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ABSTRACT

Biological processes are usually associated with
genome-wide remodeling of transcription driven by
transcription factors (TFs). Identifying key TFs and
their spatiotemporal binding patterns are indispens-
able to understanding how dynamic processes are
programmed. However, most methods are designed
to predict TF binding sites only. We present a com-
putational method, dynamic motif occupancy analy-
sis (DynaMO), to infer important TFs and their spa-
tiotemporal binding activities in dynamic biological
processes using chromatin profiling data from mul-
tiple biological conditions such as time-course hi-
stone modification ChIP-seq data. In the first step,
DynaMO predicts TF binding sites with a random
forests approach. Next and uniquely, DynaMO infers
dynamic TF binding activities at predicted binding
sites using their local chromatin profiles from mul-
tiple biological conditions. Another landmark of Dy-
naMO is to identify key TFs in a dynamic process
using a clustering and enrichment analysis of dy-
namic TF binding patterns. Application of DynaMO
to the yeast ultradian cycle, mouse circadian clock
and human neural differentiation exhibits its accu-
racy and versatility. We anticipate DynaMO will be
generally useful for elucidating transcriptional pro-
grams in dynamic processes.

INTRODUCTION

Transcription factors (TFs) bind to functional regulatory
DNA sequences and regulate the expression of target genes.
Hundreds of TFs have been identified from yeast to mam-
mals (1,2). They play critical roles in ensuring the accu-

racy and specificity of transcription, not only under home-
ostatic conditions but also in various dynamic processes,
such as cell cycle, development, differentiation and stress re-
sponse (3–9). TFs do not merely establish appropriate lev-
els of transcription, they also drive the progression of these
dynamic processes. The functions of TFs are mostly con-
text dependent (10). Mutations in TFs may dramatically af-
fect gene expression under certain specific conditions or per-
turbations, though effects in the steady state may be mini-
mal (11,12). Therefore, examining the dynamics and con-
text of TF binding and activity is important for understand-
ing their physiological functions. Chromatin immunopre-
cipitation followed by deep sequencing (ChIP-seq) has been
widely used to examine genome-wide binding of TFs (13).
However, each ChIP-seq experiment can only study one TF
in one biological condition, and most recent studies were
able to examine only a few TFs and conditions (14,15). A
high-throughput ChIP approach still only examines limited
TFs and conditions (16). An obvious challenge is how to
examine genome-wide binding of hundreds of TFs simul-
taneously in a dynamic process consisting of multiple con-
ditions (e.g. multiple time points), and how to identify TFs
important for the dynamic process and prioritize them for
subsequent functional studies. Directly applying ChIP-seq
to all TFs and conditions would be laborious and costly,
and often impossible due to limitations in materials, anti-
bodies and reagents.

TFs usually recognize specific patterns of DNA se-
quences, known as TF binding motifs (4), characterized
by consensus sequences or position-specific frequency ma-
trices (PSFMs). The motif base readout and shape read-
out could determine protein–DNA recognition (17). Re-
cent studies have shown that TF binding activities can
be predicted by integrating static motif information with
condition-dependent information on chromatin states and
accessibility from high-throughput chromatin profiling data
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such as histone modification ChIP-seq and DNase I hyper-
sensitivity sequencing (DNase-seq) data (18–26). This ap-
proach can predict binding sites of many TFs simultane-
ously. However, currently the approach is primarily used
to predict TF binding sites (TFBSs) in a single condition
or differential binding between pairs of conditions. Most
existing methods do not provide a systematic solution to
analyzing global regulatory programs in a dynamic process
such as a time-course experiment with multiple conditions,
which requires one to answer important questions such as
which TFs are important for controlling the dynamic pro-
cess, where and when these TFs bind, how their binding ac-
tivities change across conditions, what major dynamic occu-
pancy patterns of cis-regulatory elements exist, and which
TFs are responsible for these patterns.

Here we introduce dynamic motif occupancy analysis
(DynaMO), a computational pipeline that integrates TFBS
prediction by random decision forests, binding site dynamic
occupancy pattern discovery by unsupervised clustering,
and DNA motif enrichment analysis to systematically ad-
dress the above issues. DynaMO takes global chromatin
profiling data from a dynamic process (e.g. time-course hi-
stone modification ChIP-seq or DNase-seq data) and TF
binding motifs as input. It is designed to help users to
achieve two goals: (i) predict important TFs responsible for
dynamic processes; (ii) predict binding sites of these TFs
and evaluate dynamic changes in their binding.

We applied DynaMO to study yeast metabolic cycle
(YMC; also referred to as the ultradian cycle) (27), mam-
malian circadian cycle (28), and human neural differentia-
tion (29). The first two systems exhibit coordinated oscil-
lations of the transcriptome, epigenome and metabolome
(30–32), and neural differentiation also shows dynamics of
transcription and histone modification (33). Our analyses
demonstrate that DynaMO is capable of unsupervised dis-
covery of important TFs and their binding patterns for dy-
namic processes. Furthermore, it also allows one to more
accurately predict TF binding sites.

MATERIALS AND METHODS

DynaMO overview

DynaMO is developed using the statistical programming
language R (34). The objective of DynaMO is to integrate
TF binding motif information with dynamic genome-wide
chromatin profiling data to predict important TFs respon-
sible for dynamic processes. It also predicts binding sites
recognized by these TFs and dynamic changes of TF bind-
ing activities. We assume that chromatin profiling data col-
lected from multiple biological conditions (e.g. multiple
time points of a biological process) are available. The data
may involve only one data type (e.g. ChIP-seq for one his-
tone mark) or multiple data types (e.g. ChIP-seq for multi-
ple histone marks) capable of serving as surrogates for TF
binding activities. For each data type, data from all condi-
tions are assumed to be available. DynaMO has three gen-
eral components: (i) predicting TF binding sites; (ii) group-
ing binding sites with similar dynamic binding patterns into
clusters; (iii) identifying TFs associated with each binding
site cluster. For time course data, DynaMO can also de-
scribe temporal activities of predicted binding sites by fit-

ting smooth temporal curves and extracting temporal char-
acteristics from the fitted curves including the estimated
time points corresponding to the maximal or minimal ac-
tivity or the fastest changes in activity.

Data preprocessing

DynaMO takes locations of motif sites and aligned se-
quence reads from global chromatin profiling experiments
as input (e.g. histone modification ChIP-seq data, DNase-
seq data, etc.). For a given chromatin data type, each aligned
read is shifted L/2 base pairs (bp) toward its 3′ end where L
represents the expected DNA fragment size. This is because
in experiments such as ChIP-seq, DNA is fragmented into
small size smears and reads are typically generated from
the ends of the DNA fragments through sequencing-by-
synthesis. DNAs are synthesized in 5′-to-3′ direction. The
L/2 bp shift toward the 3′ end of the read is equivalent to
extending each read by L bp from its 5′ end to reconstruct
its original DNA fragment and then extracting the center of
the DNA fragment. For example, in the YMC analysis be-
low, the DNA fragment size for the H3K9ac ChIP-seq data
was expected to be ∼150 bp based on the size selection step
in the ChIP-seq protocol. Therefore, L was set to 150 (i.e.
reads were shifted 75 bp toward 3′ ends). The shifted reads
are used for all subsequent analyses.

In our study, CisGenome (35) was used to map TF bind-
ing motifs to genomes. Motif sites with likelihood ratio
≥500 (i.e. the default cutoff value of CisGenome) were re-
ported, and their locations were used for subsequent analy-
ses. DynaMO first extends each motif site by W bp on both
sides from the motif center. This creates a 2W bp long win-
dow centered at each motif site. The window is then divided
into N consecutive bins. The length of each bin is B bp. Here
B*N = 2W. For each data type and each biological con-
dition, the number of shifted reads in each bin is counted,
yielding an N-dimensional count vector for each motif site.
The bin read counts are normalized across samples by the
total read count of each sample. When there are D differ-
ent data types, the above procedure will produce D vectors,
and each vector is N-dimensional and contains read counts
from N bins. They will be used as features by the random
forests (RF) model below for TFBS prediction.

The procedure above involves two user-specified parame-
ters W and B. The other two parameters D and L are deter-
mined by the experimental design. It is recommended that
the window size parameter W should reflect the signal span
(i.e. peak width) in the chromatin profiling data. Given W,
the choice of bin size B represents a tradeoff between the
features’ spatial resolution (i.e. bin size) and their dimen-
sion (i.e. bin number). Typically we choose B so that the bin
size is ∼20–100 bp and the bin number is below 40–50 (i.e.
N < 40–50) to avoid extremely high dimensionality. Take
the YMC data as an example. After ChIP-seq peak calling
described below, the mean width of H3K9ac peaks was 298
bp. Considering that TFs typically bind to nucleosome free
regions and histone modification peaks are on nucleosomes
adjacent to TFBSs, we set W = 300 and B = 20. This means
that the 600 bp window surrounding each motif site was di-
vided into 30 consecutive bins and each bin was 20 bp long.
Read counts from these 30 bins were used by RF as fea-
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tures for TFBS prediction. In the human neural differenti-
ation data, the mean width of the H3K27ac and H3K4me3
ChIP-seq peaks was 976 and 1166 bp respectively. In the
mammalian circadian clock data, the mean peak width for
H3K9ac and H3K4me1 was 896 and 984 bp respectively.
Thus, the average span of chromatin signals in these two
mammalian datasets was ∼1000 bp. Based on this, we set W
= 1000 and B = 50. This implies that the 2000 bp window
surrounding each motif site was divided into 40 consecu-
tive bins and each bin was 50 bp long. In Supplementary
Materials, we evaluated the impact of different values of W
and B on TFBS prediction. It was found that DynaMO is
relatively robust to different choices of W and B unless they
deviate substantially from our recommended values (see de-
tails in Supplementary Materials).

TFBS prediction

DynaMO uses a two-pass algorithm to predict TFBSs.
Initial peak calling (First pass TFBS prediction): In this

step, a conventional ChIP-seq peak caller is used to ana-
lyze global chromatin profiling data (e.g. histone modifica-
tion ChIP-seq data, DNase-seq data, etc.). For each data
type and each biological condition (e.g. each time point),
genomic regions with enriched chromatin signals are iden-
tified. In principle, any peak caller compatible with the data
type at hand can be used here. For instance, when one deals
with a ChIP-seq dataset with both ChIP and input control
samples, a ChIP-seq peak caller capable of handling con-
trol samples may be used. For a DNase-seq dataset without
any input control sample, one should use a peak caller that
does not require control samples. For convenience to inte-
grate with the DynaMO R scripts, we used a peak caller de-
veloped in R, BayesPeak (36), to analyze data in this study.
Peaks reported by BayesPeak with default parameters were
the initial peaks.

RF (Second pass TFBS prediction): for each biological
condition (e.g. each time point), all motif sites are separated
into two classes: motif sites overlapping with an initial peak
identified from the previous step in this condition, and motif
sites that do not overlap with the initial peaks. From these
two classes of motif sites, a positive training set and a nega-
tive training set are constructed for each TF for subsequent
supervised learning. More precisely, suppose there are D
data types. To construct the positive training set for each
TF and biological condition, motif sites overlapping with
the initial peaks identified from any data type are identi-
fied. These motif sites are ranked by the number of overlap-
ping peaks (i.e. how many data types have peaks that over-
lap with each motif site) first and then in case of ties, by the
sum of normalized peak signals (i.e. normalized read counts
in the 2W bp window centered at motif sites) from all data
types. The positive training set consists of 250 motif sites
chosen from the top ranked sites. If a TF has fewer than
250 motif sites that overlap with initial peaks, all motif sites
overlapping with the initial peaks are used as the positive
training set. To construct the negative training set for each
TF and biological condition, 250 motif sites are randomly
sampled from the TF’s motif sites that do not overlap with
any initial peak in this biological condition. In addition to
the negative training set, we also randomly sample 500 mo-

tif sites and use them as background motif sites to derive the
null distribution for P-value calculation. Next, the positive
and negative training sets are used for constructing super-
vised TFBS prediction as follows:

i) For each TF and biological condition (e.g. each time
point), DynaMO first constructs an RF model using the
corresponding positive and negative training sets. This
is done using the randomForest function in R (the num-
ber of trees is set to 500, the default value of the ran-
domForest function). The features used by RF are the
vectors of bin read counts surrounding each motif site
described above. This RF model is TF- and condition-
specific. In other words, each (TF, condition) pair has
its own model. The trained model is then applied to all
motif sites of the TF to predict whether each motif site
is bound or not. Each motif site receives a vote value
from the RF. The same RF model is also applied to all
background motif sites to generate the null distribution
of the vote values for P-value calculation.

ii) For each biological condition, DynaMO also combines
the training data from all TFs (e.g. all 175 motifs in
YMC) together. Using the combined positive train-
ing set and negative training set, another RF model is
trained. This model is not TF-specific. It is common to
all TFs. However, it is still condition-specific. Applying
the model to all motif sites and all background sites, Dy-
naMO will generate another set of vote values for each
motif site.

For each TF and condition, the two sets of vote values
(one from the TF- and condition-specific RF, and the other
one from the TF-invariant but condition-specific RF) are
averaged at each motif site. Similarly, the two sets of vote
values are also averaged for each background site to derive
the null distribution. Based on the empirical cumulative dis-
tribution function of the null distribution (computed using
the R function ‘ecdf’), a p-value is calculated for each mo-
tif site. The p-values are then converted into false discovery
rate (FDR) (using the R function ‘fdr’) to account for mul-
tiple testing.

Clustering binding sites

Motif sites with FDR < 0.01 in any of the analyzed bio-
logical conditions (e.g. at any of the 16 time points in the
YMC) are combined. These predicted binding sites from
all TFs are pooled together. For each data type and bio-
logical condition, the normalized read count in the 2W bp
long window at each binding site are log2 transformed af-
ter adding a pseudo-count of 1. For each data type, log-
transformed read counts are organized into a matrix. Rows
of the matrix correspond to motif sites, and columns cor-
respond to biological conditions. Each row is standardized
to have zero mean and unit standard deviation. When there
are multiple data types, the matrix is first constructed and
row-standardized for each data type. Then matrices from
all data types are concatenated together. For C biological
conditions and D data types, the combined matrix will have
C*D columns in total. K-means clustering with Hartigan-
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Wong algorithm (‘kmeans’ function in R) is then applied to
the combined matrix to cluster rows.

The number of clusters, K, is determined using the piece-
wise linear elbow method in (37). Briefly, K is set to differ-
ent values. For each K, the rows of data matrix (i.e. binding
sites) are clustered, and the proportion of total data vari-
ance unexplained by the cluster structure is computed. To
do so, let yi denote the row-standardized data for row i. Let
M(i) be the cluster membership of the ith row. Let ȳkdenote
the mean of the kth cluster, and let ȳ be the mean of
all rows. The total data variance is SST = ∑I

i=1 ||yi − ȳ||2
where ||.|| represents l2 norm and I is the total number of
rows. The variance unexplained by the cluster structure is
SSW = ∑K

k=1

∑
i :M(i )=k ||yi − ȳk||2. The proportion of to-

tal data variance unexplained by the cluster structure is
vK = SSW/SST. As the cluster number K increases, the pro-
portion of unexplained data variance decreases. Therefore,
vK is a decreasing function of K. One can approximate this
function using a continuous piecewise linear model vK =
f (K) + ε where ε represents noise and f(K) consists of two
regression lines (Supplementary Figure S1):

f (K) =
{
α0 + α1 ∗ K i f K ≤ K0
β0 + β1 ∗ K i f K > K0

s.t. α0 + α1∗ K0 = β0 + β1∗K0

For a given junction point K0, this model can be fitted using
the least squares approach. As K0 changes, the fitted model
also changes. The K0 that produces the smallest squared
error

∑
K (vK − f (K))2 will be used as the optimal cluster

number. For instance, in the YMC data the optimal cluster
number obtained using this approach was 3. This result was
consistent with the three known phases of the YMC (27).

Identifying TFs associated with each cluster

After clustering, the number of predicted binding sites for
each TF motif in each binding site cluster is counted. These
counts are organized into a matrix. For instance, for YMC,
the matrix had 175 rows (corresponding to 175 motifs) and
3 columns (corresponding to 3 clusters). To test whether a
motif is enriched in a cluster, Fisher’s exact tests are con-
ducted for each cell of the matrix (corresponding to a TF
and cluster pair) using the following four numbers: the num-
ber of binding sites for the TF in the cluster (x1), the number
of sites for the TF but not in the cluster (x0), the number of
sites for other TFs in the cluster (z1), and the number of sites
for other TFs and not in the cluster (z0). P-values from the
tests are adjusted by the ‘p.adjust’ function with the Bonfer-
roni method to account for multiple comparisons. For each
TF motif, a fold enrichment in each cluster is also computed
using [x1/(x1+x0)]/[(x1+z1)/(x1+z1+x0+z0)]. TFs are first
ranked by adjusted P-values and then in the case of ties, by
fold enrichment. TF motifs with adjusted P-values < 10−5

are shown in Figure 2.

DynaMO output

The enriched TFs identified above are reported. For each
reported TF, DynaMO also reports the predicted binding

sites in each biological condition. For each TF and con-
dition, motif sites are ranked by the FDR obtained from
TFBS prediction first. When multiple motif sites are tied
because of identical FDR, their ranks are resolved using
their ‘binding intensity’. The binding intensity of a mo-
tif site in a biological condition is computed using a pro-
jection approach that takes into account the characteris-
tic shapes of read distributions around TFBSs. First, for
a given data type, let the vector yi = (yi1, . . . , yi N) be the
normalized bin read counts for the N neighboring bins of
motif site i. Let the vector ȳ = (ȳ1, . . . , ȳN) be the average
of yi from the top 100 predicted binding sites for the TF in
question. Here ȳ characterizes the average chromatin pro-
file surrounding TFBSs. We first scale ȳ by ỹ = ȳ/|| ȳ|| so
that it has unit length. The binding intensity of each mo-
tif site i is then calculated as the inner product of yi and
ỹ: 〈yi , ỹ〉 = ∑

k (ỹk ∗ yik). This can be viewed as a weighted
average of bin read counts surrounding motif site i where
the weights are given by elements in ỹ. Intuitively, given
the same number of total bin read counts, a read distribu-
tion more similar to the characteristic chromatin profile de-
termined by ỹ will yield a higher binding intensity. When
there are multiple data types, the binding intensity is first
computed for each data type separately. Then the average
of binding intensities from all data types is computed as the
predicted binding intensity. After computing the binding in-
tensity of each motif site, the motif sites tied according to
FDR are then ranked based on the binding intensity.

Characterization of temporal activities

The analyses described up to this point do not assume that
the biological conditions have an intrinsic order. Thus, one
may apply them to any dataset with multiple conditions.
For data from time-course experiments, biological condi-
tions will have a temporal order. For such data, DynaMO
can further fit smooth temporal curves to describe binding
intensities at predicted binding sites as functions of time.
For each binding site, a smooth curve is fitted to the binding
intensities from different time points using locally weighted
scatterplot smoothing (LOESS) (38). The fitted curve and
its derivative can be used to study temporal characteristics
of the dynamic biological process. For example, one can
estimate the time point at which the activity achieves its
maximum or minimum (i.e. the derivative is zero), or when
the activity increases or decreases at its fastest rate (i.e. the
derivative achieves its maximum or minimum) (Supplemen-
tary Figure S2).

DynaMO analyses of YMC, neural differentiation and circa-
dian clock

Details of DynaMO analysis of YMC, neural differentia-
tion and circadian clock data, and validation experiments
of DynaMO analysis in YMC can be found in Supplemen-
tary Methods. RNA-seq and ChIP-seq data have been de-
posited in the Gene Expression Omnibus (GEO) database
under accession number GSE72263. The time for DynaMO
to analyze the YMC data (175 motifs and ChIP-seq from 16
time points) was 2.4 h using 24 CPU cores (2.2 GHz) and
64 GB memory. On the same computer system, the running



PAGE 5 OF 16 Nucleic Acids Research, 2018, Vol. 46, No. 1 e2

time for human neural differentiation and mammalian cir-
cadian clock data was 22.4 (525 motifs, 4 time points) and
0.97 h (1 motif, 6 time points) respectively.

RESULTS

DynaMO: an algorithm for predicting dynamic activities of
TFs based on chromatin profiling

DynaMO is designed to couple TF binding motifs with
global chromatin dynamic profiling experiments (e.g. time-
course ChIP-seq data for histone modifications) to achieve
two goals: (i) predict important TFs responsible for the dy-
namic processes; (ii) predict binding sites of these TFs and
dynamic changes of their binding activities.

The DynaMO pipeline consists of three major steps (Fig-
ure 1A). In the first step, mapped sequence reads from chro-
matin profiling experiments are combined with computa-
tionally mapped DNA motif sites to predict TFBSs. In the
second step, predicted binding sites for all TFs are pooled,
and binding sites with similar dynamic binding patterns are
grouped into clusters by automatic K-means clustering. In
the third step, TFs important for each dynamic binding pat-
tern (i.e. each binding site cluster) are identified through an
enrichment analysis. For each TF and dynamic binding pat-
tern pair, the enrichment analysis evaluates whether motif
sites of the TF are enriched in the binding site cluster with
the dynamic binding pattern as opposed to randomly dis-
tributed across different clusters. The rationale is that a TF
acting in a specific time window of a process is more likely
to be involved in driving dynamic changes in transcription
than a TF functioning in a constitutive manner. After the
analysis, DynaMO reports all identified dynamic binding
patterns, identifies the TFs associated with each dynamic
binding pattern and the predicted binding sites of each TF.

For the TFBS prediction in the first step, we employ a
two-pass algorithm. In the first pass, a conventional ChIP-
seq peak caller is used to perform initial peak calling to
identify enriched ChIP signals. In the second pass, motif
sites with and without enrichment signals are used as pos-
itive and negative training data, respectively, to train an
RF model––a supervised prediction model––to learn the
characteristic spatial distribution of chromatin signals sur-
rounding putative TF binding sites. The shape, which may
vary for different datasets, carries information that can help
one to better discriminate true binding signals from noise.
When there are multiple chromatin data types, the RF also
allows one to conveniently integrate information from dif-
ferent data types. The trained model is then applied to all
motif sites in the genome to reanalyze the chromatin pro-
filing data and finally determine whether each motif site is
bound or not by taking the signal shape information into
account.

DynaMO can be used for both simple and complex ex-
perimental designs. When users only need to predict bind-
ing sites for one TF in one biological condition (e.g. one
time point), they can choose to run only the first step of
DynaMO pipeline. If users have one TF and multiple con-
ditions to analyze, they can use DynaMO to predict the
genome-wide dynamic binding pattern of the TF. When
users need to screen hundreds of TFs to look for important
ones in a dynamic process, DynaMO can provide complete

prediction of which TFs are likely to be functional in the
process, when, and where. Here we focus on the latter sce-
nario.

DynaMO analysis of the yeast ultradian cycle

We first demonstrate the performance of DynaMO through
a study of the yeast metabolic cycle (27,39). In the YMC,
yeast cells are synchronized. Under a continuous, glucose-
limited condition these synchronized cells exhibit respira-
tory oscillations resulting in oscillations of O2 consump-
tion (Figure 1B). In parallel with the respiratory oscilla-
tions, more than half of the yeast genome is periodically ex-
pressed, peaking at three different phases, Oxidative (OX),
Reductive/Building (RB) and Reductive/Charging (RC)
(27,39). Genes encoding ribosome, amino acid metabolism
and translation are expressed in the OX phase, indicating
that OX is a growth phase. Mitochondrial and cell division
cycle genes are induced in the RB phase. RC phase genes
include those encoding stress response, protein degradation
and non-respiratory modes of metabolism, such as glycol-
ysis and fatty acid oxidation. Different cellular processes
are temporally coordinated to maintain the metabolic os-
cillation of yeast, suggesting that multiple TFs control the
specificity and accurate timing of gene expression. Here, we
attempted to identify important TFs for this dynamic pro-
cess using DynaMO and characterize their spatiotemporal
binding activities.

We computationally mapped motif sites of 175 TFs to the
yeast genome. Using DynaMO, we coupled these motif sites
with time-course ChIP-seq data for histone H3K9ac to pre-
dict TFBSs at 16 different time points across one YMC. The
H3K9ac ChIP-seq data derive from a previous study where
we generated 16 time point ChIP-seq data for seven types of
histone acetylation and methylation (32). Here, we focused
on H3K9ac for predicting dynamic TF binding activities
because this histone modification marks active promoters
and is correlated with transcription and TF binding (18,40),
and it shows the highest dynamics and temporal correlation
with transcription (32). Moreover, our previous study has
shown that active TFBSs are associated with an increased
level of H3K9ac and changes of this histone mark can be
used to predict differential TF binding activities between
two biological conditions (21). After pooling all predicted
TFBSs, DynaMO grouped TFBSs with similar temporally
dynamic H3K9ac patterns into three clusters, and the tem-
poral patterns of H3K9ac in these three clusters were highly
consistent with the three known phases of the YMC (Figure
2A).

Since the data were from a time-course experiment, we
further used DynaMO to fit smooth curves to describe tem-
poral changes in H3K9ac at predicted binding sites. Based
on the curves, one can extract important temporal features
to characterize this dynamic process (Supplementary Fig-
ure S2A–C), a function not usually provided by other com-
monly used tools for analyzing chromatin profiling data.
For instance, DynaMO computed the time corresponding
to the maximal activity or the maximal activity change (i.e.
maximal derivative) at each binding site. Supplementary
Figure S2D shows the distribution of the peak (max) time
and the time of the fastest H3K9ac increase for the pre-
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Figure 1. Schematic view of DynaMO pipeline (A) and YMC (B). (A) DynaMO uses TF motifs and histone modification ChIP-seq reads as inputs.
Motif sites are obtained by mapping PSFMs or consensus sequences to the genome. Histone modification peaks are detected by peak callers. Motif sites
(red) overlapping peaks (blue) are selected as training data to construct RF models, which are used to predict potential TF binding sites. When multiple
biological conditions (e.g. multiple time points) exist, TF binding sites in each condition are predicted and pooled across TFs and conditions. Pooled
binding sites are clustered based on dynamic patterns of histone modification signals at these sites. TFs with associated binding sites enriched in clusters
are predicted as important TFs and dynamic or temporal patterns of histone modification are predicted as dynamic or temporal activities of TFs. (B)
Respiratory oscillations (dissolved O2 concentration) of prototrophic yeast strain under continuous nutrient limited condition with a period of 4–5 h.
Three transcriptional and metabolic different phases are defined: oxidative (OX), reductive/building (RB) and reductive/charging (RC), which are marked
by red, green and blue curves. The color scheme is used for labeling the three phases throughout the paper.

dicted binding sites in each cluster. Taking clusters 1 and
2 as an example, the difference in the mean peak time of the
maximal binding site activity between cluster 1 (which was
active in the OX phase) and cluster 2 (which was active in the
RB phase) was estimated to be 0.57 hr. The difference was
statistically significant (two-sample t-test P-value < 2.2e-16,
sample sizes for clusters 1 and 2 are 93662 and 44802 re-
spectively). As another example, the difference in the time
associated with the fastest increase rate between cluster 1
(OX) and cluster 2 (RB) was estimated to have a mean of
0.88 hour (two sample t-test P-value < 2.2e-16, sample size
n1 = 93662, n2 = 44802). This analysis provides basic quan-
titative information about the YMC.

For each cluster, DynaMO identified its associated TFs
based on analyzing which motifs were enriched. A total of
41 enriched TFs were identified with adjusted p-value<10−5

(Figure 2A and Supplementary Table S1). Sixteen TFs were
enriched in cluster 1, in which H3K9ac peaks in the OX
phase. Many of these TFs are involved in ribosome biogen-
esis, such as Tod6, Dot6, Rap1, Sfp1 and Stb3 (41–43), con-
sistent with functions of genes expressed in the OX phase.
Similarly, four TFs were enriched in cluster two, in which
H3K9ac peaks in the RB phase. Among them, TFs regulat-
ing cell cycle genes, such as Mbp1, Swi6 and Xbp1 (44),were
found. Twenty-one TFs were identified in cluster 3, includ-

ing a number of TFs known to be involved in stress response
such as Gis1, Mig1/2/3 and Msn2/4 (45–47). TFs regulat-
ing certain metabolic pathways, such as Adr1 (48), Rgm1
(49) and Tda9 (50) were observed in cluster 3 also. Over-
all, these results indicate that TFs enriched in a cluster are
likely to be associated with specific biological processes. For
each TF, we also predicted its binding sites. In total, 28 678
binding sites and their temporal patterns were predicted for
the 41 enriched TFs (Supplementary Table S2), providing a
resource not previously available for the study of YMC.

DynaMO identifies important TFs for regulating metabolic
oscillations in the YMC

We asked whether TFs identified by DynaMO are actually
important in maintaining normal metabolic cycles. From
the top enriched TFs (ranked first by adjusted P-values and
in the case of ties by fold enrichment), we randomly selected
five TFs from the three clusters (Figure 2B). Five randomly
selected non-enriched TFs were used as controls. For each
of these 10 TFs, we attempted to disrupt its function in two
different ways by constructing a deletion mutant and a C-
terminus tag mutant respectively. We examined the O2 os-
cillation phenotypes of these mutants, a simple indicator of
the ultradian cycle. As summarized in Figure 2B, enriched
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Figure 2. DynaMO predicts important TFs and temporal activities of TFs in YMC. (A) Clustering of predicted motif sites based on temporal H3K9ac
signals. TFs with their motif sites enriched in clusters are listed to the right of the heat map. TFs whose expression is correlated with corresponding clusters
are marked in red. A similar plot is presented in the companion paper by Kuang et al. (52) Figure 1B for the completeness of that study. (B) Phenotypic
validation of TF mutants in YMC. The left panel shows the percentages of examined TFs with defect YMC. The right panel is a table summarizing
the phenotypes. ‘+’ represents normal oscillation and ‘–’ represents abnormal oscillation. ‘+/–’ represents abnormal oscillation when the TF is mutated
together with a mutation of another TF. ‘D’ means dampened oscillation; ‘A’ means changed amplitude; ‘F’ means a flat line of oxygen; ‘L-RC’ or ‘S-RC’
means longer or shorter periods of RC phase. (C) Examples of WT and abnormal oscillation in TF mutants.

TFs identified by DynaMO show a much higher percentage
of disrupted oscillations when mutated than do randomly
selected non-enriched TFs (Supplementary Figure S3) (P-
value < 0.01 by Fisher’s exact test).

The disrupted phenotypes observed in the mutants are
characterized in Figure 2C. The first phenotype is a ‘flat
line’ (F), as seen in the XBP1::3HA strain bearing only
a C-terminal tag and similar to the behavior of gcn5Δ in
a previous study (51), suggesting a complete loss of res-
piratory oscillation. Surprisingly, the xbp1Δ strain cycles
normally. We hypothesize that the C-terminus tag of Xbp1
disrupts its interaction with other chromatin proteins or
DNA. If this is true, the heterozygous diploid of the C-
terminus tag strain should also show defects, i.e. the mu-
tation is expected to be dominant or codominant. Indeed,
XBP1::3HA/+ shows defective oscillations, although it per-
forms better than the haploid (Supplementary Figure S3C).
The second phenotype is damped amplitude (D), as seen
in arg80Δ and XBP1::3HA/+. gcr1Δ exhibits yet another
defective phenotype, namely an amplitude (A) defect; it is
ever-increasing at first and then diminishes later. Yet an-
other phenotype is observed in msn2Δ single mutant. The
RC phase is longer than the WT strain in these mutants (L-
RC) and it gets longer in each successive cycle/growth burst
(Figure 2C). The extended RC phase was also observed in
the msn2Δmsn4Δ double mutant (Supplementary Figure

S3C, see the related paper by Kuang et al. (52) for detailed
follow-up investigation of msn2Δmsn4Δ).

Together, our results show that DynaMO was able to
identify important TFs in a dynamic process. This demon-
strates the usefulness of DynaMO for investigators who
need to select a few candidates from hundreds of TFs for
functional study in a poorly studied system.

DynaMO predicts relevant TF binding sites and their tempo-
ral occupancy patterns

In order to evaluate the performance of DynaMO for pre-
dicting TF binding sites, we generated ChIP-seq data for
Msn2 and Msn4 at six different time points across one
metabolic cycle (Figure 3A). Msn2 and Msn4 are two stress-
responsive TFs (45). Both were identified by DynaMO as
regulators of metabolic oscillations. Using binding peaks
identified from the Msn2 and Msn4 ChIP-seq data as a gold
standard, we evaluated DynaMO’s ability to predict TFBSs.

Figure 3B shows the sensitivity as a function of the num-
ber of predicted Msn2 binding sites at each time point. As
a reference, we compared DynaMO with CENTIPEDE, a
widely used software package for binding site prediction
(19). DynaMO showed higher predictive power than CEN-
TIPEDE. Similar results were observed by examining Msn4
(Supplementary Figure S4A). This sensitivity-rank com-
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Figure 3. DynaMO predicts where and when TFs bind in YMC. (A) Six time-point WT cycling cells in YMC, including 1 OX, 2 RB and 3 RC time points,
were collected for ChIP-seq of interesting TFs. The results were used for prediction validation. Red = OX, Green = RB, Blue = RC. (B) Curves of sensitivity
versus rank for Msn2 binding sites prediction at each time point. Red curves are the performance of DynaMO and blue curves are the performance of
CENTIPEDE. (C) ChIP-seq signals of Msn2 and H3K9ac at predicted Msn2 motif sites at T1 and T4. Each row represents a 500 bp genomic region
centered on the predicted Msn2 binding site. Rows are ordered by Msn2 binding strength. (D) Curves of sensitivity versus nominal FDR for Msn2 and
Msn4 binding sites prediction at each time point. (E) The averaged temporal patterns of Msn2 or Msn4 binding and H3K9ac at predicted motif sites in
cluster 3. (F) The distribution of correlation between TF binding and H3K9ac at each motif site. Red/green/blue curves represent predicted binding sites
in OX/RB/RC clusters. Black curves represent non-bound motif sites of Msn2 or Msn4 and gray curves represent random motif sites of other TFs.

parison shows that when the number of predicted binding
sites is kept the same, DynaMO has higher sensitivity. In
other words, DynaMO produced more true positives and
fewer false positives than CENTIPEDE when these two
methods were asked to produce the same number of pre-
dicted binding sites. This implies that DynaMO achieved
a higher sensitivity ( = No. of true positives/total no. of
TF-bound motif sites) at a lower false positive rate ( =

No. of false positives/Total no. of motif sites not bound by
TF = 1-specificity). Thus, the better sensitivity-rank perfor-
mance also means that DynaMO has better receiver oper-
ating characteristic (ROC) (i.e. the sensitivity versus false
positive rate curve), which is confirmed in Supplementary
Figure S4B and C.

Figure 3C shows the spatial distribution of Msn2 and
H3K9ac ChIP-seq reads at the predicted Msn2 binding sites
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in two different phases of the YMC, OX and RC. A ‘bi-
modal peak with U shape in the middle’ (bimodal U shape)
pattern of the histone modification signals was found sur-
rounding the predicted TFBSs, consistent with the known
nucleosome occupancy pattern around many TFBSs (19).
However, the bimodal U shape was not discovered in mo-
tif sites predicted not to be bound by TFs (Supplementary
Figure S5A). Additionally, DynaMO further differentiated
predicted binding sites from other motif sites by the inten-
sities of H3K9ac. In other words, DynaMO predicts motif
sites with very small and flat H3K9ac intensities as the least
likely binding sites. This is consistent with the previously
reported correlation between differential H3K9ac intensity
and TF binding activity (21). By contrast, the unsupervised
CENTIPEDE did not capture the ‘bimodal U shape’ well
for the predicted binding sites, and it predicted motif sites
with the reversed H3K9ac shape as the least likely bind-
ing sites. Also the H3K9ac intensities at the motif sites pre-
dicted to be bound by CENTIPEDE were not very differ-
ent from the intensities at the predicted unbound motif sites
(Supplementary Figure S5A). This demonstrates that the
RF model used by DynaMO was able to capture the char-
acteristic signal shapes and intensities when making predic-
tions, potentially explaining the increased prediction accu-
racy of DynaMO.

In practical applications, the cutoff for reporting signif-
icant binding sites should be determined by FDR rather
than by specificity (or ROC) due to multiple hypothesis test-
ing. This is because when the majority of motif sites actually
consist of noise (because they are in fact unbound in vivo),
high specificity does not imply low FDR. Sensitivity-rank
curves or ROC curves may be used to determine the best
performing method. However, they do not reveal the ac-
tual sensitivity achievable by that method in practice when
FDR is controlled at the desired level. Thus, we further ex-
amined the relationships between sensitivity and FDR. The
performance varied across different time points and differ-
ent TFs (Figure 3D). At the nominal FDR level of 25%, sen-
sitivities range from 0.4 to 0.8 for Msn2 and 0.4 to 0.65 for
Msn4. The sensitivity was lower for time points in OX and
RB phases and higher for time points in RC phase. Of note,
holding FDR equal, there was also substantial variation in
the number of predicted TFBSs across different time points.
The variation in the number of predicted TFBSs was consis-
tent with the variation in the number of binding sites deter-
mined by Msn2/4 ChIP-seq. Overall, there were more bind-
ing sites in the RC phase than in the OX phase (Supplemen-
tary Figure S5B). This observation, along with the observed
enrichment of Msn2/4 motif sites in cluster 3 (RC phase) in
Figure 2A suggests that Msn2 and Msn4 binding might be
more active in the RC phase. The smaller number of binding
sites in OX and RB phases suggest that many more Msn2/4
motif sites at those time points correspond to noise. With
the increased noise level, the statistical power for detecting
signals is expected to decrease. This is consistent with the
decreased sensitivity observed for OX and RB time points.
Together, the above analyses show that one should not ex-
pect DynaMO to find all binding sites in practice. However,
DynaMO can recover a substantial proportion of true bind-
ing sites, which will provide valuable information not oth-
erwise available for guiding downstream functional studies

when one does not have ChIP-seq data for the TFs them-
selves. A systematic investigation of the biology behind the
variation in the number of Msn2/Msn4 binding sites is be-
yond the scope of this article. However, it would be inter-
esting to investigate in the future whether such variation is
linked to TF-TF cooperativity (e.g. presence or absence of
cofactors in different time period for TF function) or TF
residence time during the binding.

We further evaluated whether the TF binding dynamics
can be predicted. We compared the temporal patterns of
H3K9ac and Msn2/4 ChIP-seq signals at predicted Msn2/4
binding sites. Interestingly, in cluster 3, in which Msn2/4
was enriched, the trends of H3K9ac and Msn2/4 were very
similar (Figure 3E and Supplementary Figure S5C), sug-
gesting that the temporal pattern of H3K9ac can indicate
the dynamics of TF binding. By contrast, in the other two
clusters where Msn2/4 were not enriched, the temporal pat-
terns of H3K9ac and Msn2/4 did not show strong correla-
tion at the predicted Msn2/4 binding sites (Figure 3F and
Supplementary Figure S5C).

Collectively, our analyses demonstrate how DynaMO
can be used to identify important TFs and predict their
binding sites. DynaMO predictions have helped us to ob-
tain a deeper understanding of gene regulation in the YMC.
Guided by these predictions, we conducted further bio-
logical studies and found Msn2/4 regulate yeast glycolysis
genes. MSN2/4 deletion decreased the accumulation rate of
acetyl-CoA, a key metabolite that drives cell growth and de-
layed the re-entry of quiescent cells into growth (52).

A comparison with other methods in the YMC analysis

Next, we systematically compared DynaMO with several
existing methods including ZINBA (53) and ChromHMM
(54) in addition to CENTIPEDE (Figure 4A, Supplemen-
tary Methods). We also compared DynaMO with a modi-
fied version of DynaMO in which the RF step was removed
but all other procedures were kept the same. This compar-
ison was used to evaluate whether RF helped with improv-
ing the analysis. CENTIPEDE, ZINBA and ChromHMM
represent three different types of existing methods for an-
alyzing chromatin profiling data. The objective of CEN-
TIPEDE is to predict TFBSs using chromatin profiles and
DNA motif information. Unlike DynaMO, CENTIPEDE
does not cluster predicted binding sites based on their dy-
namic binding patterns in multiple biological conditions,
nor does it identify enriched TFs associated with each bind-
ing pattern. ZINBA is a peak calling method that detects
enrichment signals in chromatin profiling data. Unlike Dy-
naMO and CENTIPEDE, ZINBA is a general-purpose
peak caller rather than a method for predicting TFBSs.
It does not predict TFBSs by combining the enrichment
peaks in chromatin profiling data with DNA motif infor-
mation. ZINBA also does not cluster peaks based on their
dynamic binding patterns across multiple conditions, nor
does it identify TFs associated with each binding pattern.
ChromHMM is a genome segmentation method that di-
vides a genome into non-overlapping windows based on an-
alyzing multiple chromatin profiling datasets. The genome
is segmented such that genomic positions within the same
window have similar chromatin signal patterns whereas
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Figure 4. Performance comparison of DynaMO with other methods. (A) This table summarizes the methods and the analyses to be compared. A ‘
√

’ means
the method is designed for this analysis and a ‘+’ means the method is customized by coupling a procedure in DynaMO for the analysis. (B) Percentages of
cycling TFs among the top predicted TFs versus the number of predicted TFs are shown for different methods. TFs are ranked by the smallest enrichment
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neighboring windows have different signal patterns. In ad-
dition to segmentation, all genomic segments are clustered
based on their chromatin signal patterns across datasets.
The segmentation and clustering are jointly solved using a
Hidden Markov Model (HMM). After the analysis, biolog-
ical functions of each cluster may be inferred by comparing
its signal patterns with existing biological knowledge. Sim-
ilar to DynaMO, ChromHMM allows one to identify dif-
ferent dynamic signal patterns through the clustering of ge-
nomic segments. However, unlike DynaMO, ChromHMM
does not further predict TFBSs using DNA motif infor-
mation, nor does it identify enriched TFs associated with
each cluster. Genomic segments generated by ChromHMM
can be very long and contain many TFBSs. For this reason,
ChromHMM analysis is not designed to provide the reso-
lution for identifying TFBSs.

Among the compared methods, CENTIPEDE, ZINBA
and ChromHMM do not provide functions to identify im-
portant TFs. We asked whether one can couple these meth-
ods with a motif enrichment analysis procedure similar
to DynaMO to identify important TFs. To this end, we
clustered CENTIPEDE predicted TFBSs and then iden-
tified enriched TF motifs for each cluster using a proce-
dure similar to DynaMO. For ZINBA, we used motif sites
covered by peaks to predict TFBSs. The predicted TFBSs
were then clustered and enriched motifs were identified. For
ChromHMM, we analyzed its genome segmentation results
and identified enriched motifs for each cluster of genomic
segments. In all cases, the cluster number was set to three,
corresponding to the known number of cycling gene clusters
in YMC. Additionally, DynaMO without RF was also run
by setting the cluster number to three. In order to compare
the ability of different methods to identify important TFs,
one cannot use the 10 experimentally tested TFs in Figure
2B because they were selected based on the DynaMO anal-
ysis and may introduce bias in the comparison. For this rea-
son, we obtained a list of TFs periodically expressed in the
YMC based on independent gene expression time-course
data in YMC (32) and used these cycling TFs to bench-
mark different methods. We reasoned that many TFs which
drive YMC may also be periodically expressed in the cy-
cles. For each method, all TFs identified from the enrich-
ment analysis were ranked (first by adjusted P-values and
in the case of ties by fold enrichment), and the number of
cycling TFs among the top ranked TFs was computed. This
analysis shows that by holding the number of reported TFs
the same, DynaMO captured more cycling TFs among the
predicted TFs than the other methods (Figure 4B), suggest-
ing that DynaMO is better able to identify TFs relevant
to this dynamic process. It should be pointed out that this
comparison was only possible because we implemented ad-
ditional procedures for clustering and identifying enriched
motifs for CENTIPEDE, ZINBA and ChromHMM. With-
out writing additional computer programs, these existing
methods cannot be directly run to conduct such analyses.

We further compared the ability of different methods to
predict TFBSs. Here the compared methods include Dy-
naMO, DynaMO without RF, CENTIPEDE and ZINBA.
ChromHMM was not compared here since its genome seg-
mentation was not designed for analyses at binding site
resolution. For ZINBA, motif sites covered by peaks were

used to predict TFBSs. Figure 4C shows the sensitivity of
each method as a function of the number of predicted TF-
BSs. For each curve, we computed the area under the curve
(AUC), and the AUCs are compared in Figure 4D. For each
time point, methods were ranked based on their AUC. For
each method, the average rank across the six time points
is shown as a bar plot below the heat map in Figure 4D
(the bigger the rank score the better). Since a method’s
sensitivity-rank performance implies its ROC performance,
the ROC comparison is skipped here. Figure 4C and D
show that DynaMO outperformed the other three meth-
ods. The improvement of DynaMO over CENTIPEDE and
ZINBA was substantial. DynaMO without RF also per-
formed worse than DynaMO, and the improvement of Dy-
naMO was sometimes substantial (e.g. Msn4 t3). Over-
all, DynaMO robustly performed the best. The bimodal U
shape of histone mark signals at the binding sites and the
difference in the H3K9ac intensity between the bound and
unbound motif sites were also captured by ZINBA and Dy-
naMO without RF but slightly weaker (Supplementary Fig-
ure S5A).

Collectively, our analyses demonstrate that DynaMO
performed better than the other methods both in terms of
the identification of important TFs and in terms of TFBS
prediction.

DynaMO analyses of human neural differentiation and mam-
malian circadian clock

DynaMO can also be applied to genomes more complex
than yeast. To demonstrate the versatility of DynaMO, we
first applied it to predict important TFs in human neural
differentiation, which is also coupled with dramatic tran-
sition of transcriptome and epigenome. A previous study
(33) presented a time-course dataset of transcriptome and
epigenome in early human neural differentiation, includ-
ing stages of embryonic stem (ES) cells, neuroepithelial
(NE) cells, early radial glial (ERG) cells and mid radial
glial (MRG) cells. The study identified 244 transcriptional
regulators differentially or highly expressed during this in
vitro differentiation time course as potential key regula-
tors. A total of 110 of these 244 regulators were subse-
quently validated through the short hairpin RNA (shRNA)
knockdown screening (33). This provides a good bench-
mark dataset to evaluate the performance of DynaMO in
predicting important TFs.

We mapped 525 TF motifs from TRANSFAC (55) to the
human genome and ran DynaMO using four time point
ChIP-seq data for H3K4me3 and H3K27ac. Both these hi-
stone marks have been shown to be associated with active
TF binding (21). TFBSs predicted by DynaMO were auto-
matically partitioned into three clusters based on the tem-
poral H3K27ac and H3K4me3 signal patterns (Figure 5A).
From the 525 motifs, we identified those that were tested
in the shRNA knockdown experiment. These motifs were
ranked by DynaMO based on their statistical significance
and enrichment level as before (‘Materials and Methods’
section). Among the top 20 TFs predicted by DynaMO and
included in the shRNA library, 75% exhibited significant ac-
tivating or repressing functions upon shRNA knockdown
(Figure 5B). This validation rate was much higher than the
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Figure 5. DynaMO analysis of TFs in human neural differentiation. (A) Clustering of predicted motif sites from 525 human-mouse motifs based on
temporal H3K27ac and H3K4me3 signals at motif sites during neural differentiation. (B) Validation rates of predicted important TFs versus the number
of predicted TFs in neural differentiation by different methods. A square marks the validation rate by gene expression only reported in the original paper
(33) (C) Validation rate of important TFs predicted by DynaMO in three clusters. The plot shows percentage of the top 20 TFs in each cluster examined
in the shRNA screen showing significant impact by shRNA knockdown. (D) Representative TFs from the top 20 of the total or examined TFs in each
cluster.

∼30% validation rate of the original 244 regulators identi-
fied based on gene expression analysis alone. We compared
DynaMO with CENTIPEDE, ZINBA, ChromHMM and
DynaMO without RF for identifying important TFs (Sup-
plementary Methods). The validation rates of these meth-
ods were consistently lower than DynaMO (Figure 5B).
We examined the top TFs predicted by DynaMO in each
cluster. Among the top 20 TFs predicted by DynaMO in
each cluster and included in the shRNA library, 60–80% ex-
hibited significant activating or repressing functions upon
shRNA knockdown (Figure 5C), and TFs known to be in-
volved in neural differentiation were captured such as the
FOX protein families and POU domain proteins (Figure 5D
and Supplementary Table S3). Together, these data suggest
that DynaMO can greatly help with predicting important
TFs across very different organisms and distinct dynamic
systems.

Due to a lack of TF ChIP-seq data, the analysis of neu-
ral differentiation above could not examine the accuracy
of DynaMO for predicting TFBSs. We therefore applied
DynaMO to another dataset originally collected for study-
ing the mammalian circadian clock. Transcriptional activa-
tors BMAL1, CLOCK and NPAS2 and repressors PER1,
PER2, CRY1 and CRY2 form an auto-regulatory feedback
loop, which regulates 24-h circadian oscillations of thou-
sands of transcripts (28,31). A previous study by Koike et al.
(31) systematically characterized the dynamics of genome-

wide transcription and chromatin states every 4 h of a circa-
dian cycle. Using the H3K9ac and H3K4me1 ChIP-seq data
generated there, we predicted the spatiotemporal binding of
BMAL1 at Ebox motif sites. Both H3K9ac and H3K4me1
have been shown to be associated with active TF binding
(21). We evaluated the TFBS prediction performance of Dy-
naMO using the BMAL1 ChIP-seq data.

We compared DynaMO with and without RF, CEN-
TIPEDE and ZINBA. All methods used the same H3K9ac
and H3K4me1 data and Ebox motif sites. Each method
was applied to rank motif sites by jointly using H3K9ac
and H3K4me1. To help evaluate the gain of integrating two
data types, we also applied each method to rank motif sites
using H3K9ac or H3K4me1 alone. For jointly analyzing
H3K9ac and H3K4me1, DynaMO and CENTIPEDE were
directly applied since both methods can handle multiple hi-
stone marks. DynaMO without RF cannot directly com-
bine signals from multiple different data types. Therefore,
in order to combine H3K9ac and H3K4me1, we first ap-
plied it to each histone mark separately to rank motif sites
and then computed the average rank of each motif site. The
average rank was then used to sort the motif sites again (de-
noted as ‘DynaMO w/o RF H3K4me1/H3K9ac’). Simi-
larly, ZINBA does not provide a way to combine peak sig-
nals from multiple different histone marks. We also used
the average rank approach above to combine H3K9ac and
H3K4me1 (‘ZINBA H3K4me1/H3K9ac’). In DynaMO
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with RF, the information from different data types is inte-
grated through RF (‘DynaMO H3K4me1+H3K9ac’). The
role of RF is 2-fold. It automatically models the peak shape
at motif sites within each data type, and it also provides a
way to automatically integrate different data types. To help
understand the role of RF in data integration, we also ran
DynaMO on H3K9ac and H3K4me1 separately and then
used the average rank approach instead of the RF to com-
bine these two data types to rank motif sites (‘DynaMO
H3K4me1/H3K9ac’). Note that both ‘DynaMO w/o RF
H3K4me1/H3K9ac’ and ‘DynaMO H3K4me1/H3K9ac’
were based on first ranking the motif sites using each data
type and then computing the average rank. The difference
between these two methods is that when analyzing each
data type, ‘DynaMO H3K4me1/H3K9ac’ used RF whereas
‘DynaMO w/o RF H3K4me1/H3K9ac’ used the peak sig-
nal obtained from the initial peak caller to rank motif sites.
The difference between ‘DynaMO H3K4me1/H3K9ac’
and DynaMO (i.e. ‘DynaMO H3K4me1+H3K9ac’) is that
the former only applied RF to each data type separately
and then combined different data types using average rank,
whereas the latter used H3K4me1 and H3K9ac jointly as
features for RF and hence the two data types were au-
tomatically integrated through RF. In summary, the com-
parison between ‘DynaMO w/o RF H3K4me1/H3K9ac’
and ‘DynaMO H3K4me1+H3K9ac’ will reveal the overall
contribution of RF in DynaMO. The comparison between
‘DynaMO w/o RF H3K4me1/H3K9ac’ and ‘DynaMO
H3K4me1/H3K9ac’ will more specifically reveal the contri-
bution of RF in terms of utilizing peak shape information
within each data type. The comparison between ‘DynaMO
H3K4me1/H3K9ac’ and ‘DynaMO H3K4me1+H3K9ac’
will more specifically reveal the contribution of RF in terms
of combining different data types.

Figure 6A shows the sensitivity-rank curve of each
method in all six time points for predicting BMAL1 bind-
ing sites. Figure 6B compares the AUC of different meth-
ods in a heat map. Again, for each time point, methods are
ranked based on their AUC. Then for each method, the av-
erage rank across the six time points is shown in the bar
plot below the heat map (the bigger the rank score the bet-
ter). Comparisons of the same method running under dif-
ferent modes (i.e. H3K9ac only, H3K4me1 only or H3K9ac
and H3K4me1 jointly) show that using both histone marks
jointly allows one to more accurately predict TFBSs com-
pared to using only one histone mark. Comparisons of dif-
ferent methods show that DynaMO offered higher TFBS
prediction accuracy than the other methods. DynaMO
with RF outperformed DynaMO without RF both when
each histone mark was analyzed separately and when the
two histone marks were analyzed jointly. Moreover, Dy-
naMO (‘DynaMO H3K4me1+H3K9ac’) performed bet-
ter than ‘DynaMO H3K4me1/H3K9ac’, and ‘DynaMO
H3K4me1/H3K9ac’ performed better than ‘DynaMO w/o
H3K4me1/H3K9ac’, indicating that RF is useful both for
utilizing the peak shape information and for combining dif-
ferent data types. Collectively, these analyses demonstrate
the advantage of using RF in DynaMO and further show
the ability of DynaMO to produce better TFBS predictions
than the other methods.

Supplementary Figure S6A shows the average read dis-
tribution surrounding the top and bottom motif sites
ranked by DynaMO, CENTIPEDE, DynaMO without RF
and ZINBA. Top sites identified by DynaMO and CEN-
TIPEDE both exhibited the bimodal U shape of histone
modification signals, whereas the signal shape from ZINBA
was irregular. The read distribution from DynaMO without
RF was similar to DynaMO, but the bimodal U shape in
DynaMO without RF was slightly weaker. CENTIPEDE
is based on a two-component mixture model. It predicted
motif sites with a spatial pattern opposite to the U shape
(i.e. a peak in the middle surrounded by relatively low in-
tensity on both sides) as the least likely binding sites in this
example. Also, CENTIPEDE did not clearly differentiate
bound and unbound motif sites by the histone modifica-
tion intensities. Compared to CENTIPEDE, DynaMO fur-
ther distinguished top and bottom motif sites based on their
differences in signal intensity (Supplementary Figure S6A).
Thus, the RF used by DynaMO captured both the charac-
teristic signal shapes and also the intensity information for
making predictions.

We also examined how well DynaMO predicted tempo-
ral patterns of TF binding. The predicted temporal activi-
ties of the predicted TFBSs (‘Materials and Methods’ sec-
tion) were consistent with the temporal patterns of BMAL1
binding determined by ChIP-seq (Figure 6C). Compared to
random motif sites, the subset of motif sites predicted to be
bound using DynaMO exhibited increased correlation be-
tween the predicted activity and BMAL1 ChIP-seq binding
signals (Figure 6C). This further demonstrates the ability of
DynaMO to filter out noisy motif sites and identify func-
tional TFBSs and their dynamic binding patterns in mam-
malian genome.

Additionally, DynaMO analysis of the three CRY2 mo-
tifs exhibited dramatic differences of sequence specificity
among the CRY2 binding site types (Supplementary Figure
S6B). Ebox sites (recognized by BMAL1) and exd sites (rec-
ognized by CRY1/2) are largely excluded from each other
in the same CRY2 peaks whereas NR sites usually co-exist
with either Ebox or exd sites. NR sites also define another
large group of CRY2 peaks which contain neither Ebox nor
exd sites. This is consistent with the previous ChIP-seq anal-
ysis (31) showing that CRY2 peaks are divided into those
overlapping with BMAL1 and CRY1 peaks, those overlap-
ping with only CRY1 or BMAL1 peaks and a large propor-
tion of CRY2 unique peaks. CRY1/2 peaks that are inde-
pendent of BMAL1 may be due to lack of Ebox sites. There-
fore, multiple mechanisms may exist for CRY2 recruitment.

DISCUSSION

In summary, we have introduced a method to identify im-
portant TFs and their binding sites, and to predict their
recruitment/activity during dynamic processes. DynaMO is
generally applicable to chromatin profiling data from multi-
ple conditions. For data from time-course experiments, Dy-
naMO can also be used to extract temporal characteristics
of the dynamic process via curve fitting. Application of Dy-
naMO to the yeast metabolic cycle, the mammalian circa-
dian clock and neural differentiation demonstrates that it
accurately and efficiently predicted when and where TFs
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Figure 6. DynaMO analysis of TFs in mammalian circadian clock. (A) Curves of sensitivity versus rank for BMAL1 binding sites prediction by different
methods at each time point. H3K9ac+H3K4me1 means the two markers are integrated by the original methods to rank the motif sites. H3K9ac/H3K4me1
means the two markers are individually analyzed by the methods and the ranks are averaged to order the motif sites. (B) AUCs for curves in (A) are presented
in a heat map. The bar plot shows average performance scores across all time points. The best method at each time point is given a score of 13 and the
worst method is given a score of 1. (C) Left panel shows the average temporal patterns of BMAL1 and combined H3K9ac+H3K4me1 histone modification
signal (i.e. the average of H3K9ac and H3K4me1 inner products) at predicted BMAL1 binding sites. Right panels show the distributions of correlation
between BMAL1 and combined histone modification signal at all BMAL1 motif sites or predicted binding sites.

bind, and also identified important TFs that regulate these
processes. DynaMO is publicly available as an R package at
https://github.com/spo111/DynaMO.

For constructing features used by random forests, Dy-
naMO requires users to specify a window size W and a
bin size B. Our analysis in Supplementary Materials and
Supplementary Figure S7 suggests that DynaMO is rela-
tively robust to different values of W and B chosen around
our recommended values. DynaMO identifies TFs enriched
in specific dynamic binding patterns through motif enrich-
ment analysis. Empirically, our analyses have shown that
this is a powerful approach for identifying truly important
TFs for dynamic processes compared to random expecta-
tion. However, users still need to exercise caution in inter-
pretation because enrichment does not necessarily equate
with importance. Using other information may help one to
better utilize the DynaMO results. For instance, when ex-
amining functions of candidate TFs, one may consider re-
dundancy because the more important a TF is the more
likely it has homologs (56–58). Furthermore, TFs often
function in a cooperative fashion (e.g. through protein–
protein interactions). Thus, co-enrichment of TFs with sim-

ilar functions, acting in the same process or in the same pro-
tein complex may also point to which TFs are important in
a system.

In this study, DynaMO was demonstrated using time-
course histone modification data. In principle, DynaMO
can also be used for other chromatin data types such as
DNase-seq and ATAC-seq (59). An important open ques-
tion for future research is to systematically understand the
correlation between different chromatin data types with dy-
namic TF binding. Different chromatin data types may ex-
hibit different temporal patterns relative to transcription.
Certain chromatin data types may only mark active or re-
pressive regions but do not change much in correspondence
with transcription. Building a systematic catalog of chro-
matin data types most informative and uninformative for
analyzing dynamic changes of global regulatory programs
is therefore an important future goal.

DATA AVAILABILITY

RNA-seq and ChIP-seq data have been deposited in the
Gene Expression Omnibus (GEO) database under acces-

https://github.com/spo111/DynaMO
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sion number GSE72263. DynaMO is publicly available as
an R package at https://github.com/spo111/DynaMO.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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