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Abstract: In this paper, the passive filtering problem of flexible robotic manipulator is investigated
over sensor networks in a distributed manner from the control system perspective. The sensor
networks are adopted to estimate true states of flexible robotic manipulator. In particular, the
semi-Markov model is utilized for flexible manipulators with varying loads in unstructured envi-
ronment, which is more flexible for practical implementations. Moreover, the new mode-dependent
event-triggering mechanism is developed for distributed filter communications. Based on model
transformation, sufficient conditions are first established to guarantee prescribed passive performance
under disturbances. Then, desired mode-dependent filters are developed with the aid of convex
optimization. In the end, several simulations results of a single-link flexible robotic manipulator are
provided to verify the usefulness of the developed filtering algorithm.

Keywords: distributed filtering; flexible manipulator; event-triggered filtering; semi-Markov param-
eters

1. Introduction

In the recent years, robotic manipulators have been more and more widely applied in
various fields, such as industrial manufacturing [1], agricultural production [2,3], space
exploration [4], etc. Especially, flexible robotic manipulators have attracted a huge at-
tention by scientists and engineers since their distinguishing advantages, which include
multi-degree of freedom, changeable structures, higher efficient payload and lower energy
consumption [5–7]. Meanwhile, the manipulation tasks of robotic manipulators are be-
coming more and more complex due to practical demands. For instance, one interesting
problem is how to achieve stable control of robotic manipulators with payloads of different
weights in unstructured working environment. Furthermore, it should be pointed out that
in certain tasks the changing of payloads could exhibit random features. Thus, some efforts
have been made by applying the hybrid system models. To name a few, in [8], the trajectory
control issue of robotic manipulators based on Radial Basis Function (RBF) neural networks
is studied by the formulated hybrid switched system model. Furthermore, in [9], multiple
models for robotic manipulator are discussed for the adaptive control problem. Besides, the
load shifting robot manipulator model is investigated in [10]. It is worth mentioning that
Markov jump systems are always used to model complex systems with parameter jumping
or different modes, while the jumping modes and the transition probabilities between sys-
tems’ modes could be depicted accordingly [11–13]. As a result, it is reasonable to describe
the flexible robotic manipulators with varying loads by Markov jump models. In addition,
it is worth mentioning that the transition probabilities of Markov jump systems are based
on fixed exponential distribution, which has ceratin restrictions in practical applications. In
fact, the transition probabilities could be time-varying, which gives rises to the researches
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on so-called semi-Markov jump systems [14–16]. As such, semi-Markov jump systems
have been intensively studied recently by researchers and various remarkable results on
analysis and synthesis problems of semi-Markov jump systems have been reported in
the literature. Therefore, it is important to study the flexible robotic manipulators with
semi-Markov parameters.

On another active research area, with the substantial development of sensor and net-
work technologies, sensor networks have been extensively studied in recent years, which
means that a group of sensors are working collaboratively and changing information with
each other. Compared with traditional single sensor, sensor networks can have many
working merits, such as better robustness, higher efficiency, lower cost and so on. As
one of the fundamental yet significant problems of sensor networks, the state estimation
and filtering issues based on sensor networks have been widely studied to estimate the
true values of certain states in target systems. In particular, various distributed filtering
algorithms over sensor networks have been developed in recent years. Well known ex-
amples can be found by distributed H∞ filtering, passivity filtering, dissipative filtering
approaches and so on [17–19]. For instance, in [20], distributed H∞ filtering is carried
out over lossy sensor networks and dissipative filtering with missing measurements is
investigated in [21]. Especially, the passivity performance has been proven to be effective
for filtering problem from energy input-output perspective [22]. Very recently, by notic-
ing that the common time-triggered strategies of distributed filtering need considerable
communication consumption, the novel event-triggered strategies have been proposed
to cope with the information exchanges among the sensors [23–25]. More precisely, the
event-triggered strategies accomplish the signal transmission by certain prescribed event
conditions instead of data transmission according to a period of time while a satisfactory
task performance can still be ensured. For the distributed filtering of semi-Markov flexible
robotic manipulators with diverse modes, the jumping mode information should be used to
further reduce the conservatism. However, to the authors’ best knowledge, up to now, there
is still little concern on the distributed filtering issues of semi-Markov jump systems within
mode-dependent event-triggered framework, which remains an open and challenging
problem in this research field.

Motivated by the aforementioned discussions, in this paper, the distributed mode-
dependent event-triggered passive filtering algorithm is addressed for semi-Markov flexi-
ble manipulators. In comparison of most reported literature, our contributions are made
towards the general filtering problem of semi-Markov jump systems with potential appli-
cations to flexible robotic manipulators, which can be concluded as follows:

(1) A new distributed mode-dependent event-triggering filtering algorithm is devel-
oped over sensor networks, which is based on the formulated semi-Markovian flexible
manipulator, which can further extend the event-triggered strategy and can well uti-
lize system mode information. The developed filtering algorithm is with asynchronous
sampled-data and is thus more general and applicable in the practical applications.

(2) As an alternative to common H∞ filtering method, the concept of passivity perfor-
mance is adopted from an energy input-output perspective. By designing the distributed
passive filter, the desired passivity performance can be achieved with external distur-
bance attenuation.

(3) On the basis of convex optimization and Lyapunov–Krasovskii methods, the
mode-dependent filter gains and event-triggering parameters are designed simultane-
ously. At last, the effectiveness of our proposed filtering algorithm is demonstrated via a
numerical example.

The remainder structure of our paper would be organized by the following parts. Sec-
tion 2 formulates the distributed filtering problem of semi-Markovian flexible manipulator
while mode-dependent event-triggered filter design is introduced. Section 3 presents the
primary design method by proven details. Section 4 demonstrates our proposed algorithm
by numerical simulations. In the final section, the paper is concluded and future research
prospect is given.
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The following notations are standardly used through the paper. Rn denotes the n
dimensional Euclidean space. Matrix P > 0 implies that P is positive definite. diag{· · · }
denotes the block-diagonal matrix. E() represents the expectation operator. L2[0, ∞)
represents space of square-integrable vector functions over [0, ∞).

2. Preliminaries and Problem Formulation
2.1. Flexible Manipulator with Semi-Markov Parameters

Since flexible robotic manipulators always manipulate varying loads in unstructured
environment, it is flexible and reasonable to model the parameter changing features caused
by varying loads for practical implementations. For some applications, the load shifting can
be modeled by semi-Markov chains, such that the parameter changing of flexible robotic
manipulators can be conducted by semi-Markov chains accordingly.

In order to describe the semi-Markov chain, give a probability space (O,F,P), where
O denotes sample space, F represents δ-algebra of subsets of O and P stands for probability
measure on F. Let {σ(t), t ≥ 0} denote a continuous-time discrete-state semi-Markov
process on taking values in a finite set S = {1, . . . ,N}. Furthermore, the transition
probability matrix Π := (πij(h)), h > 0, ∀i, j ∈ I is defined in equation (1)

Pr(σ(t + h) = j|σ(t) = i) =
{

πij(h)h + o(h), i 6= j,
1 + πii(h)h + o(h), i = j,

(1)

where lim(o(h)/h) = 0 with o(h) denoting weak infinitesimal generator, πij(h) ≥ 0, i 6= j,
is the transition rate from mode i at time t to mode j at time t + h, satisfying πii(h) = −
N
∑

j=1, j 6=i
πij(h), ∀i ∈ S .

Consider the following flexible-link manipulator with the semi-Markov jumping
dynamics and σ(t) denotes the semi-Markov chain in (O,F,P) , which is defined in
Equation (2): 

θ̇m = ωm,
ω̇m = k

Jm(σ(t)) (θl − θm)− B
Jm(σ(t))ωm + 1

Jm(σ(t))u,
θ̇l = ωl ,
ω̇l = − k

Jl(σ(t))
(θl − θm)− m(σ(t))gh

Jl(σ(t))
sin(θl),

(2)

where Jm(σ(t)) denotes the inertia of motor, Jl(σ(t)) denotes the inertia of link, θm denotes
the angular rotation of motor, θl denotes the angular position of link, ωm denotes the
angular velocity of motor, k denotes the joint elastic constant, m(σ(t)) denotes the link
mass, l denotes the link length, g is the gravity constant, B is the viscosity, ωl denotes the
angular velocity of link. More details of the parameters can be found in the literature [26].

Furthermore, by assuming certain u that can stabilize the manipulator and taking
into account the external disturbance w1(t) ∈ L2[0, ∞), the following state-space nonlinear
model can be obtained in Equation (3):{

ẋ(t) = A(σ(t))x(t) + g(σ(t), x(t)) + B(σ(t))w1(t)
z(t) = E(σ(t))x(t)

(3)
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where x(t) = [θm, ωm, θ1, ω1]
T represents formulated manipulator system state, z(t) repre-

sents the output to be estimated over sensor network, w(t) denotes the disturbance and
A(σ(t)), B(σ(t)), E(σ(t)) are defined in Equations (4)–(7)

A(σ(t)) =


0 1 0 0

− k
Jm(σ(t)) − B

Jm(σ(t))
k

Jm(σ(t)) 0
0 0 0 1
k

Jl(σ(t))
0 − k

Jl(σ(t))
0

, (4)

g(σ(t), x(t)) =


0
0
0

−m(σ(t))gh
J1(σ(t))

sin(θ1)

, (5)

B(σ(t)) =


0
1

Jm(σ(t))
0
0

, (6)

E(σ(t)) =
[

1 0 0 0
0 1 0 0

]
. (7)

Moreover, it follows that g(σ(t), x(t)) is a nonlinear function and can satisfy the
Lipschitz nonlinear conditions with ι(σ(t)) = −m(σ(t))gh

J1
.

Remark 1. The formulated state-space model can be generally utilized for nonlinear semi-Markov
jump systems with Lipschitz conditions. Under this context, the distributed filtering problem can
be further solved by convex optimization design.

2.2. Distributed Filter Design over Sensor Networks

For the sensor network, a direct graph G ={V , E ,A} is presented to describe the
communication topology of N sensor nodes, where V ={v1, v2, · · · , vN} and E ⊆ V × V
stand for the set of nodes and edges, respectively,A =

[
aij
]
∈ RN×N represent the adjacency

matrix with aii = 0 for any i. A is associated with the edges of G are positive, i.e.,
aij > 0⇐⇒ εij ∈ E . In addition, the corresponding Laplacian matrix of G is defined as L.

As depicted in Figure 1, it is supposed that all the sampler of sensors are time-driven
with sampling instants tk and zero-order-holders are event-driven. The sampling period is
set by hk = tk+1− tk ≤ d̄. The measured output of sensor m can be obtained in Equation (8):

ym(t) = Cm(σ(t))x(t) + Dm(σ(t))w2(t), m = 1, 2, . . . , N, (8)

where ym(t) represents the measured output of sensor m, Cm(σ(t)) ∈ Rq and Dm(σ(t)) ∈
Rm are known constant matrices, w2(t) stands for the disturbance over sensors belonging
to L2[0, ∞). Moreover, the event-triggered generator with event condition is deployed to
transmit the latest data.

Consequently, denote x̂m(t) as the estimated value of x(t) by sensor m and the sensor
estimation error ỹm(t) can be obtained in Equation (9):

ỹm(t) = ym(t)− Cm(σ(t))x̂m(t). (9)
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Figure 1. Illustration of distributed filtering on sensor network.

Then, ỹm(tk) is sampled at each tk and ỹm(tm
δ ) is transmitted according to the network

topology when the event-triggering condition is satisfied. Besides, the broadcasting instant
tm
δ+1 of sensor m satisfies the following event condition in Equation (10):

ti
δ+1 = min

tk>tm
δ

{tk‖ỹm(tk)− ỹm(tm
δ )‖ ≥ κm(σ(t))‖ỹm(tm

δ )‖}, (10)

where 0 < κm(σ(t)) < 1 denotes the threshold parameter.

Remark 2. It can be found that our proposed event-triggered strategy can lead to asynchronous local
information exchanges between the sensors, which is more practical and applicable for distributed
sensor networks.

As such, the distributed mode-dependent filter can be designed in Equation (11):

.
x̂m(t) = A(σ(t))x̂m(t) + g(σ(t), x̂m(t)) + Fm(σ(t))ỹm(tm

δ ) + Km(σ(t))
N
∑

m=1
amn

[
ỹn

(
tj
δ
′
m(t)

)
− ỹm(tm

δ )

]
,

ẑm(t) = E(σ(t))x̂m(t), t ∈
[
tm
δ , tm

δ+1
)
, m
′
j(t) = arg minp

{
t− tm

p |t ≥ tm
p

}
.

(11)

where ẑm(t) denotes the estimate of z(t), Fm(σ(t)) and Km(σ(t)) denotes mode-dependent
filter gains to be designed.

By defining the sampled-data error in Equation (12):

εm(sk) = ỹm(tk)− ỹm(tm
δ ), tm

δ ≤ tk < tm
δ+1, (12)

and dividing the interval
[
tm
δ , tm

δ+1
)

with∪tm
δ+1−hk+1

tk=tm
δ

[tk, tk+1), it can be derived in Equation (13)
that

.
x̂m(t) = A(σ(t))x̂m(t) + g(σ(t), x̂m(t)) + Fm(σ(t))ỹm(sk) + Km(σ(t))

N
∑

n=1
amn[ỹn(tk)− ỹm(tk)]

− Fm(σ(t))εm(tk)− Km(σ(t))
N
∑

j=1
amn[εn(tk)− εm(tk)],

ẑm(t) = E(σ(t))x̂m(t), t ∈ [tk, tk+1).

(13)

As a result, by letting em(t) = x(t) − x̂m(t) and z̃m(t) = z(t) − ẑm(t), the filtering
error dynamics can be obtained in Equation (14):
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

ėm(t) = A(σ(t))em(t) + g(σ(t), x(t))− g(σ(t), x̂m(t))− Fm(σ(t))Cm(σ(t))em(tk)

− Km(σ(t))
N
∑

n=1
amn[Cn(σ(t))en(tk)− Cm(σ(t))em(tk)]

+ Fm(σ(t))εm(tk) + Km(σ(t))
N
∑

m=1
amn
[
εj(tk)− εi(tk)

]
+ B(σ(t))w1(t)− Fm(σ(t))Dm(σ(t))w2(tk)

− Km(σ(t))
N
∑

n=1
amn[Dn(σ(t))v2(tk)− Dm(σ(t))v2(tk)],

z̃m(t) = E(σ(t))em(t), t ∈ [tk, tk+1),

(14)

which can be further rewritten in Equation (15):
ė(t) = Ā(σ(t))e(t) + G(σ(t), e(t))− (F(σ(t))− K(σ(t))L(σ(t)))C(σ(t))e(tk)

+ (F(σ(t))− K(σ(t))L(σ(t)))ε(tk) + B̄(σ(t))w1(t)
− (F(σ(t))− K(σ(t))L(σ(t)))D̄(σ(t))w2(tk),

z̃(t) = Ē(σ(t))e(t), t ∈ [tk, tk+1)

(15)

where

e(t) =
[
eT

1 (t), eT
2 (t), . . . , eT

N(t)
]T

,

z̃(t) =
[
z̃T

1 (t), z̃T
2 (t), . . . , z̃T

N(t)
]T

,

ε(t) =
[
εT

1 (t), εT
2 (t), . . . , εT

N(t)
]T

,

Ā(σ(t)) =IN ⊗ A(σ(t)),

G(σ(t), e(t)) =[(g(σ(t), x(t))− g(σ(t), x̂1(t)))T , (g(σ(t), x(t))− g(σ(t), x̂2(t)))T ,

. . . (g(σ(t), x(t))− g(σ(t), x̂N(t)))T ]T ,

C(σ(t)) =diag{Ci(σ(t))},
F(σ(t)) =diag{Fi(σ(t))},
K(σ(t)) =diag{Ki(σ(t))},
L(σ(t)) =L(σ(t))⊗ I,

B̄(σ(t)) =1⊗ B(σ(t)),

D̄(σ(t)) =
[

DT
1 (σ(t)), DT

2 (σ(t)), . . . , DT
N(σ(t))

]T
,

Ē(σ(t)) =I ⊗ E(σ(t)).

Moreover, it can be verified that G(σ(t))T(e(t))G(σ(t))(e(t)) ≤ Γ(σ(t))eT(t)e(t),
Γ(σ(t)) = diag{ι(σ(t)), ι(σ(t)), . . . , ι(σ(t))}.

2.3. Filtering Objective

For denoting simplicity, denote mode σ(t) as i index and employ the novel input-delay
method. Then, the overall filtering error dynamics can be deduced in Equation (16):

ė(t) = Āie(t) + Gi(e(t))− (Fi − KiLi)Cie(t− d(t))
+ (Fi − KiLi)ε(t− d(t)) + B̄iw1(t)− (Fi − KiLi)D̄iw2(t− d(t)),

z̃(t) = Ēie(t), t ∈ [tk, tk+1)
(16)

where d(t) = t− tk, t ∈ [tk, tk+1) with 0 ≤ d(t) < d̄.
Before proceeding further, the following passivity performance index in Equation (17)

is introduced for the distributed filters.
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Definition 1. Under the zero-initial condition, the modified passivity performance γ is said to be
achieved in the mean-square sense, if it holds that

2E{
∫ T

0
z̃T(t)S(w1(t) + w2(t− d(t)))dt} ≥ −γ

∫ T

0
wT

1 (t)w1(t) + wT
2 (t− d(t))w2(t− d(t))dt, (17)

where matrix S is with appropriate dimension.

The control objective is to design the desired filter gains Ki and Fi for all filters, such
that the passivity performance can be achieved according to Definition 1.

The following useful lemma is given for later derivations.

Lemma 1. Ref. [27] For any matrix M > 0, scalars τ > 0, τ(t) satisfying 0 ≤ τ(t) ≤ τ,
vector function ẋ(t) : [−τ, 0] → Rn such that the concerned integrations are well defined in
Equation (18), then

− τ
∫ t

t−τ
ẋT(s)Mẋ(s)ds ≤ ζT(t)Uζ(t), (18)

where

ζ(t) =[xT(t), xT(t− τ(t)), xT(t− τ)]T ,

U =

 −M M 0
∗ −2M M
∗ ∗ −M

.

3. Distributed Filtering Analysis and Filter Gain Design

In this section, the mode-dependent distributed filters are designed with proven details.

Theorem 1. For given hk and mode-dependent filter gains Ki and Fi, the passivity filtering can be
achieved according to Definition 1, if there exist mode-dependent matrices Pi > 0, mode-dependent
parameters κi, and matrices Q > 0, R > 0, such that Ξi,k < 0, for all i ∈ N , k = 1, 2, . . . ,K,
where

Ξi,k : =
[

Ξ1i,k Ξ2i,k
∗ Ξ3i,k

]
,

Ξ1i,k : =


2Pi Āi + Q− R + Γi + ∑N

j=1 πij,kPj −PiFiCi + PiKiLiCi + R 0 PiFi − PiKiLi

∗ −2R + CT(Λ⊗ Iq)C R −CT(Λ⊗ Iq)
∗ ∗ −Q− R 0
∗ ∗ ∗ (Λ− IN)⊗ Iq

,

Ξ2i,k : =


Pi Pi B̄i − ĒT

i −PiFiD̄i + PiKiLiD̄i − ĒT
i S d̄ĀT

i R
0 0 0 −d̄CT

i FT
i R + d̄CT

i LT
i KT

i R
0 0 0 0
0 0 0 d̄FT

i R− d̄LT
i KT

i R

,

Ξ3i,k : =


−I 0 0 d̄R
∗ −γI 0 d̄B̄T

i R
∗ ∗ −γI −d̄D̄T

i FT
i R + d̄D̄T

i LT
i KT

i R
∗ ∗ ∗ −R

.

Proof. For each mode i, the mode-dependent Lyapunov-Krasovskii functionals are con-
structed in Equation (19):

V(i, t) = V1(i, t) + V2(i, t) + V3(i, t), (19)

where
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V1(i, t) =eT(t)Pie(t),

V2(i, t) =
∫ t

t−d̄
eT(ϕ)Qe(ϕ)dϕ,

V3(i, t) =d̄
∫ 0

−d̄

∫ t

t+ϕ
ėT(η)Rė(η)dηdϕ.

The weak infinitesimal operator L of V(i, t) is defined in Equation (20):

LV(i, t) := lim
∆→0

1
∆
{E{V(σ(t + ∆), t + ∆)|σ(t) = i} −V(i, t)}, (20)

with

lim
∆→0

1
∆

Gi(h + ∆)− Gi(h)
1− Gi(h)

= 0,

lim
∆→0

1
∆

1− Gi(h + ∆)
1− Gi(h)

= 1,

lim
∆→0

1
∆

qij(Gi(h)− Gi(h + ∆))
∆(1− Gi(h))

= πij(h),

where h is the elapsed time at mode i, Gi(h) represents the cumulative distribution function
of the sojourn time, qij denotes the probability intensity jumping from mode i to mode j
and πij(h) := qijπi(h).

As a result, it can be deduced that

LV1(i, t) = lim
4→0

1
4 [

N
∑

j=1,j 6=i
Pr{σ(t +4) = j|σ(t) = i}eT(t +4)Pje(t +4)

+Pr{σ(t +4) = i|σ(t) = i}eT(t +4)Pie(t +4)− eT(t)Pie(t)]

lim
4→0

1
4 [

N
∑

j=1,j 6=i

qij(Gi(h +4)− Gi(h))
1− Gi(h)

eT(t +4)Pje(t +4)

+
(Gi(h +4)− Gi(h))

1− Gi(h)
eT(t +4)Pie(t +4)]− eT(t)Pie(t)

= ėT(t)Pie(t) + eT(t)Pi ė(t) + ∑N
j=1 πij(h)eT(t)Pje(t)

= 2eT(t)Pi ė(t) + ∑N
j=1 πij(h)eT(t)Pje(t)

= 2eT(t)Pi(Āie(t) + Gi(e(t))− (Fi − KiLi)Cie(t− d(t))

+(Fi − KiLi)ε(t− d(t)) + B̄iw1(t)− (Fi − KiLi)D̄iw2(t− d(t)))

+∑N
j=1 πij(h)eT(t)Pje(t)

LV2(i, t) = eT(t)Qe(t)− eT(t− d̄)Qe(t− d̄),

LV3(i, t) = d̄
∫ 0

−d̄
ėT(t)Rė(t)− d̄

∫ 0

−d̄
ėT(t + ϕ)Rė(t + ϕ)dϕ

= d̄2 ėT(t)Rė(t)− d̄
∫ t

t−d̄
ėT(ϕ)Rė(ϕ)dϕ.
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In light of Lemma 1 as stated in Equation (18), one can obtain that

−d̄
∫ t

t−d̄
ėT(ϕ)Rė(ϕ)dϕ ≤

 eT(t)
eT(t− d(t))

eT(t− d̄)

T −R R 0
∗ −2R R
∗ ∗ −R

 eT(t)
eT(t− d(t))

eT(t− d̄)


Moreover, from the Equation (16), one has

d̄2 ėT(t)Rė(t) = ηT(t)



d̄ĀT
i

−d̄CT
i (Fi − KiLi)

T

0
d̄(Fi − KiLi)

T

d̄I
d̄B̄T

i
−d̄D̄T

i (Fi − KiLi)
T


R



d̄ĀT
i

−d̄CT
i (Fi − KiLi)

T

0
d̄(Fi − KiLi)

T

d̄I
d̄B̄T

i
−d̄D̄T

i (Fi − KiLi)
T



T

η(t)

where

η(t) =
[

eT(t) eT(t− dk(t)) eT(t− d̄) εT(t− d(t)) GT
i (e(t)) wT

1 (t) wT
2 (t− d(t))

]T

From the definition of nonlinear function Gi as stated in equation (1), it yields that

GT
i (e(t))Gi(e(t)) ≤ ΓieT(t)e(t),

which means that
ΓieT(t)e(t)− GT

i (e(t))Gi(e(t)) ≥ 0.

The event-triggering function in equation (10) implies that

∑N
m=1 εT

m(tk)εm(tk) ≤∑N
m=1 κ2

i (ỹm(tk)− εi(tk))
T(ỹm(tk)− εm(tk))

which can lead to[
e(t− d(t))
ε(t− d(t))

]T[ CT
i (Λi ⊗ I)Ci −CT

i (Λi ⊗ I)
∗ (Λi − I)⊗ I

][
e(t− d(t))
ε(t− d(t))

]
≥ 0,

where Λi = diag{κ2
1, κ2

2, . . . , κ2
N}.

Then, it can be obtained by Schur complement that

LV(i, t) + ΓieT(t)e(t)− GT
i (e(t))Gi(e(t))

−2eT(t)ĒT
i S(w1(t) + w2(t− d(t)))− γwT

1 (t)w1(t)− γwT
2 (t− d(t))w2(t− d(t))

+

[
e(t− d(t))
ε(t− d(t))

]T[ CT
i (Λi ⊗ I)Ci −CT

i (Λi ⊗ I)
∗ (Λi − I)⊗ I

][
e(t− d(t))
ε(t− d(t))

]
≤ ηT(t)Ξ̃iη(t),

where
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Ξ̃i : =
[

Ξ̃1i Ξ̃2i
∗ Ξ̃3i

]
,

Ξ̃1i : =

 2Pi Āi + Q− R + Γi + ∑N
j=1 πij(h)Pj −Pi(Fi − KiLi)Ci + R 0

∗ −2R + CT(Λ⊗ Iq)C R
∗ ∗ −Q− R

,

Ξ̃2i : =

 Pi(Fi − KiLi) Pi Pi B̄i − 2ĒT
i −Pi(Fi − KiLi)D̄i − 2ĒT

i S d̄ĀT
i

−CT(Λ⊗ Iq) 0 0 0 −d̄CT
i (Fi − KiLi)

T

0 0 0 0 0

,

Ξ̃3i : =


(Λ− IN)⊗ Iq 0 0 0 d̄(Fi − KiLi)

T

∗ −I 0 0 d̄I
∗ ∗ −γI 0 d̄B̄T

i
∗ ∗ ∗ −γI −d̄D̄T

i (Fi − KiLi)
T

∗ ∗ ∗ ∗ −R−1

.

By performing congruent transformation to Ξ̃i by diag{I, I, I, I, I, I, I, R}, Ξi can be
obtained. Therefore, it can be verified that when Ξi < 0 holds, the following inequality
holds by integrating between 0 and T that

2E{
∫ T

0
z̃T(t)S(w1(t) + w2(t− d(t)))dt}+ γ

∫ T

0
wT

1 (t)w1(t) + wT
2 (t− d(t))w2(t− d(t))dt ≥ 0. (21)

Finally, by taking into account the time-varying dwell time h(t) [28], one has πij(h) =
∑K1 λkπij,k, ∑K1 λk = 1, λk ≥ 0. This implies that if Ξi,k < 0 holds, the passivity performance
can be achieved according to Definition 1 in the mean-square sense, which completes the
proof.

Theorem 2. For given hk, the passivity filtering can be achieved according to Definition 1, if there
exist mode-dependent matrices Pi > 0, F̃i and K̃i, mode-dependent parameters κi, and matrices
Q > 0, R > 0, such that Θi,k < 0, for all i ∈ N , k = 1, 2, . . . ,K, where

Θi,k : =
[

Θ1i,k Θ2i,k
∗ Θ3i,k

]
,

Θ1i,k : =


2Pi Āi + Q− R + Γi + ∑N

j=1 πij,kPj −F̃iCi + K̃iLiCi + R 0 F̃i − K̃iLi

∗ −2R + CT(Λ⊗ Iq)C R −CT(Λ⊗ Iq)
∗ ∗ −Q− R 0
∗ ∗ ∗ (Λ− IN)⊗ Iq

,

Θ2i,k : =


Pi Pi B̄i − ĒT

i S −F̃iD̄i + K̃iLiD̄i − ĒT
i d̄ĀT

i Pi
0 0 0 −d̄CT

i F̃T
i + d̄CT

i LT
i K̃T

i
0 0 0 0
0 0 0 d̄F̃T

i − d̄LT
i K̃T

i

,

Θ3i,k : =


−I 0 0 d̄Pi
∗ −γI 0 d̄B̄T

i Pi
∗ ∗ −γI −d̄D̄T

i F̃T
i + d̄D̄T

i LT
i K̃T

i
∗ ∗ ∗ R− 2Pi

.

With the above feasible solutions, the mode-dependent filter gains Ki and Fi can be calculated by

Fi =P−1
i F̃i,

Ki =P−1
i K̃i.

Proof. Based on matrix transformation, the proof can follow directly from Theorem 1.
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Remark 3. It is worth mentioning that the derived conditions are in the form of strict LMIs, which
can be easily solved by Matlab or other mathematical convex optimization softwares. Once the
feasible solution is solved, then the corresponding filter gains can be obtained.

4. Illustrative Example

In this section, the simulation results are provided to validate the effectiveness of our
derived results.

For the illustrative example, a numerical simulation is carried out in Matlab 2017a
with numerical parameters.

Consider the flexible manipulator with following semi-Markov parameters according
to system (3):

A1 =


0 1 0 0
−50 −1.25 50 0

0 0 0 1
10 0 −10 0

,

g1(x(t)) =


0
0
0

−5 sin(θ1)

,

B1 =


0
5
0
0

,

E1 =

[
1 0 0 0
0 1 0 0

]
.

and

A2 =


0 1 0 0
−25 −0.625 25 0

0 0 0 1
5 0 −5 0

,

g2(x(t)) =


0
0
0

−4 sin(θ1)

,

B2 =


0

2.5
0
0

,

E2 =

[
1 0 0 0
0 1 0 0

]
.



Sensors 2021, 21, 2058 12 of 20

The sensor network consisted of 4 sensors are use with following parameters according
to system (8) and its communication topology is depicted in Figure 2,

C11 =

[
1.2 0 0 0
0 1.2 0 0

]
, D11 =

[
0.5
0.5

]
,

C21 =

[
1.1 0 0 0
0 1.1 0 0

]
, D21 =

[
0.6
0.6

]
,

C31 =

[
1.3 0 0 0
0 1.3 0 0

]
, D31 =

[
0.4
0.4

]
,

C41 =

[
1.4 0 0 0
0 1.4 0 0

]
, D41 =

[
0.3
0.3

]
,

and

C12 =

[
0.9 0 0 0
0 0.9 0 0

]
, D12 =

[
0.2
0.2

]
,

C22 =

[
0.8 0 0 0
0 0.8 0 0

]
, D22 =

[
0.4
0.3

]
,

C32 =

[
0.7 0 0 0
0 0.7 0 0

]
, D32 =

[
0.6
0.4

]
,

C42 =

[
0.6 0 0 0
0 0.6 0 0

]
, D42 =

[
0.7
0.6

]
,

where the Laplacian can obtained as follows:

L =


2 −1 −1 0
0 2 −1 −1
0 0 1 −1
−1 0 0 1



Sensor 1

Sensor 2 Sensor 4

Sensor 3

Figure 2. The topology of sensor network.

Based on the above directed communication topology, sensor nodes 1–4 can exchange
information accordingly. It is noticed that all sensors are with different parameters to verify
the general applicability of our filtering design. In practical applications, the adopted
sensor networks can also be chosen with same parameters.

In the simulation, the sampling period is randomly set by 0.1 s and 0.2 s, such that
d̄ = 0.2 s. The transition rates are supposed to be π11(h) ∈ [−1.6,−1.4] and π22(h) ∈
[−1.9,−1.1], which implies that π11,1 = −1.4, π11,2 = −1.6, π22,1 = −1.1 and π22,2 = −1.9
with K = 2. Moreover, the mode-dependent event-triggered scalars are supposed to be
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κ1 = 0.1 and κ2 = 0.2. The passivity performance index is chosen by γ = 10 and the
disturbances are set by w1(t) = 0.1sin(t) and w2(t) = 0.1cos(t). With these parameters,
the desired mode-dependent filter gains can be obtained by

K11 =


−0.0631 −0.0022
−0.2574 −0.0358
−0.0315 −0.0021
0.0361 0.0063

,

K21 =


−0.0611 −0.0020
−0.2371 −0.0285
−0.0299 −0.0014
0.0321 0.0050

,

K31 =


−0.0884 −0.0024
−0.2714 −0.0296
−0.0409 −0.0016
0.0338 0.0056

,

K41 =


−0.0988 −0.0024
−0.2703 −0.0397
−0.0437 −0.0027
0.0336 0.0076

,

and

K12 =


0.0236 −0.0022
−0.1970 0.0037
−0.0069 0.0007
0.0318 −0.0019

,

K22 =


0.0114 −0.0060
−0.2303 0.0010
−0.0149 −0.0006
0.0354 −0.0017

,

K32 =


0.0248 −0.0108
−0.2609 −0.0118
−0.0156 −0.0029
0.0395 −0.0005

,

K42 =


0.0471 −0.0007
−0.1247 0.0021
0.0021 0.0010
0.0203 −0.0020

,
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and

F11 =


0.0940 −0.0068
−0.9188 0.3561
−0.0043 0.0158
0.1647 −0.0651

,

F21 =


0.0761 −0.0081
−0.9721 0.3893
−0.0110 0.0175
0.1716 −0.0710

,

F31 =


0.1059 −0.0044
−0.7079 0.3739
0.0093 0.0172
0.1277 −0.0674

,

F41 =


0.1148 −0.0029
−0.5616 0.3428
0.0202 0.0150
0.1046 −0.0615

,

and

F12 =


1.0483 0.0050
−0.7521 0.5298
0.3404 0.0511
0.2321 −0.0889

,

F22 =


1.0430 −0.0045
−1.0643 0.5668
0.3113 0.0520
0.2824 −0.0958

,

F32 =


1.0082 −0.0081
−1.1269 0.6160
0.2850 0.0549
0.2896 −0.1038

,

F42 =


1.0100 −0.0047
−1.3132 0.6969
0.2634 0.0643
0.3202 −0.1174

.

By random initial conditions for sensor nodes, Figures 3–6 show the state trajecto-
ries of the filtering errors with disturbances. It can be seen that all the filtering errors
can converge to zeros despite of system mode jumping and external disturbances, which
means that the designed mode-dependent filters can effectively estimate the true state of
flexible manipulator according to Definition 1. This also implies that the filtering errors
em(t) = x(t)− x̂m(t) for all sensors can be mean-square stable when there is no distur-
bance, which can verify our derived results. Figures 7–10 depict event triggering instants
and release interval of the sensors, where the release intervals are larger and the signal
transmission among the sensors is event-triggered instead of traditional time-triggered
schemes. It can be found that the developed event-triggered strategy can considerably
decrease the numbers of communications compared with tradition time-triggered schemes
(time-varying sampling periods of 0.1 s and 0.2 s). This shows the considerable advantages
on decreasing signal transmissions among the sensor networks, where the event-triggered
instants are larger than the tradition time-triggered instants. Thus, the simulation results
can support our developed filter designs.
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Figure 3. Filtering errors of sensor 1.
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Figure 4. Filtering errors of sensor 2.
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Figure 5. Filtering errors of sensor 3.
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Figure 6. Filtering errors of sensor 4.
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Figure 7. Event-triggered instants of sensor 1.
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Figure 8. Event-triggered instants of sensor 2.
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Figure 9. Event-triggered instants of sensor 3.
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Figure 10. Event-triggered instants of sensor 4.

5. Conclusions

This paper discusses distributed filters design of flexible manipulator with semi-
Markov parameters based on sensor networks. Moreover, the passivity performance is
adopted to cope with the external disturbances of manipulator and sensor networks. By
developing mode-dependent event-triggered schemes to achieve information exchanges,
the distributed filtering can be accomplished in an asynchronous framework. By employing
mode-dependent Lyapunov–Krasovskii approach, sufficient filtering conditions can be
deduced and desired filter gains are designed, such that the passivity performance can be
achieved. The correctness of our design method is finally demonstrated by a numerical
example. In the future study, an interesting issue would be extending our current results to
the cases with sampled semi-Markov processes, which means that the observed jumping
modes may be different from the true system modes, which is more complex but more
practical in the real world applications.
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