
virulence genes by VFDB or Patric-VF, 51.5% were origin-
ally identified in Mycobacterium tuberculosis and 16.7%
derive from Salmonella enterica (Supplementary File 2).
PhagesDB contains 1795 mycobacteriophages. Within

these mycobacteriophages, 187 mycobacteriophages
contained 249 virulence genes or 0.13% of all predicted
ORFs. For a fairer comparison of virulence gene abun-
dance between our predicted prophages and PhagesDB,
lysogenic mycobacteriophages were subset from Pha-
gesDB leaving 1271 mycobacteriophages and 122,405
ORFs. Within these 1271 mycobacteriophages, 158
mycobacteriophages contain 220 annotated virulence
genes (0.18% of all ORFs). We found that bacterial
virulence genes are more likely to be present within
prophage elements derived from clinical sources than
from all mycobacteriophage genomes in PhagesDB iso-
lated from the environmental M. smegmatis and the sub-
set selected from lysogenic mycobacteriophages (F = 8.89,
p = 6.16e-19 and F = 6.73, p = 1.73e-11, proportions z-

test, Fig. 4). The relative locations and functional annota-
tions of bacterial virulence genes in the predicted pro-
phages, as well as PhagesDB mycobacteriophages are
shown in Fig. 5. The location of the virulence genes in the
predicted prophages, with 43.9% within 10% of either end
of the predicted prophage, suggests either specialized
transduction, where genes flanking the prophage insertion
site are transduced or an error in the predicted prophage
range (Fig. 5). 125 bacterial virulence genes (50.2%) are
within 10% of mycobacteriophage ends in the PhagesDB
database (Fig. 5). The presence of virulence genes in
clinical isolates is significantly enriched even when these
virulence genes near the ends are removed from only the
predicted prophages (F = 5.03, p = 4.85e-7 and F = 3.37,
p = 7.44e-4, proportions z-test).

Mycobacterium phylogeny influences on prophage
frequency
To test if NTM draft genomes with prophages are more
evolutionarily similar to each other than to NTM draft ge-
nomes without prophage, we performed a PERMANOVA
test of phylogenetic distance metrics. The genome wide
genetic distances of M. abscessus subsp. abscessus draft
genomes are more similar within the groups: with and
without prophages, than between groups (F = 2.17, p =
0.026, PERMANOVA). Supplementary Figure 2 displays

Fig. 3 Bacterial Virulence Frequency in Prophages by Species: Bar plots showing the frequency of a bacterial virulence genes within predicted
prophages by mycobacterial species. The presence of bacterial virulence genes in prophage genomes is not statistically significant by growth
rate (p = 0.085)
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the distribution of prophages in M. abscessus subsp.
abscessus and M. abscessus subsp. bolletti in the context of
the bacterial phylogeny. The distributions of predicted
prophages in other species are shown in Supplementary
Figures 3 and 4.
CRISPR elements have the capability to protect a bac-

terium against prophage integration. CRISPR elements
were present in only 4 of the 53 (7.5%) complete ge-
nomes and 12 of the 182 (6.6%) draft genomes. Presence
of CRISPR elements was not associated with the number
of prophages (H = 0.0092, p = 0.92, Kruskal-Wallis). The
abundance of tRNAs in the mycobacterial genomes was
significantly different by growth rate with slowly growing
mycobacterial species having a greater number of tRNAs
(H = 89.43, p = 3.18e-21, Kruskal-Wallis). In addition,
the relationship of tRNAs and prophage frequency cor-
rected by species reveals a positive linear correlation
only in M. abscessus (R2 = 0.34, p = 3.21e-4).

Discussion
In this study, we detail the frequency of prophages within
six different species of NTM from 182 draft genomes and
53 complete genomes. Prophages in this study are pre-
dicted using an ensemble approach combining two tools

that identify prophages in different ways [60]. Prophage
prediction in this study does not guarantee viruses capable
of excising, but is indicative of integrated elements that
contribute to the evolution of the host.
The number of prophages found in this study within

mycobacteria with a rapid growth rate is greater relative
to the number found in slowly growing mycobacteria
(Fig. 1). Assemblies of SGM are more GC rich than
RGM, which is correlated with higher contig numbers
(Table 1). Prophage identification does not appear to be
driven by assembly fragmentation as evident by the edge
case ratio. A higher edge case ratio in RGM compared
to SGM means that if prophages are missing from the
assembly they are more likely to be missing in RGM. In
addition, the correlation between the number of contigs,
median contig length, number of sequences > 1500 base
pairs, and the number of predicted prophages did not
hold during post-hoc testing. This further supports the
notion that assembly fragmentation is not affecting the
identification of prophages.
Our analyses revealed that the presence of CRISPR el-

ements are rare in NTM, as only 16 of 235 samples
(6.8%) contained CRISPR elements. Prior studies of
CRISPR elements in mycobacteria found loci with
greater than 5 repeats only in M. tuberculosis, M.bovis,

Fig. 4 Bacterial Virulence Frequency in Prophages by Data Source: Bar plots showing relative abundance of bacterial virulence genes within viral
genomes from our predicted prophages, mycobacteriophages from PhagesDB, and lysogenic mycobacteriophages of PhagesDB. The presence of
bacterial virulence genes in the genomes of our predicted prophages is statistically significant against the presence of bacterial virulence genes in
both the full PhagesDB mycobacteriophages and the lysogenic PhagesDB mycobacteriophages (F = 8.89, p = 6.16e-19 and F = 6.73, p = 1.73e-
11, proportions z-test)
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and M. avium species [61]. Prophage frequency did not
correlate with the presence of CRISPR elements, al-
though the sample size of mycobacteria with CRISPR el-
ements could be a limiting factor within this study.
tRNAs can act as an insertion site target for prophages

using a tyrosine-integrase [21]. Our hypothesis was that
an increased abundance of tRNA would result in more
prophages due to the increase in potential target integra-
tion sites for tyrosine-integrases in mycobacteriophages.
The abundance of tRNAs in SGM is enriched relative to
RGM. This is counterintuitive to our hypothesis consid-
ering the frequency of prophages by growth rate. We did
observe a positive correlation of tRNA counts and pro-
phages within M. abscessus subsp. abscessus genomes
though our sample size is limited for draft genomes with
higher numbers of prophages. Interestingly, the in-
creased abundance of tRNAs in SGM did not translate
to increased frequency of prophages compared to RGM,
which may be a result of prophages using a different
integrase or SGM inhibiting the integration of prophages
using another mechanism [22].
The evolutionary advantage for RGM to have more

prophages is unclear in the context of this study. Prior
studies in E. coli have shown an increased growth rate

linearly corresponds to an increase in burst size of
phages from the host [62]. Additionally, the increased
abundance of host bacteria may achieve a threshold
necessary for bacteriophage replication thus allowing the
continuation of integrated prophages in subsequent col-
onies of RGM [63]. M. smegmatis, the nonpathogenic
model organism that is commonly used to isolate myco-
bacteriophages is a RGM [27].
Many predicted prophages did not share significant

similarity to other known mycobacteriophages. The low
similarity between the predicted prophages and the
known mycobacteriophages could be a result of genetic
mosaicism or genetic degradation of the integrated
element. Of those that were assigned to a cluster, 12
prophages were assigned to clusters by ANI that typic-
ally exhibit a lytic life cycle. Changes to the threshold of
amount errors allowed in cluster assignment may affect
the clustering of predicted prophages. The prophages
predicted in this study do not share a core genome
reflecting the wide variability of viruses. The gene shared
amongst the most prophages was present in only 25
prophages. This gene and many others that are highly
shared have no defined function and are labeled hypo-
thetical proteins. Of note, the high mosaicism found in

Fig. 5 Relative Location of Bacterial Virulence Genes: Line graph showing relative abundance, location, and annotation of bacterial virulence
genes within viral genomes from our predicted prophages and mycobacteriophages from PhagesDB. The presence of bacterial virulence genes in
the genomes of our predicted prophages is statistically significant against the presence of bacterial virulence genes in both the full PhagesDB
mycobacteriophages (F = 8.89, p = 6.16e-19 proportions z-test). a) Bacterial virulence genes in predicted prophages (n = 66). b) Bacterial virulence
genes in mycobacteriophages from PhagesDB (n = 249)
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this study supports prior explorations of mycobacter-
iophage genomes. Pedulla et al. annotated 10 novel
mycobacteriophages and noted the abundance of previ-
ously defined bacterial genes within viral genomes (3.1%
of ORFs) including those homologs with the potential to
elicit an immune response in humans against M. tuber-
culosis and M. leprae [64].
Annotations of the predicted prophage elements

supports the rarity of transduction events, with 3.74% of
ORFs predicted annotated as bacterial genes. Also, viru-
lence genes were more abundant within prophages from
clinical NTM genomes than environmental mycobacter-
iophages cataloged in PhagesDB (1.01% clinical NTM vs
0.13% PhagesDB). Our results support our hypothesis
suggesting prophages could act as a reservoir of bacterial
genes important for virulence (Fig. 4). The location of
the virulence genes near the ends of predicted prophages
suggest either specialized transduction, where genes
flanking the prophage insertion site are transduced or an
error in the predicted prophage range (Fig. 5). The
percentage of virulence genes identified near the ends of
prophages and mycobacteriophages is similar (43.9% in
prophages and 50.2% in mycobacteriophages) and re-
moving the virulence genes on the ends from the
predicted prophages maintained the observation that
bacterial virulence genes are more likely to be present
within prophage elements derived from clinical sources
than from mycobacteriophages of PhagesDB.
Though clinical NTM are known to display different

levels of virulence, even within a species, it is unclear if
virulence genes within prophage elements affect patient
outcomes [65]. Presence of virulence genes alone does not
mean these genes are actively expressed, and the presence
of a prophage in a genome does not guarantee a func-
tional or excisable virus. Further studies of RNA transcrip-
tion of mycobacteria with prophages would be helpful in
characterizing the expression of phage genes. In addition,
our study relied on PhagesDB as an environmental proxy
of mycobacteriophage. Future studies exploring prophage
frequency within environmental isolates of mycobacteria
are needed to directly compare prophage susceptibility of
clinical and environmental NTM genomes.
This study demonstrates the presence of prophages in

clinical species of mycobacteria. Prophages offer a mech-
anism for the genetic mosaicism of mycobacteria which
have been observed to lack a distributed conjugal trans-
fer (DCT) protein [66]. An increase in the genetic fluid-
ity of a bacterial infection by prophage elements can
impact patient outcomes as seen in other pathogens
[67]. Mycobacteriophages may contribute to the patho-
genic potential of environmental mycobacteria by acting
as an external genetic reservoir. Additional work is
needed to understand the role of mycobacteriophages in
shaping the dynamics of mycobacterial infections.

Conclusions
In summary, our results indicate that prophages are
present in the genomes of clinical mycobacteria. Pro-
phages are more likely to be present in mycobacteria
with a rapid growth rate compared to slowly growing
species. The mechanism and selective advantage of this
enrichment by growth rate remains unclear. Prophages
within mycobacteria do not share a core genome and are
genetically distinct. Comparisons to other mycobacterio-
phages from PhagesDB revealed some similarities, in-
cluding shared members of lettered clusters, however
the largest group of integrated prophages were not
assigned to a previously defined cluster. In addition,
bacterial virulence genes were enriched in predicted
prophages from clinical genomes relative to environmental
mycobacteriophages from PhagesDB. Our comprehensive
analysis of prophage frequency and their genetic compos-
ition provides insight into the capability of mycobacterio-
phages to transduce bacterial genes relevant to bacterial
virulence, potentially influencing the progression of disease.
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Predicted_Prophages tab provides details about the predicted prophages
including the genomic coordinates, cluster assignment, and the
presence/absence of a bacterial virulence gene. The
Predicted_Prophages_Edge_Cases lists the coordinates of prophages
near the ends of contigs. The Bacterial_Genes tab represents the
annotated output of bacterial genes (excluding bacterial virulence genes).
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virulence genes. The Cluster_Virulence tab groups the predicted
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predicted prophages.

Additional file 4: Figure S1. Relative locations of predicted prophages
in M. absessus subsp. absessus and M. avium. Prophages are colored by
the host origin.

Additional file 5: Figure S2. Genome wide phylogeny of 80M.
abscessus subsp. abscessus and M. abscessus subsp. boletti genomes and 5
control genomes. The heatmap on the right shows the presence (black)
or absence (white) of the lettered PhagesDB clusters (x-axis). The
presence of prophage in a sample is noted by a shaded box in any
column except NA/Control. NA/Control shading signifies genomes
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this study. No shading means the sample does not have a prophage in
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Additional file 6: Figure S3. Phylogeny of host M. absessus subsp.
massiliense genomes. The shaded boxes are located along an x axis,
which lists the lettered PhagesDB clusters. The presence of prophage in a
sample is noted by a shaded box in any column except NA/Control. No
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shading means the sample does not have a prophage in that lettered
cluster. Statistical significance was not achieved using PERMANOVA on
this tree (F = 1.398, p = 0.225).

Additional file 7: Figure S4. Phylogeny of host M. chimaera and M.
intracellulare genomes. The shaded boxes are located along an x axis,
which lists the lettered PhagesDB clusters. The presence of prophage in a
sample is noted by a shaded box in any column except NA/Control. No
shading means the sample does not have a prophage in that lettered
cluster. Statistical significance was not achieved using PERMANOVA on
this tree (F = 1.12, p = 0.321).
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