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Optimization of Chronic Cardiac Resynchronization Therapy
Using Fusion Pacing Algorithm Improves Echocardiographic

Response
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ABSTRACT
Background: Whether reprogramming of cardiac resynchronization
therapy (CRT) to increase electrical synchrony translates into echo-
cardiographic improvement remains unclear. SyncAV is an algorithm
that allows fusion of intrinsic conduction with biventricular pacing. We
aimed to assess whether reprogramming chronically implanted CRT
devices with SyncAV is associated with improved echocardiographic
parameters.
Methods: Patients at a quaternary center with previously implanted
CRT devices with a programmable SyncAV algorithm underwent
routine electrocardiography-based SyncAV optimization during regular
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R�ESUM�E
Contexte : On ignore si la reprogrammation du dispositif de resyn-
chronisation cardiaque (DRC) afin d’am�eliorer la synchronisation
�electrique se traduit r�eellement par une am�elioration
�echocardiographique. L’algorithme SyncAV permet de fusionner la
conduction intrinsèque et la stimulation biventriculaire. Nous avons
tent�e de d�eterminer si la reprogrammation à l’aide de l’algorithme
SyncAV d’un DRC implant�e de façon permanente permet d’am�eliorer
les paramètres �echocardiographiques.
M�ethodologie : Les patients d’un centre de soins quaternaires por-
teurs d’un DRC dot�e d’un algorithme SyncAV programmable ont subi
Cardiac resynchronization therapy (CRT) decreases cardio-
vascular mortality and symptoms in patients with heart fail-
ure.1 However, a lack of response to CRT remains its greatest
challenge.2 The ideal method to optimize CRT post-
implantation is controversial. Echocardiography has been used
for CRT optimization.3 However, routine CRT settings are
used for the majority of CRT implants because of the complex
and time-consuming nature of echocardiographic optimiza-
tion.4 In an international survey, 58% of electrophysiologists
did not optimize atrioventricular (AV) and ventriculo-
ventricular delays.5 Therefore, using the electrocardiogram
(ECG) would be an inexpensive and practical process for CRT
optimization.4 Narrowing of the QRS complex with
biventricular pacing (the paced QRS duration [QRSd]) has
been shown to correlate with clinical and echocardiographic
improvement,6,7 as well as long-term mortality.8 One study
has also reported that ECG-based optimization using the
measurement of the narrowest QRS is comparable to
echocardiography-based optimization with regard to left
ventricle (LV) reverse remodeling.9

SyncAV is a device-based algorithm that is available in
some CRT devices manufactured by Abbott (Chicago, IL).
The algorithm alters the AV delay to allow biventricular
pacing synchronized with intrinsic AV conduction.10 To
achieve fusion between intrinsic conduction and biventricular
pacing, the device continuously adjusts the AV delay by a set
duration (programmable offset between 10 and 120 ms)
relative to the measured intrinsic AV conduction interval.
This process is dynamic and adjusts according to variations in
device-measured intrinsic conduction time, thereby resulting
in continuously adapting fusion pacing. Fusion pacing can
also be achieved by fusion of LV pacing and intrinsic con-
duction.11 The concept of fusion optimized interval was
previously described by Arbelo et al.,12 who demonstrated a
reduction in QRS duration and an acute improvement in
hemodynamics compared with nominal CRT programing.
The same finding was also described by Varma et al.10 during
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device clinic visits. This analysis included only patients who could be
programmed to the SyncAV algorithm (i.e., in sinus rhythm with
intrinsic atrioventricular conduction). Echocardiography was performed
before and 6 months after CRT optimization.
Results: Of 64 consecutive, potentially eligible patients who under-
went assessment, 34 who were able to undergo SyncAV programming
were included. Their mean age was 74 � 9 years, 41% were female,
and 59% had ischemic cardiomyopathy. The mean time from CRT
implant to SyncAV optimization was 17.8 � 8.5 months. At 6-month
follow-up, SyncAV optimization was associated with a significant in-
crease in left ventricular ejection fraction (LVEF) (mean LVEF 36.5% �
13.3% vs 30.9% � 13.3%; P < 0.001) and a reduction in left ven-
tricular end-systolic volume (LVESV) (mean LVESV 110.5 � 57.5 mL vs
89.6 � 52.4 mL; P < 0.001) compared with baseline existing CRT
programming.
Conclusion: CRT reprogramming to maximize biventricular fusion
pacing significantly increased LVEF and reduced LVESV in patients with
chronic CRT devices. Further studies are needed to assess if a
continuous fusion pacing algorithm improves long-term clinical out-
comes and to identify which patients are most likely to derive benefit.

une optimisation �electrocardiographique de routine de cet algorithme
à l’occasion d’une consultation de suivi. L’analyse ne portait que sur
les patients dont le dispositif pouvait être programm�e au moyen de
l’algorithme SyncAV (c.-à-d. en rythme sinusal avec conduction aur-
iculoventriculaire intrinsèque). Une �echocardiographie a �et�e r�ealis�ee
avant l’optimisation du DRC, puis 6 mois après.
R�esultats : Sur les 64 patients cons�ecutifs potentiellement admissi-
bles qui ont fait l’objet d’une �evaluation, 34 sujets dont le DRC pouvait
être programm�e à l’aide de l’algorithme SyncAV ont �et�e retenus. Les
sujets avaient en moyenne 74 � 9 ans; 41 % d’entre eux �etaient des
femmes, et 59 % pr�esentaient une cardiomyopathie isch�emique. Le
temps �ecoul�e entre l’implantation du DRC et l’optimisation au moyen
de l’algorithme SyncAV �etait en moyenne de 17,8 � 8,5 mois. Au
moment du suivi à 6 mois, l’optimisation au moyen de l’algorithme
SyncAV a �et�e associ�ee à une augmentation significative de la fraction
d’�ejection ventriculaire gauche (FEVG) (FEVG moyenne de 36,5 % �
13,3 % vs 30,9 % � 13,3 %; p < 0,001) et à une r�eduction du volume
t�el�esystolique ventriculaire gauche (VTSVG) (VTSVG moyen de 110,5 �
57,5 mL vs 89,6 � 52,4 mL; p < 0,001) comparativement à la pro-
grammation initiale du DRC.
Conclusion : La reprogrammation du DRC afin de maximiser la sti-
mulation biventriculaire par fusion a consid�erablement augment�e la
FEVG et r�eduit le VTSVG chez les patients porteurs d’un DRC perma-
nent. D’autres �etudes sont n�ecessaires pour d�eterminer si un algo-
rithme de stimulation par fusion en continu permet d’am�eliorer les
r�esultats cliniques à long terme et pour �etablir le profil des patients les
plus susceptibles de b�en�eficier d’une telle intervention.
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a de novo implant prospective study using the specific Syn-
cAV algorithm described earlier. Recent published data re-
ported a significant QRS narrowing with programming of
SyncAV in existing CRT devices as determined acutely by 12-
lead ECG, but did not report longer-term outcomes.13,14 The
pacing configuration that achieved the narrowest QRS with
SyncAV was biventricular pacing with SyncAV and an opti-
mized offset.10,14

Whether reprogramming of CRT to increase electrical
synchrony translates into echocardiographic and functional
status improvement remains unclear. We aimed to assess
whether reprogramming with SyncAV is associated with an
increase in left ventricular ejection fraction (LVEF) and a
decrease in left ventricular end-systolic volume (LVESV)
compared with routine CRT programming in patients with
chronic CRT devices.
Methods

Study population

Patients at a single quaternary cardiac center (McGill Uni-
versity Health Center, Montreal, Canada) with a CRT defi-
brillator or a CRT pacemaker with a programmable SyncAV
algorithm (St. JudeUnify Assura andQuadra Assura, or St. Jude
Allure Quadra RF; St. Jude Medical, Saint Paul, MN)
implanted between January 2014 and November 2017 were
evaluated for SyncAV optimization starting in May 2018. The
flow diagram for patient selection is shown in Figure 1. Of the
64 potentially eligible consecutive CRT implants, we excluded
patients with device explant, lead dislodgement, loss to follow-
up, loss of required AV conduction (preventing use of SyncAV
algorithm), transition to palliation, or refusal of optimization.
The remaining 34 patients had ECG-based optimization per-
formed and were included in this analysis. This study was
approved by the McGill University Health Center Institutional
Review Board, and patients included in the study fulfilled
criteria for CRT implantation as per Canadian Cardiovascular
Society guideline recommendations.15

Device programming

Details for ECG-based SyncAV optimization were as pre-
viously described.14 In brief, devices in all patients at our
center were programmed according to operator preference
(without use of SyncAV) until December 2017 when ECG-
based CRT optimization became the standard of care for
newly implanted devices. Routine in-clinic CRT optimization
was performed starting May 2018 for patients with chroni-
cally implanted devices according to our protocol, including
sequential ECGs.14 When programming with SyncAV, the
optimal offset achieving the narrowest QRS was used.

Standard programming before the SyncAV optimization
involved programming as set by the treating physician ac-
cording to his/her standard clinical practice; there was no
mandated programming protocol. This programming may
have been nominal settings or settings selected by the treating
physician (considering baseline ECG and postoperative paced
ECG to guide programming). None of the devices in the
patients were previously programmed using the SyncAV
algorithm.

The SyncAV algorithm has been described.13,14 In brief,
the SyncAV algorithm periodically extends the AV delay.
When intrinsic ventricular events are sensed, the device



Figure 1. Flow diagram for patient selection. Modified from AlTurki
et al.14 with permission from Elsevier.
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reprograms the AV delay to a programmed shorter offset
(default offset �50 ms) than the measured intrinsic AV in-
terval. The offset can be programmed over a range of values to
find the ideal offset that achieves electrical synchrony for each
patient. The device was then programmed at that “ideal”
offset for each patient.

Electrocardiographic measurements

Standard 12-lead electrocardiography was performed at a
paper speed of 25 mm/s and a scale of 10 mm/mV, and QRS
duration was measured automatically by the ECG machine
(GE MAC 5500 HD Resting ECG System, Boston, MA) as
previously described.14 The ECG machine is programmed to
measure the earliest onset of the QRS and the latest offset; this
translates into the duration from the pacemaker spike until the
end of the QRS. QRS duration was subsequently validated
manually by a single investigator who was blinded to the
clinical data and pacing programming.

Echocardiographic and clinical outcomes

At the baseline visit during which SyncAV programming was
activated, all patients had a clinical assessment, including deter-
mination of New York Heart Association (NYHA) functional
class and a transthoracic echocardiogram. All patients were
scheduled for a clinical follow-up and a transthoracic echocar-
diogram 6 months postoptimization. NYHA functional class,
LVEF, LVESV, and mitral regurgitation (MR) severity as
assessed on a grade scale (0 ¼ none or trivial, 1 ¼ mild,
2 ¼ moderate, 3 ¼ moderate to severe, and 4 ¼ severe)16 were
recorded. Other echocardiographic measurements included left
ventricular end-diastolic volume (LVEDV) and pulmonary ar-
tery systolic pressure (PASP). LVESV and LVEDV were
measured in the apical 4-chamber and apical 2-chamber views
and then averaged; LVEFwas calculated using Simpson’s biplane
method. The echocardiograms were read by level III trained
echocardiographers who were unaware of device programming.

We defined a positive LVEF response to CRT as an ab-
solute increase in LVEF � 10%; we find this value to be of
clinical relevance. Previous studies have used cutoffs ranging
from 5% to 15%.17 LVEF response was assessed � 6 months
after the initial implant procedure (compared with LVEF
before CRT implant), and LVEF response was subsequently
reassessed 6 months after SyncAV ECG optimization
(compared with LVEF immediately before SyncAV ECG
optimization). In addition, response as measured by a � 15%
decrease in LVESV was also assessed 6 months after SyncAV
ECG optimization compared with LVESV before SyncAV
ECG optimization; the LVESV response after initial CRT
could not be assessed because of the absence of data regarding
LVESV before initial CRT.

Statistical analysis

All data are presented as mean � standard deviation for
continuous variables and as proportions for categorical vari-
ables. A paired t test was used to compare outcomes before
and 6 months after SyncAV optimization. A P value of < 0.05
was considered statistically significant. Statistical analysis was
performed using StatsDirect 3 (StatsDirect Ltd., 2013,
Birkenhead, England).
Results

Patient characteristics

Patient characteristics at the time of SyncAV optimization
are summarized in Table 1. At 6 months of follow-up, 94% of
patients had complete clinical and echocardiographic data.
Their mean age was 74 � 9 years, 41% were female, and 59%
had ischemic cardiomyopathy. The mean time from CRT
implant to SyncAV optimization was 17.8 � 8.5 months. At
the time of SyncAV optimization, the mean intrinsic con-
duction QRSd was 163 � 24 ms, the mean existing CRT
pacing QRSd was 152 � 25 ms, and the SyncAV optimized
mean QRSd was 138 � 23 ms.

In terms of response to CRT, the mean LVEF was
24.1 � 10.1 before initial CRT implantation, and with
standard CRT programming, 44% of patients had had a
significant improvement in LVEF (LVEF responders � 10%),
whereas the remaining 56% had not improved their LVEF �
10% and were deemed CRT LVEF nonresponders.

Left ventricular ejection fraction

Themean LVEF before SyncAV optimization was 30.9%�
13.3% (median, 27.5%; interquartile range, 20%-40%) and
after 6 months increased to 36.5% � 13.3% (median, 40%;
interquartile range, 25%-50%). The mean difference in LVEF
was 6.3%, 95% confidence interval (CI), 3.1%-9.5%, P <
0.001 (Fig. 2A). Of the 32 patients with follow-up LVEF, 40%
had an increase � 10%, including 9% who had an increase >
15%. In addition, a further 19%of patients had an increase of�
5% but not reaching 10%, and the remaining (41%) had no
significant change in LVEF (Fig. 3). Of those who had not
responded to initial CRT (19, 56%), 9 patients (47%) had a
significant improvement in LVEF (LVEF responders, �10%),



Table 1. Baseline patient characteristics

Characteristic
All patients
N ¼ 34

Initial CRT responders
N ¼ 15

Initial CRT nonresponders
N ¼ 19

Male, n (%) 19 (56) 7 (50) 12 (63)
Age, y (range) 74 (60-93) 74 (60-89) 75 (63-93)
Time since implant in mo, mean (range) 17.8 � 8.5 16.5 � 9.3 17.8 � 7.2
Ischemic cardiomyopathy, n (%) 21 (62) 6 (40) 15 (79)
Hypertension 28 (82) 14 (93) 14 (78)
Diabetes mellitus 8 (24) 4 (27) 4 (21)
Paroxysmal atrial fibrillation 10 (29) 3 (20) 7 (37)
Left bundle branch block 31 (91)* 15 (100) 16 (84)
CRT defibrillator 22 (65) 10 (67) 12 (63)
NYHA, n (%)y

I 4 (11.8) 1 (7) 3 (16)
II 24 (70.6) 14 (93) 10 (53)
III 6 (17.6) 0 (0) 6 (31)

QRSd (ms) 163.5 � 24.3 168.1 � 17.3 158.9 � 29.1
Intrinsic PR interval (ms) 187.2 � 36.6 184.9 � 21.1 187.3 � 46.5
LVEF (%) before initial CRT 24.1 � 10.1 24.9 � 9.4 23.7 � 10.5
LVEF (%) before SyncAV 30.9 � 13.3 41.1 � 9.6 23.4 � 10.6
LVEDV (mL)y 157.5 � 56.6 133.4 � 43.5 174.1 � 59.7
LVESV (mL)y 110.5 � 57.5 75.6 � 31.8 134.5 � 59.7
Left atrial diameter (cm) 43.3 � 7.0 42.5 � 6.6 43.9 � 7.5
Medical therapy for heart failure

ACEI/ARB 28 (82) 12 (80) 16 (84)
b-Blocker 28 (82) 12 (80) 16 (84)
MRA 5 (15) 2 (13) 3 (16)

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CRT, cardiac resynchronization therapy; LVEDV, left ventricular end-
diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; MRA, magnetic resonance angiography; NYHA, New
York Heart Association; QRSd, QRS duration.

Modified from AlTurki et al.14 with permission from Elsevier.
* The remaining 3 were bifascicular block (right bundle branch block and left anterior fascicular block or left posterior fascicular block).
yBefore SyncAV ECG optimization.
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and 10 patients (53%) remained nonresponders after SyncAV
optimization (Fig. 4). This increased the proportion of total
LVEF responders to 71%. In contrast, 33% of those who had
already responded to initial CRT had a significant further
improvement in LVEF (�10%). No patient had a significant
reduction in LVEF (>5%).

In patients who responded to initial CRT, mean LVEF
increased from 41.1% � 9.6% to 45.4% � 8.2% (P ¼
0.01) after SyncAV ECG optimization. In patients who did
not respond to initial CRT, mean LVEF increased from
23.4% � 10.6% to 31.4% � 13.3% (P < 0.001) after
SyncAV ECG optimization (Supplemental Fig. S1). There
was no difference in change in LVEF after SyncAV opti-
mization between those who had initially responded and
those who had not (P ¼ 0.24).

Left ventricular end-systolic volume

Mean LVESV before SyncAV optimization was
110.5 � 57.5 mL and after 6 months decreased to 89.6 �
52.4 mL; the mean difference in LVESV was �19.0 mL, 95%
CI, �8.3 to �29.6, P < 0.001 (Fig. 2B). After SyncAV ECG
optimization, 17 patients (53%) had a significant decrease �
15% in LVESV. Of these patients, 7 (41%) were already
LVEF responders after initial CRT and 10 (59%) did not
have an LVEF response after initial CRT.

Mitral regurgitation

After optimization with SyncAV, there was a significant
reduction in the severity of MR (mean MR grade 0.9 � 1.0
before SyncAV vs 0.5 � 1.0 after SyncAv optimization;
P < 0.001) (Fig. 5). Before SyncAV optimization, 41% of
patients had no or trivial MR, 41% had mild MR, 16% had
moderate to severe MR, and 3% had severe MR. At 6 months
of follow-up after SyncAV optimization, 68% had no or trivial
MR, 16% had mild MR, 16% had moderate to severe MR,
and none had severe MR. The distribution of MR severity is
shown in Figure 6.

Other echocardiographic measurements

Mean LVEDV before SyncAV optimization was
157.5 � 56.6 mL and after 6 months decreased to 141.3 �
55.7 mL; the mean difference in LVEDV was �14.1 mL, 95%
CI, �3.1. to �25.2, P ¼ 0.007. PASP also decreased after
SyncAV ECG optimization. Mean PASP was 37.5 � 14.7 mm
Hg before SyncAV optimization and decreased to 32.9 mm
Hg � 10.3 at 6 months after optimization (mean
difference �4.2 mm Hg, 95% CI, �0.3 to �8.1, P ¼ 0.04).

NYHA and medication use

No significant difference in NYHA functional class was
observed after SyncAV optimization (mean NYHA 2.1 � 0.5
before SyncAV vs 2.0 � 0.5 after SyncAV optimization;
P ¼ 0.16). The distribution of NYHA functional class is sum-
marized in Supplemental Figure S2. There was no significant
difference in the use of heart failure medication (Supplemental
Table S1).

Discussion
The main finding of this analysis is that in patients with

chronically implanted CRT devices, optimization using a



Figure 2. Change in (A) left ventricular ejection fraction (LVEF) and (B) left ventricular end-systolic volume (LVESV) before and 6 months after
SyncAV electrocardiogram (ECG) optimization.
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biventricular fusion-pacing algorithm to achieve further
reduction in QRSd was associated with a significant in-
crease in LVEF at 6 months after optimization. To the best
of our knowledge, this is the first study to demonstrate that
an increase in electrical synchrony is associated with
echocardiographic improvement in patients chronically
implanted with CRTs, irrespective of previous responder
status, using an easy, quick, and reproducible ECG-based
optimization that can be performed during a regular de-
vice clinic follow-up visit. Echocardiographic response to
CRT has been assessed using cutoffs of an increase in LVEF
� 5% and a decrease in LVESV � 10%.18,19 A combi-
nation of an LVEF improvement � 5% and LVESV
reduction � 10% was shown to be the best predictor for
improved survival.20 In this analysis, stricter cutoffs of an
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increase in LVEF � 10% and a decrease in LVESV � 15%
were used to provide a more specific indicator of CRT
response.

Another important finding is the high proportion of pa-
tients (44%) classified as nonresponders after initial CRT
therapy who subsequently had a significant improvement in
LVEF (at least 10% absolute LVEF increase) after optimiza-
tion using SyncAV. In addition to conversion of non-
responders to responders, QRS narrowing and a further
increase in LVEF (at least 10%) were also seen in 1 in every 3
patients who already responded to initial CRT therapy,
demonstrating a further improvement in electrical and me-
chanical synchrony. None of the patients had QRS widening
or worsening in the LVEF or MR at 6 months after contin-
uous CRT optimization using the SyncAV algorithm. Trucco
et al.21 showed that baseline manual optimization of the AV
and ventriculo-ventricular delays, to achieve biventricular
fusion pacing, immediately postimplantation leads to a greater
proportion of patients achieving both electrical synchrony and
LV reverse remodelling at 12 months. Our study validates the
long-term effect of an automated continuously optimized
biventricular fusion-pacing algorithm.

Unfortunately, CRT device optimization is not routinely
performed as revealed in the international survey by Gras
et al.5 Approximately 58% of electrophysiologists do not
optimize CRT postimplantation and just used the nominal
settings.4 Part of this issue is probably related to the time-
consuming and complex nature of echocardiographic and
intrinsic electrogram-based optimization.4 In addition, mul-
tiple studies have shown a lack of benefit of these approaches
compared with routine out-of-the-box settings.22 Even in
studies that used an ECG-based optimization, the ECG an-
alyses were performed with a paper speed between 50 and 300
mm/s, used computerized recording systems, and required
experienced observers for QRS width measurement.12,21 In
contrast, we used the standard 12-lead surface ECG at a
regular speed of 25 mm/s with automated measurements,
which are faster, accurate, and easily reproducible.

Our study was unable to demonstrate a significant
improvement in NYHA functional class status, although no
patient had a worsening of functional status. The QRS nar-
rowing observed during our analysis (152 � 25 ms during the
baseline evaluation to 138 � 23 ms after optimization) was
similar to that observed in other studies that assessed fusion
pacing.4,7 Such a reduction in QRSd has been shown to
correlate with clinical outcomes. In a meta-analysis, Koran-
tzopoulos et al.7 showed that QRS narrowing is a strong
predictor of clinical and echocardiographic response (or super
response) to CRT. LV fusion pacing has been tested using the
AdaptiveCRT algorithm, which periodically assesses intrinsic
conduction; during normal AV conduction, only LV pacing is
provided while biventricular pacing with adjustments of the
ventriculo-ventricular timing occurs during prolonged AV
conduction.23,24 Adaptive CRT has been shown to be non-
inferior to nominal CRT with suggestion of improvements in
clinical status, echocardiographic parameters, and clinical
outcomes, and a reduction in the incidence of atrial fibrilla-
tion particularly in patients with normal AV conduction.23e26

A large prospective, randomized, controlled, multicentre,



Figure 5. Change in mitral regurgitation (MR) severity before and 6 months after SyncAV ECG optimization.
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clinical trial is under way to assess the impact of AdaptiveCRT
on cardiovascular outcomes.27

Identifying predictors of nonresponse to CRT remains a
great challenge. Despite important advances to improve pa-
tient selection based on clinical characteristics, QRS duration,
and QRS morphology, the frequency of nonresponse to CRT
continues to be a major issue.2,28 Our results suggest that in a
considerable proportion of these patients, if sinus rhythm with
intrinsic AV conduction is present, a fusion pacing algorithm
can improve electrical and mechanical synchrony.

Limitations

This is a single-center study with a limited sample size
and 6 months of follow-up after SyncAV optimization.
However, significant improvements in LVEF were
demonstrable and correlated with QRS narrowing. It is
noteworthy that clinical improvement after CRT usually
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randomized studies with longer-term follow-up. A ran-
domized trial of approximately 200 patients is currently
under way and will provide the needed insight
(NCT03961399). In addition, larger studies will be needed
to identify predictors of response to SyncAV optimized
pacing. Finally, the determination of response to CRT was
based on LVEF and not LVESV because of lack of LVESV
data before initial CRT. However, although LVESV is a
sensitive marker for LV reverse remodelling, an LVEF in-
crease � 10% is likely to reflect a more clinically mean-
ingful echocardiographic improvement and if anything may
underestimate the response to SyncAV. In addition, we
have provided the LVESV data before and after SyncAV
optimization. The time from initial CRT implant to pre-
SyncAV echo varied in each patient, but the time before
and after SyncAV was similar at approximately 6 months.
Conclusion
ECG-based CRT optimization using an algorithm to

achieve biventricular pacing fused with intrinsic conduction
significantly improved electrical synchrony and LVEF in
chronically CRT-paced patients. Improved ventricular func-
tion at 6 months after CRT optimization was independent of
prior response to conventional CRT. This clinic-based
method was a simple, safe, and effective means to optimize
previously implanted CRT devices. Larger randomized studies
are required to compare long-term clinical outcomes between
dynamically optimized biventricular fusion pacing and tradi-
tional biventricular CRT pacing to inform whether chronic
CRT devices with this algorithm in these patients should be
reprogrammed.
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