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This article aims to apply a mathematical model to investigate the spread of malaria by considering vector 
bias, saturated treatment, and an optimal control approach. A mathematical analysis of the equilibrium points 
and an investigation of the basic reproduction number show that if the basic reproduction number (0) is less 
than one, the disease-free equilibrium is locally asymptotically stable. Furthermore, the center-manifold theory 
is applied to analyze the stability of the endemic equilibrium when 0 = 1. We find that our model performs 
a backward bifurcation phenomenon when the saturated treatment or vector bias parameter is larger than the 
threshold. Interestingly, we found that uncontrolled fumigation could increase the chance of the appearance of 
backward bifurcation. From the sensitivity analysis of 0, we find that the fumigation and vector bias are the 
most influential parameters for determining the magnitude of 0. Using the Pontryagin maximum principle, 
the optimal control problem is constructed by treating fumigation and medical treatment parameters as the 
time-dependent variable. Our numerical results on the optimal control simulation suggest that time-dependent 
fumigation and medical treatment could suppress the spread of malaria more efficiently at minimum cost.
1. Introduction

Malaria is a vector-borne disease that is transmitted to humans by 
the bite of a female Anopheles mosquito. There were an estimated 228 
million cases worldwide in 2018, of which 405 000 ended with death 
[1]. Four main species of parasites cause malaria, P. falciparum, P. vi-

vax, P. malariae, and P. ovale. It is malaria parasites infecting humans 
that attract female Anopheles mosquitoes to humans [2] because the 
parasite alters the human body odor, which attracts mosquitoes. Body 
odor is an unpleasant smell caused by chemicals, such as high heptanal, 
octanal, and nonanal aldehydes, resulting from the breakdown of sweat 
by the bacteria that live on the human skin. These chemicals are then 
detected by a mosquito antenna [3].

For ages, mathematical modeling has been used to understand how 
malaria is transmitted among humans. The mathematical model helps 
policymakers understand the disease, predict the future outcome of 
surveillance strategies, and much more. Mathematical modeling was 
first introduced by Ross [4] and extended by Macdonald [5]. Vari-

ous other models have been introduced by many authors to describe 
malaria transmission considering the vector bias of Anopheles [6, 7, 8, 
9]. Beretta et al. [10] described the effect of asymptomatic cases and 
Niger and Gumel [11] proposed a model to analyze the effect of reinfec-
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tion, whereas Li et al. [12] investigated the effect of relapse on malaria 
transmission. Furthermore, several models have been introduced for 
malaria surveillance. Handari et al. [13] combined fumigation and bed-

net usage in their model. Ghosh et al. [14] described the combined use 
of insecticide bed-nets, treatment, and indoor spraying for malaria erad-

ication programs.

The application of the optimal control theory to find the best strate-

gies for the eradication of disease transmission has been used by many 
authors [15, 16, 17, 18, 19, 20]. For an effective malaria eradication 
program using the optimal control approach, please see [21, 22, 23, 
24] as another reference. These references used Pontryagin’s maximum 
principle [25] to characterize their optimality system. The main pur-

pose of the optimal control problem in disease transmission is to reduce 
the number of infected individuals (human and/or mosquito) at the 
lowest possible cost.

Here, a mathematical model is constructed to describe a malaria 
eradication strategy. Several important factors such as vector bias on 
malaria transmission are considered in the model to describe the pref-

erence of mosquitos to counter humans; saturated treatment to describe 
limitation on hospitalization resources; fumigation strategy to eradicate 
mosquitos; and an optimal control problem to describe a limited budget 
for the malaria eradication program. The model presented in this arti-
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cle has two equilibrium points: the malaria-free and malaria-endemic 
equilibrium points. We found that the malaria-free equilibrium is lo-

cally asymptotically stable when the basic reproduction number (0) is 
less than unity.

In contrast, a malaria endemic equilibrium always exists when 0
is larger than unity. Our model may exhibit backward bifurcation on 
0 = 1 depending on the saturated treatment and/or vector bias param-

eter. The larger these parameters, the greater the chance that our model 
exhibits a backward bifurcation. Furthermore, a sensitivity analysis was 
conducted to determine the most influential parameters for ascertain-

ing the size of 0. Finally, a numerical simulation of the optimal control 
problem is carried out using the forward-backward iterative method to 
show the optimal intervention strategy for a malaria prevention pro-

gram. Understanding the effect of vector bias in influencing the level of 
success of treatment and fumigation will significantly assist the optimal 
policy direction of related parties in the malaria control programs.

The remainder of this paper is organized as follows. We describe the 
construction of the model in Section 2. The existence and local stability 
of the equilibrium points, along with the basic reproduction number, is 
given in Section 3. Bifurcation analysis is described in Section 4. The 
characterization of the optimal control problem using the Pontryagin 
minimum principle (PMP) is described in Section 5. Some numerical ex-

periments regarding the local sensitivity analysis of 0 and the optimal 
control simulations are described in Section 6. A discussion is provided 
in the last section of this article.

2. Model formulation

To develop the model for understanding the effect of vector bias, 
the human population is divided into two sub-populations: susceptible 
human (𝑆ℎ) and infected human (𝐼ℎ). As individuals who have recently 
recovered from malaria have no permanent immunity, we neglected 
the recovered population in our model. Consequently, individuals who 
recover from malaria infection can directly return to the susceptible 
population. In contrast, because of the short life span of mosquitoes, 
we also assume that the mosquito population can only divided into sus-

ceptible and infected mosquito sub-populations, denoted by 𝑆𝑣 and 𝐼𝑣, 
respectively.

The human population increased by a constant newborn parame-

ter of Λℎ per unit time and was assumed to be susceptible. Infection 
occurs because of the direct contact between susceptible humans and in-

fected mosquitoes with a successful transmission rate of 𝛽ℎ. In the case 
of malaria transmission, mosquitoes are more attracted to bite-infected 
humans [26]. This is because malaria infection changes the mixture of 
volatilities that infect human exhales. Hence, due to vector bias of the 
mosquito, the probability of the infected mosquito to bite a suscepti-

ble human is given by 𝑆ℎ

𝑆ℎ+𝑝𝐼ℎ
where 𝑝 > 1 is the vector bias parameter. 

Note that when 𝑝 = 1, the vector bias is not considered in our model. 
Therefore, the number of meetings between susceptible and infected 
mosquitoes is given by 𝑆ℎ𝐼𝑣

𝑆ℎ+𝑝𝐼ℎ
. Hence, the number of infections per unit 

time is given by 𝛽ℎ
𝑆ℎ𝐼𝑣

𝑆ℎ+𝑝𝐼ℎ
. The infected susceptible humans were then 

transferred into an infected compartment. For more mathematical mod-

els that discuss the vector bias phenomena, please refer to our previous 
work in [27] or [6, 7, 8, 9] from other authors.

The infected human compartment then decreased because of the nat-

ural death rate 𝜇ℎ per unit time and the recovery rate. Let us assume 
that only the 𝑢1 proportion of 𝐼ℎ undergoes medical treatment in the 
hospital, whereas the remaining (1 − 𝑢1) only relies on the natural re-

covery rate by self-treatment at home with a rate of 𝛿0. Hence, the 
recovery term for individuals who do not receive treatment in the hos-

pital is given by 𝛿0(1 −𝑢1)𝐼ℎ per unit time. In contrast, instead of relying 
only on the natural recovery rate, individuals who undergo treatment 
in the hospital will receive an additional recovery rate with a maxi-

mum rate of 𝛿1. The additional recovery rate in the hospital could only 
be at a maximum rate if the number of infected individuals was rela-

tively small. More infected humans in the field will reduce the quality 
2

of treatment to increase the recovery rate. Therefore, the additional re-

covery rate depends on 𝐼ℎ. Let us call this 𝑓 (𝛿1, 𝐼ℎ). This function should 
be a positive function that monotonically decreases with respect to the 
infected individual, and lim𝐼ℎ→∞ 𝑓 (𝛿1, 𝐼ℎ) = 0. To achieve this aim, we 
define 𝑓 (𝛿1, 𝐼ℎ) ∶=

𝛿1
1+𝑎𝐼ℎ

. Therefore, the number of infected individuals 

who recovered due to treatment in the hospital is given by 𝛿0 +
𝛿1

1+𝑎𝐼ℎ
. 

With this choice, we have lim𝐼ℎ→0 𝛿0 +
𝛿1

1+𝑎𝐼ℎ
= 𝛿0 + 𝛿1, which describes 

the maximum recovery rate that can for the hospitalized individual 
when the number of infected individuals is relatively small. In con-

trast, lim𝐼ℎ→∞ 𝛿0 +
𝛿1

1+𝑎𝐼ℎ
= 𝛿0, which describes a situation in which the 

hospital can no longer maximize the recovery rate because of the large 
number of infected individuals.

The mosquito population was assumed to increase due to newborns 
with a per capita growth rate given by Λ𝑣. As we assume that there is 
no vertical transmission of malaria among the mosquito population, we 
have all newborns entering the population via a susceptible mosquito 
population. Susceptible mosquito decreased due to infection because 
susceptible mosquitoes bite infected humans with the successful infec-

tion rate of 𝛽𝑣. The probability of susceptible mosquito counter infecting 
humans due to vector bias is given by 𝑝𝐼ℎ

𝑆ℎ+𝑝𝐼ℎ
. Therefore, the number of 

susceptible mosquitoes infected by malaria per unit time is given by 
𝛽𝑣

𝑆𝑣𝑝𝐼ℎ

𝑆ℎ+𝑝𝐼ℎ
. Furthermore, the mosquito population also decreased due to 

the natural death rate of 𝜇𝑣 and fumigation at a rate of 𝑢2.
Based on the above description, the model to describe the transmis-

sion of malaria among human and mosquito population, considering 
vector bias, saturated medical treatment, and fumigation, can be ex-

pressed as:

𝑑𝑆ℎ

𝑑𝑡
=Λℎ −

𝛽ℎ𝑆ℎ

𝑝𝐼ℎ +𝑆ℎ
𝐼𝑣 − 𝜇ℎ𝑆ℎ + (1 − 𝑢1)𝛿0𝐼ℎ + 𝑢1

(
𝛿0 +

𝛿1
1 + 𝑎𝐼ℎ

)
𝐼ℎ,

𝑑𝐼ℎ

𝑑𝑡
=

𝛽ℎ𝑆ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝐼𝑣 − 𝜇ℎ𝐼ℎ − (1 − 𝑢1)𝛿0𝐼ℎ − 𝑢1

(
𝛿0 +

𝛿1
1 + 𝑎𝐼ℎ

)
𝐼ℎ,

𝑑𝑆𝑣

𝑑𝑡
=Λ𝑣 −

𝛽𝑣𝑝𝐼ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝑆𝑣 − 𝜇𝑣𝑆𝑣 − 𝑢2𝑆𝑣,

𝑑𝐼𝑣

𝑑𝑡
=

𝛽𝑣𝑝𝐼ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝑆𝑣 − 𝜇𝑣𝐼𝑣 − 𝑢2𝐼𝑣,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1)

where all the parameters are positive, as described in Table 1. Sys-

tem (1), supplemented by non-negative initial conditions, can be ex-

pressed as:

𝑆ℎ(𝑡 = 0) = 𝑆ℎ0, 𝐼ℎ(𝑡 = 0) = 𝐼ℎ0, 𝑆𝑣(𝑡 = 0) = 𝑆𝑣0, 𝐼𝑣(𝑡 = 0) = 𝐼𝑣0.

Model (1) is well-posed in a non-negative region ℝ4
+ because all 

vector fields in the boundary are pointing inward. Therefore, using the 
above initial condition, the solution will always be non-negative for 
all times 𝑡 ≥ 0. Furthermore, it can be shown without any difficulties 
that the human population is bounded by Λℎ∕𝜇ℎ, whereas the mosquito 
population is bounded by Λ𝑣∕(𝜇𝑣 + 𝑢2).

3. Analysis of the model

3.1. The disease-free equilibrium and the basic reproduction number

System (1) has a disease-free equilibrium given by

𝐸0 = (𝑆ℎ, 𝐼ℎ,𝑆𝑣, 𝐼𝑣) =
(Λℎ
𝜇ℎ
,0,

Λ𝑣
𝜇𝑣 + 𝑢2

,0
)
. (2)

Having the disease-free equilibrium in hand, we are now ready to 
calculate the basic reproduction number (0). Modifying the original 
definition of the basic reproduction number in [28], the basic reproduc-

tion number in this study is defined as the expected number of newly 
infected malaria cases caused by an initial infection in a closed popu-

lation during one infection period. To construct the basic reproduction 
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Table 1. Parameter description of system (1).

Parameters Description Unity

Λℎ Human recruitment rate human

day

Λ𝑣 Mosquitoes recruitment rate
mosquitoes

day

𝛽𝑣 Infection rate from mosquito to human human

mosquito×day

𝛽𝑣 Infection rate from human to mosquito 1
day

𝜇ℎ Death rate of human 1
day

𝜇𝑣 Death rate of mosquitoes 1
day

𝑝 Vector bias parameter Nondimensional

𝛿0 Initial recovery rate 1
day

𝛿1 Additional recovery rate due to hospitalization 1
day

𝑎 Saturation parameter for hospital capacity 1
human

𝑢1 Proportion of infected humans who get hospital-

ized

nondimensional

𝑢2 Fumigation rate 1
day

number for system (1), we use the next-generation matrix approach 
[29]. The reader may see [30, 31, 32, 33, 34, 35, 36] for another exam-

ple of the derivation of 0 using this method.

The transmission ( ) and transition () matrix of system (1) evalu-

ated in 𝐸0 are given by

 =
⎡⎢⎢⎣

0 𝛽ℎ
𝛽𝑣𝑝Λ𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)
0

⎤⎥⎥⎦ , and  =
[
−(𝑢1𝛿1 + 𝛿0 + 𝜇ℎ) 0

0 −(𝜇𝑣 + 𝑢2)

]
.

Hence, the next generation matrix of system (1) is given by

 = −−1 =
⎡⎢⎢⎣

0 𝛽ℎ

𝑢2+𝜇𝑣
𝑝𝛽𝑣Λ𝑣𝜇ℎ(

𝑢2+𝜇𝑣
)
Λℎ

(
𝑢1𝛿1+𝛿0+𝜇ℎ

) 0

⎤⎥⎥⎦ .
Therefore, the corresponding basic reproduction number is

0 = 𝜌() =

√
𝑝Λ𝑣𝛽ℎ𝛽𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)
. (3)

Using the above basic reproduction number for system (1), we state the 
local stability criteria for 𝐸0 in the following theorem.

Theorem 1. The disease-free equilibrium 𝐸0 of the malaria model in sys-

tem (1) is locally asymptotically stable if 0 < 1 and unstable if 0 > 1.

Proof. Linearizing system (1) at 𝐸0 yield

𝐽 (𝐸0) =

⎡⎢⎢⎢⎢⎢⎢⎣

−𝜇ℎ 𝑢1𝛿1 + 𝛿0 0 −𝛽ℎ
0 −(𝑢1𝛿1 + 𝛿0 + 𝜇ℎ) 0 𝛽ℎ

0 −
𝛽𝑣𝑝Λ𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)
−(𝜇𝑣 + 𝑢2) 0

0
𝛽𝑣𝑝Λ𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)
0 −(𝜇𝑣 + 𝑢2)

⎤⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues are 𝜆1 = −𝜇ℎ < 0 and 𝜆2 = −𝜇𝑣 − 𝑢2 < 0, while 𝜆3 and 𝜆4
are taken from the root of the following quadratic equation:

𝑎2𝜆
2 + 𝑎1𝜆+ 𝑎0 = 0,

where 𝑎2 = Λℎ(𝜇𝑣 + 𝑢2) > 0, 𝑎1 = Λℎ(𝜇𝑣 + 𝑢2)(𝑢1𝛿1 + 𝛿0 + 𝜇ℎ + 𝜇𝑣 + 𝑢2) > 0, 
and 𝑎0 = Λℎ(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)(1 − 2

0). If 0 < 1, then 𝑎0 > 0. 
Thus, according to the Hurwitz stability criteria, the above polynomials 
have only roots with negative real parts. Consequently, the disease-free 
equilibrium 𝐸0 is locally asymptotically stable if 0 < 1. In contrast, 𝐸0
is unstable if 0 > 1. □

From Theorem 1, it can be seen that a malaria-free equilibrium can 
be established in the community if the basic reproduction number can 
be reduced as small as possible, to a specific value of less than unity. 
Please note that 2

0 express as a multiplication between three compo-

nent, i.e. (i) Number of new infected mosquito produced by infected 
3

human during human infection period, given by 𝑝𝛽𝑣

𝛿0+𝛿1𝑢1+𝜇ℎ
, (ii) Number 

of new infected human produced by infected mosquito during mosquito 
infection period, given by 𝛽ℎ

𝜇𝑣+𝑢2
, and (iii) The ratio between mosquito 

and human population in 𝐸0 which is given by Λ𝑣∕(𝜇𝑣+𝑢2)
Λℎ∕𝜇𝑣

. Reducing 
each of these components reduces 0. Different interventions should 
be considered for each component. For example, reducing 𝛽𝑣 in the first 
component could be done using a mosquito repellent [27], or any other 
genetic modification to reduce mosquito’s capability to bite humans. 
Reducing the second component could be done by reducing the infec-

tion rate 𝛽ℎ using a mosquito repellent or increasing the fumigation rate 
𝑢2. However, massive fumigation may confer resistance to mosquitoes 
for some chemical insecticides [37]. Furthermore, reducing 0 via the 
first component can be achieved by increasing the number of infected 
individuals treated in the hospital (𝑢1) or increasing the quality of treat-

ment in the hospital (𝛿1).

3.2. Endemic equilibrium

The endemic equilibrium point of system (1) is given by

𝐸† = (𝑆ℎ, 𝐼ℎ,𝑆𝑣, 𝐼𝑣) =
(
𝑆
†
ℎ
, 𝐼

†
ℎ
,𝑆†
𝑣
, 𝐼†
𝑣

)
, (4)

where

𝑆
†
ℎ
=

Λℎ − 𝜇ℎ𝐼
†
ℎ

𝜇ℎ
,

𝑆†
𝑣
=

Λ𝑣
𝑢2 + 𝜇𝑣

− 𝐼†
𝑣
,

𝐼†
𝑣
=

𝑝𝐼
†
ℎ
Λ𝑣𝛽𝑣𝜇ℎ(

𝑢2 + 𝜇𝑣
)(

(𝑝𝜇ℎ𝐼
†
ℎ
(𝛽𝑣 + 𝜇𝑣 + 𝑢2))(𝑢2 + 𝜇𝑣)(Λℎ − 𝜇ℎ𝐼

†
ℎ
)
) ,

while 𝐼†
ℎ

is taken from positive root of the following three degree poly-

nomial

(𝐼ℎ) =𝐴3𝐼
3
ℎ
+𝐴2𝐼

2
ℎ
+𝐴1𝐼ℎ +𝐴0 = 0, (5)

with

𝐴3 =𝑎𝜇2ℎ(𝑝− 1)(𝜇𝑣 + 𝑢2)(𝜇ℎ + 𝛿0)
(
(𝑝− 1)(𝜇𝑣 + 𝑢2) + 𝑝𝛽𝑣

)
𝐴2 =𝑎𝑝Λ𝑣𝛽𝑣𝜇ℎ2𝛽ℎ + 𝜇ℎ

(
𝑢2 + 𝜇𝑣

)(
𝜇ℎ

(
𝑢1𝛿1 + 𝛿0 + 𝜇ℎ

)(
𝑢2 + 𝜇𝑣 + 𝛽𝑣

)
𝑝2

+
(
𝛽𝑣 + 2𝜇𝑣 + 2𝑢2

)(
𝑎Λℎ𝛿0 + 𝑎Λℎ𝜇ℎ − 𝛿1𝜇ℎ𝑢1 − 𝛿0𝜇ℎ − 𝜇ℎ2

)
𝑝

−
(
𝑢2 + 𝜇𝑣

)(
2𝑎Λℎ𝛿0 + 2𝑎Λℎ𝜇ℎ − 𝛿1𝜇ℎ𝑢1 − 𝛿0𝜇ℎ − 𝜇ℎ2

))
𝐴1 = − 𝑝Λ𝑣𝛽𝑣𝜇ℎ

(
𝑎Λℎ − 𝜇ℎ

)
𝛽ℎ +Λℎ

(
𝑢2 + 𝜇𝑣

)(
𝜇ℎ

(
𝑢1𝛿1 + 𝛿0 + 𝜇ℎ

)(
𝛽𝑣

+ 2𝜇𝑣 + 2𝑢2
)
𝑝

+
(
𝑢2 + 𝜇𝑣

)(
𝑎Λℎ𝛿0 + 𝑎Λℎ𝜇ℎ − 2𝛿1𝜇ℎ𝑢1 − 2𝛿0𝜇ℎ − 2𝜇ℎ2

))
𝐴0 =Λ2

ℎ
(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)(1 −2

0).

Theorem 2. System (1) always has an endemic equilibrium whenever 0 >

1.

Proof. The existence of the endemic equilibrium of the system (1) de-

pends on the root of the polynomial (5). Because 𝐴3 > 0, we have 
lim𝐼ℎ→∞ (𝐼ℎ) =∞, and lim𝐼ℎ→−∞ (𝐼ℎ) = −∞. If 0 = 1, then (𝐼ℎ) has 
𝐼ℎ = 0 as one of its roots, whereas the other two could be positive, neg-

ative, or even imaginary. Let us consider an extreme case in which we 
have no positive root of (𝐼ℎ) when 0 = 1. Then, when 0 > 1, we 
have 𝐴0 < 0, which makes (𝐼ℎ) of 0 = 1 to shift downward paral-

lel to the 𝑦-axis. Therefore, we had at least one new positive root. This 
completes the proof. □
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Table 2. Number of possible positive real roots of polynomial (5).

Case 𝐴3 𝐴2 𝐴1 𝐴0 Condition of 0 Possible positive root

1 + + + - 0 > 1 1

2 + + - - 0 > 1 1

3 + - + - 0 > 1 1 or 3
4 + - - - 0 > 1 1

5 + + + + 0 < 1 0

6 + + - + 0 < 1 0 or 2
7 + - + + 0 < 1 0 or 2
8 + - - + 0 < 1 0 or 2

From the previous theorem, we can guarantee that there always ex-

ists at least one endemic equilibrium if 0 > 1. However, because (𝐼ℎ)
is a cubic polynomial, we may have multiple endemic equilibria when 
0 > 1 or 0 < 1. Hence, we analyze the maximum number of positive 
roots of the polynomial (5) using the Descartes rules of signs. The re-

sults are summarized in Table 2. It can be seen that whenever 0 < 1, 
then polynomial (𝐼ℎ) will either have zero or two positive roots. In 
contrast, when 0 > 1, we always have the possibility of having either 
one or three positive roots.

From Table 2, we can see that system (1) may have an endemic equi-

librium point even though 0 < 1. Unfortunately, the results in Table 2

cannot provide a specific condition to guarantee the existence of the 
endemic equilibrium when 0 < 1. Therefore, we continue our analy-

sis by determining a possible condition to guarantee the existence of 
an endemic equilibrium when 0 < 1, which is indicated by the sign of 
𝜕𝐼

𝜕0
to be negative when 0 = 1 and 𝐼 = 0. Furthermore, if it is fulfilled, 

then we will have two positive endemic equilibria when 0 < 1.

First, we make 𝐴𝑖 in (𝐼ℎ) for 𝑖 = 0, 1, 2, 3 to make it a function de-

pending on 0 by changing 𝛽ℎ as

𝛽∗
ℎ
=

2
0Λℎ(𝜇𝑣 + 𝑢2)

2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)
𝜇ℎ𝑝Λ𝑣𝛽𝑣

.

Substituting 𝛽ℎ = 𝛽∗
ℎ

into 𝐴3, 𝐴2, 𝐴1, and 𝐴0, and taking the partial 
derivative of 𝐼ℎ with respect to 0 from (𝐼ℎ) and evaluating it in 
0 = 1, 𝐼ℎ = 0, give us:

𝜕𝐼ℎ

𝜕0

||||𝐼ℎ=0,0=1
= −

𝜕𝐴0∕𝜕0
𝐴1(0)

||||𝐼ℎ=0,0=1
,

where

𝜕𝐴0
𝜕0

||||𝐼ℎ=0,0=1
= −2Λ2

ℎ
(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)

Because 
𝜕𝐴0
𝜕0

< 0, 
𝜕𝐼ℎ

𝜕0
< 0 if and only if 𝐴1(0) < 0, or equivalently,

𝑎 > 𝑎∗ =
𝜇ℎ

(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)(
𝑝𝛽𝑣 + 2𝑝(𝜇𝑣 + 𝑢2) − 𝜇𝑣 − 𝑢2

)
(𝜇𝑣 + 𝑢2)Λℎ𝛿1𝑢1

.

This results state in the following theorem.

Theorem 3. System (1) has two endemic equilibriums in an interval when 
0 < 1 if

𝑎 > 𝑎∗ =
𝜇ℎ

(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)(
𝑝𝛽𝑣 + 2𝑝(𝜇𝑣 + 𝑢2) − 𝜇𝑣 − 𝑢2

)
(𝜇𝑣 + 𝑢2)Λℎ𝛿1𝑢1

. (6)

Based on Theorems 2 and 3, we indicate the possibility of the ex-

istence of multiple endemic equilibrium points when 0 < 1; even the 
disease-free equilibrium is locally stable. This result means that society 
may misinterpret the endemicity of malaria in the population. When the 
endemicity of malaria is only indicated by the size of the basic repro-

duction number that should be less than one, the disease may die out 
but could persist (in a huge size of endemic level). Hence, it is essen-

tial to understand these phenomena in more detail. Further discussion 
about the local stability of this endemic equilibrium is provided in the 
following section.
4

4. Bifurcation analysis

In this section, we conduct a bifurcation analysis of our proposed 
malaria model in system (1) using the well-known Castillo-Song bifur-

cation theorem [38]. Many authors have used this approach to analyze 
the bifurcation phenomena in epidemiological models [39, 40, 41, 42, 
43].

Theorem 4. If 0 < 1 and

𝑎 > 𝑎∗ =
𝜇ℎ

(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)(
𝑝𝛽𝑣 + 2𝑝(𝜇𝑣 + 𝑢2) − 𝜇𝑣 − 𝑢2

)
(𝜇𝑣 + 𝑢2)Λℎ𝛿1𝑢1

,

then system (1) undergoes a backward bifurcation at 0 = 1. If 𝑎 < 𝑎∗, then 
system (1) undergoes a forward bifurcation at 0 = 1.

Proof. Suppose, 𝑥1 = 𝑆ℎ, 𝑥2 = 𝐼ℎ, 𝑥3 = 𝑆𝑣 and 𝑥4 = 𝐼𝑣. The malaria model 
in the system (1) becomes

𝑓1 =
𝑑𝑥1
𝑑𝑡

=Λℎ −
𝛽ℎ𝑥1𝑥4
𝑝𝑥2 + 𝑥1

− 𝜇ℎ𝑥1 + (1 − 𝑢1)𝛿0𝑥2 + 𝑢1
(
𝛿0 +

𝛿1
1 + 𝑎𝑥2

)
𝑥2,

𝑓2 =
𝑑𝑥2
𝑑𝑡

=
𝛽ℎ𝑥1𝑥4
𝑝𝑥2 + 𝑥1

− 𝜇ℎ𝑥2 − (1 − 𝑢1)𝛿0𝑥2 − 𝑢1
(
𝛿0 +

𝛿1
1 + 𝑎𝑥2

)
𝑥2,

𝑓3 =
𝑑𝑥3
𝑑𝑡

=Λ𝑣 −
𝛽𝑣𝑝𝑥2𝑥3
𝑝𝑥2 + 𝑥1

− 𝜇𝑣𝑥3 − 𝑢2𝑥3, (7)

𝑓4 =
𝑑𝑥4
𝑑𝑡

=
𝛽𝑣𝑝𝑥2𝑥3
𝑝𝑥2 + 𝑥1

− 𝜇𝑣𝑥4 − 𝑢2𝑥4.

We substitute 0=1 ↔2
0=1 and let 𝛽†

ℎ
=
Λℎ(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)

𝜇ℎ𝑝Λ𝑣𝛽𝑣
as the bifurcation parameter. Then, the Jacobian matrix of system (7)

at 𝐸0 and 𝛽ℎ = 𝛽†ℎ is

0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇ℎ 𝑢1𝛿1 + 𝛿0 0 −
Λℎ(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)

𝜇ℎ𝑝Λ𝑣𝛽𝑣
0 −(𝑢1𝛿1 + 𝛿0 + 𝜇ℎ) 0

Λℎ(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)
𝜇ℎ𝑝Λ𝑣𝛽𝑣

0 −
𝛽𝑣𝑝Λ𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)
−(𝜇𝑣 + 𝑢2) 0

0
𝛽𝑣𝑝Λ𝑣𝜇ℎ

Λℎ(𝜇𝑣 + 𝑢2)
0 −(𝜇𝑣 + 𝑢2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8)

The eigenvalues of 0 are 𝜆1 = 0, 𝜆2 = −𝜇ℎ, 𝜆3 = −(𝜇𝑣 + 𝑢2), and 𝜆4 =
−(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ + 𝜇𝑣 + 𝑢2). It can be seen that 0 has three nega-

tive eigenvalues and one zero eigenvalue. Now, we compute the left 
and right eigenvectors of 0 corresponding to 𝜆1 = 0. We consider 
the system 0w = 0 to compute the right eigenvector w. Assuming 
w = (𝑤1, 𝑤2, 𝑤3, 𝑤4)𝑇 to be the right eigenvector, then a direct calcu-

lation yields

w =
[
1,1,−

𝜇ℎ𝑝Λ𝑣𝛽𝑣
Λℎ(𝜇𝑣 + 𝑢2)2

,
𝜇ℎ𝑝Λ𝑣𝛽𝑣

Λℎ(𝜇𝑣 + 𝑢2)2

]
.

Next, assuming v = (𝑣1, 𝑣2, 𝑣3, 𝑣4)𝑇 to be the left eigenvector, then a di-

rect calculation yields

v =
[
0,1,0,

Λℎ(𝜇𝑣 + 𝑢2)(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)
𝜇ℎ𝑝Λ𝑣𝛽𝑣

]
.

Because 𝑣1 and 𝑣3 are zero, we do not need the derivatives of 𝑓1
and 𝑓3. From the derivatives of 𝑓2 and 𝑓4, the second derivative with 
respect to each variable and 𝛽†

ℎ
, which are nonzero, is as follows:

𝜕2𝑓2

𝜕𝑥22

= 2𝑢1𝛿1𝑎,
𝜕2𝑓2
𝜕𝑥2𝜕𝑥4

= −
(𝜇𝑣 + 𝑢2)2(𝛿1𝑢1 + 𝛿0 + 𝜇ℎ)

Λ𝑣𝛽𝑣
,

𝜕2𝑓4
𝜕𝑥1𝜕𝑥2

= −
𝛽𝑣𝑝Λ𝑣𝜇2ℎ

(𝜇𝑣 + 𝑢2)Λ2
ℎ

,
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𝜕2𝑓4

𝜕𝑥22

= −
2𝛽𝑣𝑝2Λ𝑣𝜇2ℎ
Λ2
ℎ
(𝜇𝑣 + 𝑢2)

,
𝜕2𝑓4
𝜕𝑥2𝜕𝑥3

=
𝛽𝑣𝑝𝜇ℎ

Λℎ
,

𝜕2𝑓2

𝜕𝑥4𝜕𝛽
†
ℎ

= 1.

To use the bifurcation theorem in [38], we have to compute  and , 
where

 =
𝑛∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0),

 =
𝑛∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜙

(0,0).

It follows that

 = 1
Λℎ(𝜇𝑣 + 𝑢2)

(
2
(
𝑢1𝛿1𝑎Λℎ(𝜇𝑣 + 𝑢2) − 𝑝𝛽𝑣𝛿1𝜇ℎ𝑢1 − 2𝑝𝛿1𝜇ℎ𝑢1(𝜇𝑣 +

𝑢2) − 𝑝𝛽𝑣𝛿0𝜇ℎ − 𝑝𝛽𝑣𝜇2ℎ − 2𝑝𝛿0𝜇ℎ(𝜇𝑣 + 𝑢2) − 2𝑝𝜇2
ℎ
(𝜇𝑣 + 𝑢2) + 𝛿1𝜇ℎ𝑢1

(𝜇𝑣 + 𝑢2) + 𝛿0𝜇ℎ(𝜇𝑣 + 𝑢2) + 𝜇2ℎ(𝜇𝑣 + 𝑢2)
))
,

 =
𝑣2𝑤2𝜇ℎ𝑝Λ𝑣𝛽𝑣
Λℎ(𝜇𝑣 + 𝑢2)2

.

Taking 𝑣2 and 𝑤2 to be positive, it is obvious that  > 0. Therefore, 
backward bifurcation occurs when  > 0, or equivalently, when

𝑎 >

𝜇ℎ

(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)(
𝑝𝛽𝑣 + 2𝑝(𝜇𝑣 + 𝑢2) − 𝜇𝑣 − 𝑢2

)
(𝜇𝑣 + 𝑢2)Λℎ𝛿1𝑢1

= 𝑎∗. (9)

Conversely, if  < 0 or 𝑎 < 𝑎∗, forward bifurcation will occur. We see 
that the condition 𝑎∗ in equation (9) has the same condition as inequal-

ity (6). □

The biological interpretation of Theorem 4 is that when the back-

ward bifurcation phenomenon occurs, malaria may still exist in the 
community even when 0 < 1. This condition may lead to a misun-

derstanding of malaria eradication programs. Policymakers may think 
that they have succeeded in suppressing 0 to be less than unity and ex-

pect malaria will die out. Unfortunately, if backward bifurcation occurs, 
a large endemic equilibrium exists because hysteresis appears when 
0 < 1. Our result in Theorem 4 indicates that policymakers need to 
increase the bed capacity or human resources for medical treatment in 
the hospital (reducing 𝑎) to avoid backward bifurcation.

Taking the derivative of  with respect to the vector bias parameter 
𝑝, we obtain

𝜕
𝜕𝑝

= −2
𝑣2𝑤2

2𝜇ℎ
(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)(
𝛽𝑣 + 2𝜇𝑣 + 2𝑢2

)
Λℎ

(
𝜇𝑣 + 𝑢2

) < 0.

Because 𝜕
𝜕𝑝
< 0, the higher number of mosquitos attracted to bite in-

fected humans will increase the probability of the model to avoid back-

ward bifurcation. The reason is that the new infection can be reduced 
as mosquitos prefer biting infected humans rather than susceptible hu-

mans.

Next, we analyzed the effect of the proportion of infected humans 
receiving medical treatment in the hospital. Taking the derivative of 0
with respect to 𝑢1, we obtain

𝜕
𝜕𝑢1

= 2
𝑣2𝑤2

2𝛿1
((
𝜇𝑣 + 𝑢2

)(
𝑎Λℎ + 𝜇ℎ

)
− 𝑝𝜇ℎ

(
𝛽𝑣 + 2𝜇𝑣 + 2𝑢2

))
Λℎ

(
𝜇𝑣 + 𝑢2

) < 0

if

𝑝 >
(𝜇𝑣 + 𝑢2)(𝑎Λℎ + 𝜇ℎ)
𝜇ℎ(𝛽𝑣 + 2(𝜇𝑣 + 𝑢2))

= 𝑝∗.

Again, it can be seen that the vector bias parameter plays an essential 
role in determining whether the medical intervention or hospitalization 
will be effective in avoiding backward bifurcation. It can be seen that 
hospitalization or medical intervention increases the probability of pre-

venting backward bifurcation only when 𝑝 is sufficiently small; to be 
precise, when 𝑝 > 𝑝∗.
5

In contrast to 𝑢1, increasing the fumigation rate 𝑢2 will increase the 
probability of the occurrence of backward bifurcation because

𝜕
𝜕𝑢2

= 2
𝑣2𝑤2

2𝑝𝛽𝑣𝜇ℎ
(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)
Λℎ

(
𝜇𝑣 + 𝑢2

)2 > 0.

These policymakers need to pay attention to this result as fumigation 
is a common and favorable intervention when malaria cases start to 
increase in a community. Based on this result, we can conclude that a 
combination of fumigation needs to consider the treatment saturation 
parameter, which is related to the hospital’s capability to handle an 
increase in the number of malaria cases. The chance that fumigation 
intervention will lead to backward bifurcation can be reduced if the 
treatment saturation parameter is sufficiently small; to be precise, when 
𝑎 < 𝑎∗.

Furthermore, if 𝑎 = 0, which means that there are no limitations on 
hospital capacity, the bifurcation coefficient  becomes

∗ = −2
𝑣2𝑤2

2𝜇ℎ
(
𝛿1𝑢1 + 𝛿0 + 𝜇ℎ

)((
𝜇𝑣 + 𝑢2

)
(2𝑝− 1) + 𝑝𝛽𝑣

)
Λℎ

(
𝜇𝑣 + 𝑢2

) < 0.

This condition means that without the saturated treatment, system (1)

constantly undergoes a forward bifurcation when 0 = 1. This means 
that malaria will permanently be eliminated when 0 < 1, that is, if the 
bed capacity of the hospital very high. Furthermore, if the parameters 
change and result in 0 > 1 but close to one, a small endemic will occur.

5. Optimal control problem characterization

In this study, the optimal control model aims to minimize the num-

ber of infected humans 𝐼ℎ and infected mosquitos 𝐼𝑣 while maintaining 
the intervention costs for hospitalization 𝑢1 and fumigation 𝑢2 as much 
as possible.

The first step is to re-model the malaria autonomous model in sys-

tem (1) by changing 𝑢1 and 𝑢2 as time-dependent variables, 𝑢1(𝑡) and 
𝑢2(𝑡), respectively. Hence, the new model is given by :

𝑑𝑆ℎ

𝑑𝑡
=Λℎ−

𝛽ℎ𝑆ℎ

𝑝𝐼ℎ+𝑆ℎ
𝐼𝑣−𝜇ℎ𝑆ℎ+(1−𝑢1(𝑡))𝛿0𝐼ℎ+𝑢1(𝑡)

(
𝛿0+

𝛿1
1+𝑎𝐼ℎ

)
𝐼ℎ,

𝑑𝐼ℎ

𝑑𝑡
=

𝛽ℎ𝑆ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝐼𝑣 − 𝜇ℎ𝐼ℎ − (1 − 𝑢1(𝑡))𝛿0𝐼ℎ − 𝑢1(𝑡)

(
𝛿0 +

𝛿1
1 + 𝑎𝐼ℎ

)
𝐼ℎ,

𝑑𝑆𝑣

𝑑𝑡
=Λ𝑣 −

𝛽𝑣𝑝𝐼ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝑆𝑣 − 𝜇𝑣𝑆𝑣 − 𝑢2(𝑡)𝑆𝑣,

𝑑𝐼𝑣

𝑑𝑡
=

𝛽𝑣𝑝𝐼ℎ

𝑝𝐼ℎ + 𝑆ℎ
𝑆𝑣 − 𝜇𝑣𝐼𝑣 − 𝑢2(𝑡)𝐼𝑣.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10)

Our objective functional that should be minimized described as follows:

 (𝑢1, 𝑢2) =

𝑡𝑓

∫
0

[
𝑐1𝐼ℎ(𝑡) + 𝑐2𝐼𝑣(𝑡) +

1
2
𝑏1𝑢

2
1(𝑡) +

1
2
𝑏2𝑢

2
2(𝑡)

]
𝑑𝑡. (11)

The first two components in  describe the cost related to the high 
number of infected humans and mosquitoes, such as media campaign 
costs and educational programs in the community about malaria. The 
last two components in  are related to the cost of hospitalization and 
fumigation intervention, respectively. Here, we assume that the relative 
costs are in a nonlinear form, and quadratic costs form in the controls. 
Note that coefficients 𝑐1, 𝑐2, 𝑏1, and 𝑏2 are the balancing parameters for 
the size and importance of the objective functionals. We seek to find the 
optimal controls 𝑢∗1 and 𝑢∗2 that satisfy

 (𝑢∗1 , 𝑢
∗
2) = min

Ω
 (𝑢1, 𝑢2), (12)

where Ω =
{
(𝑢1, 𝑢2) ∈𝐿1(0, 𝑡𝑓 )|𝑢min

𝑖
≤ 𝑢𝑖 ≤ 𝑢max

𝑖
, 𝑖 = 1,2

}
. 𝑢min
𝑖

and 𝑢max
𝑖

are 
the acceptable domains for control values related to the policymaker’s 
capability to implement the malaria intervention program.
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The necessary conditions for the optimal control problem are ob-

tained from Pontryagin’s maximum principle [25]. First, we construct 
the related Hamiltonian of our problem in the form of:

 = 𝐼ℎ(𝑡) + 𝐼𝑣(𝑡) +
1
2
𝑏1𝑢

2
1(𝑡) +

1
2
𝑏2𝑢

2
2(𝑡) +

4∑
𝑖=1
𝑧𝑖𝑔𝑖, (13)

where 𝑧𝑖 is the costate variable, and 𝑔𝑖 is the right-hand side of the 
malaria model (10) for the 𝑖th state variables. Using the Pontryagin 
maximum principle, we have the following theorem:

Theorem 5. There exists an optimal control 𝑢∗1 and 𝑢∗2 , and the correspond-

ing state variables 𝑆∗
ℎ
, 𝐼∗
ℎ
, 𝑆∗
𝑣
, 𝐼∗
𝑣

such that the cost function  (𝑢1, 𝑢2) is 
minimized over Ω. Given these optimal solutions, there exist costate vari-

ables 𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡), and 𝑧4(𝑡) that satisfy

𝑑𝑧1
𝑑𝑡

=
𝑝𝛽ℎ𝐼ℎ𝐼𝑣

(𝑝𝐼ℎ + 𝑆ℎ)2
(𝑧1 − 𝑧2) + 𝜇ℎ𝑧1 +

𝑝𝛽𝑣𝑆𝑣𝐼ℎ

(𝑝𝐼ℎ +𝑆ℎ)2
(𝑧4 − 𝑧3),

𝑑𝑧2
𝑑𝑡

= −𝑐1 +
𝑝𝛽ℎ𝑆ℎ𝐼𝑣

(𝑝𝐼ℎ + 𝑆ℎ)2
(𝑧2 − 𝑧1) +

(
𝛿0 +

𝑢1𝛿1
(𝑎𝐼ℎ + 1)2

)
(𝑧2 − 𝑧1)

+ 𝜇ℎ𝑧2 +
𝑝𝛽𝑣𝑆𝑣𝑆ℎ

(𝑝𝐼ℎ +𝑆ℎ)2
(𝑧3 − 𝑧4),

𝑑𝑧3
𝑑𝑡

=
𝑝𝛽𝑣𝐼ℎ

𝑝𝐼ℎ +𝑆ℎ
(𝑧3 − 𝑧4) + (𝑢2 + 𝜇𝑣)𝑧3,

𝑑𝑧4
𝑑𝑡

= −𝑐2 +
𝛽ℎ𝑆ℎ

𝑝𝐼ℎ +𝑆ℎ
(𝑧1 − 𝑧2) + (𝑢2 + 𝜇𝑣)𝑧4,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(14)

with the transversality conditions

𝑧𝑖(𝑡𝑓 ) = 0, 𝑖 = 1,2,3,4. (15)

Furthermore,

𝑢∗1 = min
{
max

{
𝑢min
1 ,

1
𝑏1

(
𝛿1𝐼ℎ

1 + 𝑎𝐼ℎ

)
(𝑧1 − 𝑧2)

}
, 𝑢max

1

}
,

𝑢∗2 = min
{
max

{
𝑢min
2 ,

1
𝑏2

(
𝑆𝑣𝑧3 + 𝐼𝑣𝑧4

)}
, 𝑢max

2

}
.

⎫⎪⎪⎬⎪⎪⎭
(16)

Proof. We assume that the cost function (11) is a convex function of 𝑢1
and 𝑢2, and the state system (10) satisfies the Lipchitz properties with 
respect to the state variables because the state solutions are bounded by 
𝐿∞.

By taking − 𝑑
𝑑𝑆ℎ

, − 𝑑
𝑑𝐼ℎ

, − 𝑑
𝑑𝑆𝑣

, and − 𝑑
𝑑𝐼𝑣

, 𝑑𝑧1
𝑑𝑡

, 𝑑𝑧2
𝑑𝑡

, 𝑑𝑧3
𝑑𝑡

, and 𝑑𝑧4
𝑑𝑡

, re-

spectively, in system (14). Furthermore, the costate system is equipped 
with the transversal condition 𝜆𝑖(𝑡𝑓 ) = 0 for 𝑖 = 1, 2, 3, 4. To find the op-

timal solution for 𝑢1 and 𝑢2, we differentiate  with respect to each 
control variable:

𝑑
𝑑𝑢1

= 𝑏1𝑢1 −
𝛿1𝐼ℎ

1 + 𝑎𝐼ℎ
(𝑧2 − 𝑧1) = 0,

𝑑
𝑑𝑢2

= 𝑏2𝑢2 − 𝑆𝑣𝑧3 − 𝐼ℎ𝑧4 = 0.

⎫⎪⎬⎪⎭
Solving the above equation with respect to 𝑢1 and 𝑢2 gave us:

𝑢∗1 =
1
𝑏1

(
𝛿1𝐼ℎ

1 + 𝑎𝐼ℎ

)
(𝑧1 − 𝑧2),

𝑢∗2 =
1
𝑏2

(
𝑆𝑣𝑧3 + 𝐼𝑣𝑧4

)
.

⎫⎪⎪⎬⎪⎪⎭
Using standard variation arguments with the lower and upper bounds 
for 𝑢𝑖, we obtain the optimal solution in (16). □

The optimal control problem in this article for the malaria eradi-

cation program consists of the state system (malaria model (1)) with 
the initial conditions given, the costate system (14) with the terminal 
conditions, and the control characterizations (16).
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6. Numerical experiments

6.1. Sensitivity analysis

As discussed in Sections 3 and 4, the basic reproduction number 
in (3) for the malaria model (1) in Section 2 has an important role 
in determining the qualitative behavior of malaria dynamics. There-

fore, it is reasonable to analyze the sensitivity of 0 with respect to the 
changes in the parameters of the model. This information is crucial not 
only for data assimilation, but also for experimental design as a scien-

tific back-up before the implementation of malaria eradication policy 
in a community. Sensitivity analysis is a common method for determin-

ing the robustness of model predictions with respect to the values of 
the parameters. Several benefits can be achieved from sensitivity analy-

sis, such as determining the relation of parameter changes to the model 
and knowing the model’s most influential parameter. Knowing the most 
influential parameters for 0 will help policymakers choose their best 
strategies to eliminate malaria from the community. Therefore, in this 
study, we use a sensitivity analysis to discover the most influential pa-

rameter on the threshold 0.

Definition 1. (See [45]). The normalized forward sensitivity index of 0
with respect to a given parameter 𝜃 is defined as:

0
𝜃

=
𝜕0
𝜕𝜃

× 𝜃

0
.

The values of the sensitivity indices for each parameter’s values in 
Table 3 are presented in Table 4. The simulation is performed for two 
different baselines of the parameter value, namely, when 0 > 1 and 
0 < 1. The positive or negative sign of 0

𝜃
in Table 4 determines 

whether the parameters have a positive or negative influence on 0. 
Therefore, it can be seen that 0 increases when 𝛽ℎ, 𝛽𝑣, Λ𝑣, 𝜇ℎ, and 𝑝 in-

creases. In contrast, increasing the value of Λℎ, 𝜇𝑣, 𝑢1, 𝑢2, 𝛿0, or 𝛿1 will 
reduce 0. It can be seen that 0

𝑎 = 0, which means that the saturated 
treatment parameter does not influence the magnitude of 0. However, 
as already explained in Theorem 4, 𝑎 determines the existence of back-

ward bifurcation of the malaria model in (1) at 0 = 1. Furthermore, 
the value of 0

𝜃
for each parameter describes the extent to which 0

changes if 𝜃 changes by 1%. For example, because 0
𝑢2

= 1.3548, if 𝑢2
increases by 1%, 0 decreases by 1.3548% for 0 > 1 and 1.726% for 
0 < 1. Therefore, the most potentially controllable parameter that can 
be modified to control the magnitude of 0 is 𝑢2, followed by 𝛽ℎ, 𝛽𝑣, 𝑢1, 
and 𝛿1, whereas the other parameters cannot be manipulated. According 
to this sensitivity analysis of 0, it is reasonable to use fumigation and 
hospitalization as the control variables, which will be analyzed next.

Fig. 1 show how fumigation and medical treatment effect 0. The 
larger the medical treatment and fumigation intervention, lesser the 
value of 0.

6.2. Backward and forward bifurcation

Fig. 2 illustrates the bifurcation diagram of system (1) using param-

eters value in Table 3. Using Theorem 4, we have 𝑎∗ = 1∕237. Backward 
bifurcation occurs as illustrated in Fig. 2(a) using saturated parameter 
𝑎 = 1∕143. It can be seen that when 0 < 0.995, no endemic equilibrium 
point appears, while the disease-free equilibrium is stable. Hysteresis 
occurs in 0 = 0.995 when suddenly a new endemic equilibrium point 
appears, while the disease-free equilibrium still stable. When 0 starts 
getting larger than 0.995, two endemic equilibria exist; the smaller one 
is unstable, whereas the larger one is stable. In this interval, the disease-

free equilibrium remains stable. Reaching 0 = 1, the large endemic 
equilibrium still exists and is stable, whereas the smaller one is extinct. 
At the same time, disease-free equilibrium became unstable. Fig. 2(b) 
show a forward bifurcation of system (1) when 𝑎 = 1∕250. It can be 
seen that the disease-free equilibrium is stable when 0 < 1. Alteration 
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Table 3. List of parameters value for system (1).

Parameters Value/range References Parameters Value/range References

𝛽𝑣
49.35
365

[7] 𝜇𝑣
1
21

[45]

Λℎ
100000
70 × 365

Assumption 𝑢1 [0,1] Varying

Λ𝑣
10000
21

Assumption 𝛿0
1
180

[7, 8]

𝑝 4 [7] 𝛿1
1
180

Assumption

𝜇ℎ
1

70 × 365
[44] 𝑢2 [0,1] Varying
Table 4. Elasticity indices of 0 respect to parameters in malaria model (1)

using parameters value in Table (3).

Sens. to 𝜃 0 > 1 0 < 1 Sens. to 𝜃 0 > 1 0 < 1
𝛽ℎ0

1 1 𝑢10
-0.0903 -0.0903

𝛽𝑣0
1 1 𝑢20

-1.0244 -1.3548

Λℎ0
-1 -1 𝛿00

-0.9033 -0.9033

Λ𝑣0
1 1 𝛿10

-0.0903 -0.0903

𝜇ℎ0
0.9936 0.9936 𝑝0

1 1

𝜇𝑣0
-0.9756 -0.6452 𝑎0

0 0

Fig. 1. The graph shows the sensitivity of 0 to the changes of 𝑢1 and 𝑢2 while 
the other parameters remain fixed.

of the disease-free equilibrium stability occurs at 0 = 1, while the en-

demic equilibrium starts to rise and grows concomitant with 0 getting 
larger.

Next, we illustrate the discussion in Section 4 about the relation of 
𝑢1, 𝑢2, and 𝑝 on the existence of backward bifurcation of the system (1). 
Fig. 3 presents the effect of 𝑝 and 𝑢1 on the existence of backward bi-

furcation. It can be seen that when the vector bias increases, backward 
bifurcation is more likely to occur while increasing the fumigation rate, 
resulting in a greater likelihood of backward bifurcation.

6.3. Optimal control

6.3.1. Numerical method

We implement an iterative procedure to solve the boundary problem 
of our optimality system, which is described in Theorem 5. Let 𝑥𝑖 for 
𝑖 = 1, 2, 3, 4 denote 𝑆ℎ, 𝐼ℎ, 𝑆𝑣, and 𝐼𝑣 in system (10), respectively. The 
numerical computation method is given by the algorithm below [46]:

(Step 1): Make an initial guess for 𝑢1 and 𝑢2 over [0, 𝑡𝑓 ].

(Step 2): While 
‖‖‖𝑥(𝑘) − 𝑥(𝑘−1)‖‖‖‖‖𝑥(𝑘)‖‖ > 𝛿, do step 3-5.

(Step 3): Using the initial condition for state variable, solve state sys-

tem (10) forward in time using a 4th-order Runge Kutta 
scheme.
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(Step 4): Using the transversality condition 𝜆(𝑡𝑓 ) = 0 and the stored 
values for 𝑢𝑖 and 𝑥𝑖, solve the costate system (14) backward 
in time using a 4th-order Runge-Kutta scheme.

(Step 5): Update 𝑢1 and 𝑢2 by entering new value for 𝑥𝑖 and 𝑧𝑖
into (16).

This algorithm can be explained as follows: First, we provide an initial 
guess for the control variables 𝑢1 and 𝑢2 for all 𝑡 ∈ [0, 𝑡𝑓 ], and then solve 
the state system (malaria model (10)) forward in time. Using the result-

ing values for the state and control variables, we calculate the costate 
variables by solving the costate system (14) for 𝑡 ∈ [0, 𝑡𝑓 ] backward in 
time using the transversality condition. Then, we update the control 
variables using optimality (16). This iterative process continues until it 
reaches the convergence criteria, which, in this case, the relative error 
between state variables is less than a specified value 𝛿, that is, when ‖‖‖𝑥(𝑘)−𝑥(𝑘−1)‖‖‖‖‖𝑥(𝑘)‖‖ < 𝛿, where ‖⋅‖ is the 𝐿∞-norm.

To obtain meaningful optimal control profiles, a reasonable estima-

tion of the weight parameters 𝑐1, 𝑐2, 𝑏1, and 𝑏2 is critical. In a balanced 
situation, we assume that:

𝑐1𝐼ℎ ≊ 𝑐2𝐼𝑣 ≊ 𝑏1𝑢21 ≊ 𝑏2𝑢
2
2.

To conduct the simulation, we assume that the ratio between the human 
and mosquito populations is 10 ∶ 1. We assume that 𝑁ℎ = 100 000 and 
𝑁𝑣 = 10 000. Therefore, we have 𝑐1

𝑐2
≊ 𝐼𝑣

𝐼ℎ
. Taking 𝑐1 as the baseline, we 

choose 𝑐1 = 1. Furthermore, the medians of the maximum 𝐼ℎ and 𝐼𝑣 are 
50 000 and 5 000, respectively. Therefore, we have 𝑐2 = 10. Furthermore, 
we assume that the control variables lie in the closed interval [0, 1]. 
Using a similar approach, we find that 𝑏1 and 𝑏2 are 400 000.

6.3.2. Numerical examples

To conduct the numerical simulation for the optimal control prob-

lem in this section, we use the parameter values, as shown in Table 3

except for 𝑢1 and 𝑢2 that will be sought through simulation, the initial 
conditions used in the numerical experiment for the autonomous sys-

tem in the previous section, and using the initial guess for 𝑢1 = 0.1 and 
𝑢2 = 0.01 for 𝑡 ∈ [0, 𝑡𝑓 ].

For the base-case when (𝑐1, 𝑐2, 𝑏1, 𝑏2) = (1, 10, 4 × 105, 4 × 105) and 
the initial condition (𝑆ℎ0, 𝐼ℎ0, 𝑆𝑣0, 𝐼𝑣0)= (99 000, 1 000, 9 900, 100), we ob-

tained the control profile shown in Fig. 4, with a cost function of 
3.79 × 103. Without any intervention, the number of infected humans 
and mosquitoes increases over time and tends to reach an endemic equi-

librium. To reduce the number of infected humans and mosquitoes, the 
profile of hospitalization monotonically decreased in response to de-

creasing trends in infected humans. In contrast, the profile of fumigation 
was almost constant due to a reduction in the number of mosquitoes. As 
a result, using the time-dependent control profile, the final number of 
infected humans and mosquitos is significantly reduced compared with 
a scenario when no control is implemented. The dynamics of infected 
humans increase at the beginning and then monotonically decrease af-

ter 𝑡 = 240. The dynamics of infected mosquitoes decrease rapidly at the 
beginning of the intervention period. In response to fumigation, the rate 
tends to reach zero. When the final time is close, the number of infected 
mosquitoes starts to rise again. In this scenario, 14 054 new infections in 
humans were avoided.
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Fig. 2. Backward (a) and forward (b) bifurcation diagram of system (1) using Theorem 4. Red and blue curves represent endemic and disease-free equilibria, 
respectively, whereas solid and dotted curves represent stable and unstable equilibria, respectively.

Fig. 3. Bifurcation diagram of system (1) with using several values of 𝑝 (a) and 𝑢2 (b). The solid and dotted curves represent stable and unstable equilibrium, 
respectively.
In the second scenario, we performed the simulation by changing 
the initial basic reproduction number when 𝑡 = 0. In the base case, we 
have 0 = 7.84 > 1, which indicates that the system will tend to the 
endemic equilibrium if no intervention is implemented. In the second 
case, we reduce 𝛽ℎ, 𝛽𝑣, and 𝑝 to 7.05∕365, 24.675∕365, and 2, respectively. 
The other parameters remain the same as those in the base case. Con-

sequently, we have 0 = 0.98 < 1, which indicates that the system will 
tend to be malaria-free even though no control is implemented. The nu-

merical results for this scenario are shown in Fig. 5. In this scenario, the 
control profiles are almost monotonically decreasing for all simulation 
times following the dynamics of infected humans and mosquitoes. The 
maximum value of the control profile was also lower than that in the 
base case. Compared with the base case, which gives a functional cost 
of 3 790, in the second scenario, the cost function is only 298, which is 
less than 10% of the base case. Therefore, based on this simulation, we 
conclude that the cost of intervention is lower if the environment does 
not show the endemic’s potential, which is indicated by the condition 
of the basic reproduction number that is less than unity.

In the third scenario, we performed an optimal control simula-

tion for the endemic reduction scenario. In the base case, controls 
intend to prevent the endemic, which is indicated by the small num-

ber of infected humans and mosquitoes in the initial simulation time. 
In the third case, we change the initial condition to (𝑆ℎ0, 𝐼ℎ0, 𝑆𝑣0, 𝐼𝑣0)=
8

(90 000, 10 000, 7 000, 3 000) to describe a scenario when intervention is 
implemented “late” as the number of infected population is already 
high. The results of the endemic reduction scenario are shown in Fig. 6. 
It can be seen that the implementation of fumigation is almost constant 
at 0.1 for all simulation times. Because of the high cost of fumigation, 
the hospitalization rate is lower than in the base case. Because the in-

fected population is already significant in the initial simulation time, 
and the high intensity of fumigation should be given for almost all sim-

ulation times, the cost function is substantial, which is 10 935, almost 
three times larger than that in the base case. From this simulation, we 
conclude that a control intervention should be provided at the early 
stage of infection in the community. Late intervention could end up at 
a high cost for the eradication of malaria in the community.

To study the effect of the vector bias on the control effort for malaria 
eradication, we computed the solutions of 𝑢∗1 and 𝑢∗2 for 𝑝 = 4, 3, and 2, 
as shown in Fig. 7). Note that the basic reproduction number for each 
𝑝 is 0(𝑝 = 4) = 7.84, 0(𝑝 = 3) = 5.88, and 0(𝑝 = 2) = 3.92, which indi-

cates that without intervention, malaria will persist in the population. 
The profile of the controls looks similar for each value of 𝑝. A larger 𝑝
requires a higher rate of hospitalization and fumigation at all times 𝑡, 
which also gives a higher cost function value. For comparison, please 
see Table 5.
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Fig. 4. Dynamic of control profile (top), infected human (middle), and infected 
mosquito (bottom) for the base-case.

7. Discussion

According to the WHO [1], although the number of estimated 
malaria deaths saw a decline from 2017 to 2018, the number of new 
cases has been increasing during the same period. It is estimated that 
approximately 94% of all cases worldwide are in Africa. Therefore, 
malaria eradication represents an uphill task for the scientific commu-

nity.

In this study, we proposed a mathematical model for malaria trans-

mission, which accommodates important factors such as the effect of 
vector bias on fumigation and hospitalization success for the malaria 
eradication programs. We also consider the medical facility’s limitation 
in treating infected individuals, such as the limitation of beds in the 
hospital or limitations with regard to the number of medical staff. Fur-

thermore, the effect of the budget constraints for intervention is also 
discussed as an optimal control problem to find the optimal interven-

tion for malaria eradication.

From the mathematical analysis, the existence and local stability 
of all equilibria points were rigorously analyzed, and their relation 
to the basic reproduction number was shown. We find that a stable 
disease-free equilibrium point always exists if the basic reproduction 
number is smaller than unity. Conversely, the malaria endemic equilib-

rium point always exists and is stable if the basic reproduction number 
is larger than unity. A backward bifurcation may occur if the hospi-

tal’s bed capacity or the number of medical staff is sufficiently small. 
This backward bifurcation phenomenon allows for the existence of a 
large endemic equilibrium even when the basic reproduction number is 
smaller than unity. In biological terms, these results mean that the ba-
9

Fig. 5. Dynamic of hospitalization, fumigation, infected human and infected 
mosquito when initial 0 when no control applied is less than unity.

sic reproduction number, as one of the most used thresholds in many 
epidemiological models, can no longer describe the success of malaria 
eradication efforts. Furthermore, bistability phenomena occur under 
these circumstances. From the bifurcation threshold analysis, we find 
that increasing fumigation increases the probability of backward bifur-

cation. In biological terminology, our results indicate how fumigation 
may trigger a condition of the existence of malaria disease even though 
the basic reproduction number is already smaller than unity. Interest-

ingly, a larger vector bias reduces the probability of the appearance of 
backward bifurcation. The existence of a backward bifurcation in the 
malaria transmission model is an interesting phenomenon because the 
disease can no longer be eradicated by relying only on the effort to re-

duce the basic reproduction number. Our analytical results show that 
an uncontrolled fumigation intervention could lead to a backward bi-

furcation phenomenon, which could be the reason why malaria is still 
endemic in many countries that focus more on fumigation than on other 
interventions [1].

Sensitivity analysis of the basic reproduction number implies that fu-

migation is the most influential parameter if the policymaker wants to 
reduce the basic reproduction number. Another significant intervention 
is the reduction in the infection parameter, for example, by the use of 
mosquito repellents or bed-nets. Our model simulations demonstrated 
that the total number of avoided new cases can be increased by using an 
adaptive control intervention based on the number of current infected 
humans and mosquitoes. We also observed that the cost of interven-
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Fig. 6. Dynamics of hospitalization, fumigation, infected humans, and infected 
mosquitos for the endemic reduction scenario.

tion increases if the vector bias parameter increases. All simulations 
conducted in the numerical experiments indicate that hospitalization 
should be provided in a high proportion at the beginning and should 
decrease as time passes. In contrast, the fumigation rate should be im-

plemented slowly as the simulation time starts and remains constant 
until the end of the intervention.

Our model has some limitations. We have ignored several factors in 
malaria transmission, such as relapse, recrudescence, and reinfection. 
We also acknowledge that many of our parameters are based on the 
citations provided by other authors. Therefore, more data and reliable 
parameters will improve the results of this study.
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