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ABSTRACT
Oxidative stress impairs the correct course of meiotic maturation, and it is known
that the oocytes are exposed to increased oxidative stress during meiotic maturation
in in vitro conditions. Thus, reduction of oxidative stress can lead to improved
quality of cultured oocytes. The gasotransmitter carbon monoxide (CO) has a
cytoprotective effect in somatic cells. The CO is produced in cells by the enzyme
heme oxygenase (HO) and the heme oxygenase/carbon monoxide (HO/CO)
pathway has been shown to have an antioxidant effect in somatic cells. It has not yet
been investigated whether the CO has an antioxidant effect in oocytes as well.
We assessed the level of expression of HO mRNA, using reverse transcription
polymerase chain reaction. The HO protein localization was evaluated by the
immunocytochemical method. The influence of CO or HO inhibition on meiotic
maturation was evaluated in oocytes cultured in a culture medium containing CO
donor (CORM-2 or CORM-A1) or HO inhibitor Zn-protoporphyrin IX (Zn-PP IX).
Detection of reactive oxygen species (ROS) was performed using the oxidant-sensing
probe 2′,7′-dichlorodihydrofluorescein diacetate. We demonstrated the expression
of mRNA and proteins of both HO isoforms in porcine oocytes during meiotic
maturation. The inhibition of HO enzymes by Zn-PP IX did not affect meiotic
maturation. CO delivered by CORM-2 or CORM-A1 donors led to a reduction
in the level of ROS in the oocytes during meiotic maturation. However,
exogenously delivered CO also inhibited meiotic maturation, especially at higher
concentrations. In summary, the CO signaling molecule has antioxidant properties
in porcine oocytes and may also be involved in the regulation of meiotic
maturation.
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INTRODUCTION
Carbon monoxide (CO) is an endogenously produced signaling molecule that affects
several cellular functions. CO is endogenously produced by enzyme heme oxygenase (HO),
which catalysis the reduction of heme to biliverdin, trivalent iron, and CO. HO is known
in two isoforms (HO-1 and HO-2) that differ in expression and inducibility. HO-1 is
an inducible isoform, and its expression increases after exposure to stressors. HO-2 is a
constitutive isoform with basal expression (Maines, 1997; Wu & Wang, 2005; Ryter &
Choi, 2016). CO produced by HO enzymes or delivered by CO donors regulates
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cytoprotection, the cell cycle, metabolism, and cellular homeostasis (Ryter, Alam & Choi,
2006; Kolluru et al., 2017). It has been proved that the heme oxygenase/carbon monoxide
(HO/CO) pathway is also involved in the regulation of reproduction. Zenclussen et al.
examined the importance of HO-1 in mouse ovaries, and they have shown that HO-1
deficiency in mice reduces oocyte fertilizability (Zenclussen et al., 2012). In our previous
publication, we demonstrated that exogenously delivered CO reduced caspase-3 activity
and apoptosis in aged porcine oocytes (Němeček et al., 2017). However, it has not yet been
investigated whether CO regulates the level of oxidative stress in oocytes.

Proper meiotic maturation in in vitro conditions is crucial for the development of
biotechnological methods and the use of assisted reproduction methods. A balanced redox
state is important for proper oocyte development (Soto-Herasa & Paramio, 2020), but in
vitro cultivation systems of oocytes are characterized by increased oxidative stress
(Khazaei & Aghaz, 2017).

Oxidative stress leads to deterioration of oocyte quality. This can disrupt meiotic
maturation and eventually arrested cell cycle and activates apoptosis. Oocytes impaired by
oxidative stress have lower fertilization and developmental potential (Agarwal et al., 2012;
Prasad et al., 2016; Wang et al., 2017; Xie et al., 2018). Antioxidant supplementation
of the culture medium can be used to avoid the harmful effect of oxidative stress.
For example, the non-enzymatic antioxidant melatonin has been shown to improve oocyte
maturation, fertilization rate, and rate of blastocyst formation (Tamura et al., 2020;
Soto-Herasa & Paramio, 2020). The use of antioxidants can therefore ameliorate in vitro
cultivation conditions, but novel substances are still needed to reduce oxidative stress
during in vitro oocyte cultivation to improve oocyte quality.

Carbon monoxide has already been shown to reduce oxidative stress also in somatic
cells (Piantadosi, 2008). Additionally, several factors that control meiotic maturation are
simultaneously the cellular target of CO in somatic cells. These factors include MPF,
MAPK, JNK2, p38 kinase, and potassium ion channels. Changes in the activity of these
factors lead to the alteration of meiotic maturation (Weston & Davis, 2007; Oh, Han &
Conti, 2010; Huang et al., 2011;Miyagaki et al., 2014; Carvacho et al., 2018). It has already
been shown that CO regulates these signaling pathways in somatic cells (Kim, Ryter &
Choi, 2006; Peers et al., 2015; Ryter & Choi, 2016), but studies on the effect of CO on oocyte
meiotic maturation have been lacking. In somatic cells, CO reduces the expression
of cyclins and thereby regulates the cell cycle (Bauer et al., 2016); by activating
MKK3/p38 MAPK and NF-ƙB pathways, CO reduces Fas/Fas ligand interaction,
increases expression of anti-apoptotic genes and thus prevents apoptosis (Ryter, Ma &
Choi, 2018; Kim & Choi, 2018).

For these reasons, we assumed that CO could reduce oxidative stress in oocytes and thus
decrease the effect of negative factors on in vitro meiotic maturation. Therefore, CO could
increase the quality of in vitro matured oocytes. We focused on the HO/CO signaling
pathway in porcine oocytes during meiotic maturation. Our aim was to determine the
effect of the HO/CO signaling pathway on porcine oocytes and levels of ROS during their
meiotic maturation.
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MATERIALS AND METHODS
Porcine oocytes in vitro culture
Porcine ovaries were obtained from slaughtered prepubertal gilts (Large White × Landrace
hybrids, slaughter weight 110 kg) that were in an unknown phase of the estrous cycle.
Follicular fluid was obtained by aspiration of follicles (2–5 mm in diameter) using a syringe
with a 20G needle. Only oocytes with intact cytoplasm and compact cumulus were used for
further experiments. Oocytes were cultured in a 4-well multidish (Nunc, Roskilde,
Denmark) in modified TCM-199 culture medium (Sigma–Aldrich, St. Louis, MO, USA),
containing sodium bicarbonate (32.5 mM; Sigma–Aldrich, St. Louis, MO, USA),
calcium L-lactate (2.75 mM; Sigma–Aldrich, St. Louis, MO, USA), sodium pyruvate
(0.25 mg/ml; Sigma–Aldrich, St. Louis, MO, USA), gentamicin (0.025 mg/ml;
Sigma–Aldrich, St. Louis, MO, USA), HEPES (6.3 mM; Sigma–Aldrich, St. Louis, MO,
USA), 10% (v/v) foetal calf serum (Gibco BRL; Life Technologies, Darmstadt, Germany),
and 13.5 IU eCG: 6.6 IU hCG/ml (P.G. 600; Intervet, Boxmeer, Netherlands).
Oocytes were cultured to the stage of first (MI) or second meiotic metaphase (MII) for
24 or 48 h, respectively, in 1 ml of modified TCM-199 culture medium (5% CO2, 39 �C).

The influence of CO on meiotic maturation was evaluated in oocytes cultured in a
culture medium containing CO donors. We used CO donors CORM-2 (tricarbonyl
dichlororuthenium (II) dimer; Sigma–Aldrich, St. Louis, MO, USA) and CORM-A1
(sodium boranocarbonate; Sigma–Aldrich, St. Louis, MO, USA). These donors differ in the
kinetics of CO release: CORM-2 is a rapid CO releaser and CORM-A1 is a slow CO
releaser. CORM-2, at concentrations of 5.0, 25.0, 50.0, and 100.0 µM dissolved in dimethyl
sulfoxide (DMSO), or CORM-A1, at 25.0, 50.0 and 100.0 µM dissolved in distilled water,
were used. The control group of oocytes was cultured in a culture medium containing
inactive CORM-2 (ruthenium (III) chloride; iCORM-2; Sigma–Aldrich, St. Louis, MO,
USA) at concentrations of 100.0 µM dissolved in DMSO or inactive CORM-A1
(iCORM-A1). iCORM-A1 was obtained by dissolving CORM-A1 (100.0 µM) in 0.1 M
HCl, dissociating CO, and then neutralizing to pH 7.4. HO inhibitor Zn-protoporphyrin
IX (Zn-PP IX; Sigma–Aldrich, St. Louis, MO, USA), at concentrations of 1.0, 2.5, 5.0,
10.0 and 25.0 µM dissolved in DMSO, was used to evaluate the effect of HO inhibition on
meiotic maturation. The control group was cultured in a culture medium containing only
DMSO at the final concentration of 0.25%. Cultivation in iCORM-2, iCORM-A1, and
DSMO did not significantly affect meiotic maturation (Table S1).

Reverse transcription polymerase chain reaction
The presence and amount of HO-1 mRNA and HO-2 mRNA were studied by reverse
transcription polymerase chain reaction (RT-PCR). RNA obtained from oocytes was
transcribed into cDNA with a High Capacity cDNA Achieve Kit (Applied Biosystems,
Foster City, CA, USA); the final amount was 100 µl. Based on the knowledge of HO-1 and
HO-2 sequences, the specific primers to amplify products were designed (Table S2).

Standard TaqMan PCR kit protocol was used (Applied Biosystems, Foster City, CA,
USA) for RT-PCR. The reaction ran in a 10 µl reaction mixture, containing 500 nM of
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gene-specific primers, 200 nM TaqMan MGB probe, 5µl Fast-TaqMan Universal Master
Mix (Applied Biosystems, Foster City, CA, USA), and 1 µl cDNA and nuclease-free water.
7500 Fast Real-Time PCR System (Life Technologies, Carlsbad, CA, USA) was used for
the reaction. Based on the obtained data, the relative amount of mRNA for each isoform
was calculated using the 2−ΔΔCT arithmetic equation, according to the Ct method and
expressed in comparison to GAPDH as an endogenous control.

Immunocytochemistry
After completion of the oocyte cultivation period, zona pellucida was removed from
oocytes with 0.1% pronase in phosphate-buffered saline (PBS) solution, and oocytes were
fixed in 2.5% paraformaldehyde in PBS. After membrane permeabilization (0.5% Triton X
in PBS with 0.01% bovine serum albumin; BSA), the oocytes were rinsed in 0.1%
Tween 20 in PBS. Incubation with mouse primary monoclonal antibody (anti-heme
oxygenase-1 or anti-heme oxygenase-2; Abnova; Taiwan; 1:200) was performed overnight
(14–16 h) in 0.1% BSA and 0.1% Tween 20 in PBS at 4 �C. Oocytes were rinsed three
times (0.1% Tween 20 in PBS) and incubated in secondary anti-mouse IgG antibody
conjugated with fluorescein-5-isothiocyanate (FITC; Sigma–Aldrich, St. Louis, MO, USA;
1:100) at room temperature in 0.1% BSA and 0.1% Tween 20 in PBS for 1 h. The specificity
of the primary antibodies was confirmed in our previous work by Western blot
(Němeček et al., 2017). Chromatin was stained with 4′,6-diamidine-2-phenylindole (DAPI;
Sigma–Aldrich, St. Louis, MO, USA). To control for secondary antibody non-specific
binding detection, a control group of oocytes was cultured in a cultivation medium without
the primary antibody. Oocytes were assessed using a confocal scanning microscope (Zeiss,
Jena, Germany), and intracellular localization was determined based on signal intensity
using NIS Elements 3.4 image analysis (Nikon, Tokyo, Japan). Data were expressed
relatively as the mean signal intensity of the FITC fluorescence related to the basal signal
intensity of the appropriate control group.

Assessment of meiotic maturation of oocytes
After a culture period, cumulus cells were denuded by repeated pipetting through a
thin-walled glass pipette. Then the oocytes were fixed for at least 24 h in a solution of
ethanol and acetic acid (3:1, v/v), stained with orcein, and evaluated under a
phase-contrast microscope. The stages of meiotic maturation were assessed based on
nuclear maturation, as oocytes at germinal vesicle stage (GV; oocytes with visible germinal
vesicle), metaphase I (MI; oocytes with chromosomes arranged in metaphase figure),
and metaphase II (MII; oocytes with the extruded first polar body). Abnormal oocytes were
evaluated as degenerated (Deg).

Reactive oxygen species assessment
Production of reactive oxygen species (ROS) was measured in oocytes after 48 h of culture.
After the cultivation period, oocytes were stained with 10 mM2′,7′-dichlorodihydrofluorescine
diacetate (Sigma–Aldrich, St. Louis, MO, USA) for 20 min at 39 �C. ROS production in
oocytes was evaluated using a confocal scanning microscope (Zeiss, Jena, Germany).
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Images were analyzed using NIS Elements. Data were expressed relatively as mean signal
intensity related to the signal intensity of the appropriate control group.

Experimental design
HO-1 and HO-2 mRNA and proteins detection

The aim was to assess the expression of HO-1 and HO-2 mRNA and proteins in porcine
oocytes during meiotic maturation. Detection of mRNA and proteins was performed
using RT-PCR or immunolocalization, respectively in oocytes at GV, MI, and MII stages.
For RT-PCR, each meiotic stage included 50 oocytes in six independent experiments.
For the immunocytochemical method, localization of each isoform was performed on 25
oocytes for each meiotic stage in three independent experiments.

The effect of HO inhibition
The aimwas to assess the effect of HO inhibition onmeiotic maturation. Nuclear maturation
was evaluated after 48 h of oocyte cultivation in a culture medium containing Zn-PP.
Each concentration of Zn-PP IX included 80 oocytes in three independent experiments.

The effect of CO donor
The purpose was to determine the effect of CO donor on meiotic maturation of porcine
oocytes. As in the previous experiment, nuclear maturation was evaluated after 48 h of
oocyte cultivation in a culture medium containing CORM-2 or CORM-A1 donors. Each
concentration of CORM-2 or CORM-A included 80 oocytes in three independent
experiments.

The effect of CO donor on ROS production

The aim was to assess the effect of CO donor on the production of ROS in porcine oocytes
during meiotic maturation. Due to the similar effect of CORM-2 and CORM-A1 found
in the previous experiment, only CORM-2 was used. The amount of ROS was measured
by immunolocalization in oocytes cultured for 48 h in a culture medium containing
CORM-2. Each concentration of CORM-2 included 30 oocytes in three independent
experiments.

Statistical data analysis
The data are presented as the mean ± SEM of at least three independent experiments.
The data were statistically evaluated in the STATISTICA 12 program (Statsoft, Tulsa, OK,
USA). Statistically significant differences between groups were assessed by analysis of
variance (ANOVA) and multiple comparisons using Scheffé’s method. A P-value of less
than 0.05 was considered to be statistically significant.

RESULTS
HO-1 and HO-2 mRNA and proteins were detected in porcine oocytes
We have detected HO-1 and HO-2 mRNA in porcine oocytes during meiotic maturation
by RT-PCR. The difference in HO-1 and HO-2 mRNA levels between oocyte categories
(GV, MI, and MII) was not statistically significant (Table 1).
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We evaluated the expression of HO-1 and HO-2 proteins in porcine oocytes during
meiotic maturation (GV, MI, and MII). Using the immunocytochemical method,
we demonstrated the presence of both HO isoforms at all stages of meiotic maturation
(GV, MI, MII) (Fig. 1). The localization of the HO-1 isoform was dependent on the stage of
meiotic maturation. In oocytes at the GV stage, HO-1 was localized primarily in the
germinal vesicle; in the case of oocytes at MI and MII stage, HO-1 was detected in the
perichromosomal region. The expression level of HO-1 was significantly lower in the
cytoplasmic region than in the perichromosomal area (Fig. 1). In the case of the HO-2
isoform, we did not find a significant difference in the level of expression between the
cytoplasmic and perichromosomal regions in oocytes at MI and MII stages. In oocytes at
the GV stage, HO-2 expression was significantly lower in the germinal vesicle than in
the cytoplasmic region. We did not find significant changes in the overall level of
expression of HO-1 and HO-2 during meiotic maturation (Fig. 2).

Inhibition of HO enzymes did not affect meiotic maturation
We evaluated the effect of HO inhibition on meiotic maturation by assessing nuclear
maturation in oocytes cultured in a culture medium containing HO inhibitor Zn-PP IX.
The cultivation of oocytes in a culture medium containing Zn-PP IX did not significantly
affect meiotic maturation, and the proportion of matured oocytes did not differ
between the control and experimental groups (99.2 ± 0.5% vs 96.4 ± 2.3%–100.0 ± 0.0% for
control and Zn-PP-IX, respectively). The inhibitor slightly affected nuclear maturation
only at the concentration of 5.0 µM, reducing the proportion of oocytes matured to the
MII stage by 4.2%, as compared to the control group (99.2 ± 0.5% vs 95.0 ± 1.8 for control
and Zn-PP-IX, respectively) (Fig. 3).

Carbon monoxide inhibits the meiotic maturation of porcine oocytes
By assessing the effect of a CO donor on oocyte nuclear maturation, we found that the CO
donor inhibited the nuclear maturation of cultured oocytes. Cultivation in a culture
medium containing CORM-2 or CORM-A1 decreases the proportion of oocytes matured

Table 1 Expression levels of HO-1 and HO-2 mRNA and protein in porcine oocytes during meiotic
maturation. The expression level of mRNA was analyzed by RT-PCR in oocytes at GV, MI, and MII
stages. The relative mRNA level was normalized to GAPDH and relative to oocytes at the GV stage.
The amount of mRNA was calculated using the arithmetic equation 2−ΔΔCT according to the Ct method.
The data are presented as mean ± SEM relatively to mean mRNA level in oocytes at the GV stage.
The expression of HO-1 and HO-2 proteins is assessed by the immunocytochemical method in oocytes at
the GV, MI, and MII stage. The date is expressed as mean ± SEM relative to the mean signal intensity of
HO-1 or HO-2 in oocytes at the GV stage. The amount of mRNA and HO-1 and HO-2 proteins between
different meiotic maturation stages were not significant.

Culture period mRNA Proteins

HO-1 HO-2 HO-1 HO-2

0 h (GV) 1.00 1.00 1.00 1.00

24 h (MI) 0.61 ± 0.131 0.85 ± 0.086 1.05 ± 0.039 0.85 ± 0.030

48 h (MII) 1.31 ± 0.308 0.98 ± 0.073 1.10 ± 0.028 0.94 ± 0.031
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to the MII stage. After the oocytes cultivation in a culture medium containing CORM-2
or CORM-A1, CO donors inhibited nuclear maturation at all used concentrations.
Meiotic maturation in media containing CORM-2 resulted in a significant reduction of the
proportion of oocytes matured to MII (85.5 ± 1.1% vs 55.1 ± 1.9–67.9 ± 1.4% for control
and CORM-2, respectively). CORM-2 at the concentration of 100.0 µM had the most
pronounced effect on the proportion of oocytes matured to the MII stage. After cultivation
in a culture medium containing CORM-2, CO arrested meiotic maturation at the
MI stage and significantly increased the proportion of oocytes at the MI stage (7.8 ± 0.7%
vs 16.1 ± 2.0%–36.5% ± 2.9 for control and CORM-2, respectively). The effect was
dose-dependent. CORM-2 at a concentration of 100.0 µM had the most potent inhibitory
effect on meiotic maturation (most significant increase of the proportion of oocytes at the
MI stage) (Fig. 4A).

Just like in the case of CORM-2, cultivation in a medium containing CORM-A1
resulted in a significant reduction of the proportion of oocytes matured to the MII stage
(82.0 ± 0.5% vs 45.5 ± 2.5%–61.4 ± 2.5% for control and CORM-A1, respectively).
Also, CORM-A1 at the concentration of 100.0 µM had the most pronounced effect on the
proportion of oocytes matured to the MII stage. Meiotic maturation was arrested mainly in
the MI stage (6.9 ± 1.1% vs 16.5 ± 1.3%–29.9 ± 1.9% for control and CORM-A1,
respectively). Furthermore, oocyte cultivation in a culture medium containing CORM-A1

DNA HO-1 Merge Control

G
V

M
I

M
II

Figure 1 Localization of heme oxygenase-1 (HO-1) in porcine oocytes during meiotic maturation.
HO-1 is shown in green (FITC), chromatin is shown in blue (DAPI), magni-fied 400×; GV, germinal
vesicle; MI, metaphase I; MII, metaphase II. Full-size DOI: 10.7717/peerj.10636/fig-1
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at the concentration of 25.0 µM also increased the proportion of oocytes at the GV stage
(5.6 ± 1.4% vs 14.5 ± 1.3% for control and CORM-A1, respectively) (Fig. 4B).

After analysis of oocytes cultured for 72 h in a culture medium containing CORM-2,
we found that the oocytes did not complete meiotic maturation to theMII stage (80.5 ± 0.7%
vs 42.4 ± 2.1%–58.2 ± 1.4% for control and CORM-2, respectively) and meiotic maturation
remained arrested mainly at the MI stage (5.8 ± 1.0% vs 24.5 ± 2.0%–40.5% ± 1.9 for
control and CORM-2, respectively). The COMR-2 had the most significant effect at the
concentrations of 50.0 µM and 100.0 µM (Fig. 5).

Carbon monoxide reduces the production of reactive oxygen species
in porcine oocytes during meiotic maturation
We found that after meiotic maturation in a culture medium containing CO donor
CORM-2, the amount of ROS in porcine oocytes decreased (Fig. 6).

Oocytes cultivated for 48 h in a culture medium containing CORM-2 led to a significant
decrease in ROS production. All used CORM-2 concentrations had a significant effect
on ROS level reduction. After meiotic maturation in a culture medium containing
CORM-2 at 5.0, 25.0, 50.0, or 100.0 µM, the amount of ROS was reduced by 29.1%, 47.0%,
46.3%, and 48.9%, respectively. The effect of CORM-2 at the concentrations 25.0, 50.0, and
100.0 µM was not significant (Fig. 7).

DNA HO-2 Merge Control

G
V

M
I

M
II

Figure 2 Localization of heme oxygenase-2 (HO-2) in porcine oocytes during meiotic maturation.
HO-2 is shown in green (FITC), chromatin is shown in blue (DAPI), magni-fied 400×; GV, germinal
vesicle; MI, metaphase I; MII, metaphase II. Full-size DOI: 10.7717/peerj.10636/fig-2
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DISCUSSION
In the present work, we studied the importance of HO/CO for the meiotic maturation of
porcine oocytes. Both heme oxygenase isoforms catalyze the oxidative degradation of
heme. An excess of the heme molecule in the cell causes oxidative stress, and its removal by
HO activity is important for cell protection (Chiabrando et al., 2014). During ovulation,
the amount of heme in the ovaries increases, and it is believed that the enzyme HO protects
the ovarian cells from the degradation of the heme molecule (Zenclussen et al., 2012).
Degradation of heme by HO enzymes produces CO, a molecule with two faces. At high
concentrations, CO has several toxic properties that are well known. However, at low
concentrations, CO is an important signaling molecule that has cytoprotective,
antiapoptotic, and antioxidative properties (Ryter & Choi, 2016; Kolluru et al., 2017).
Considering the effects of HO/CO in somatic cells, we assume that CO could contribute to
the protection of oocytes during meiotic maturation, especially in in vitro conditions.
Our previous work demonstrated the presence of HO in oocytes exposed to in vitro aging
(Němeček, Dvořáková & Sedmíková, 2017). In the present study, we evaluated the HO
expression during meiotic maturation. We have not only proved the occurrence of both
HO mRNA and proteins in porcine oocytes during their meiotic maturation, but we have
also shown that CO has antioxidative properties in porcine oocytes. However, CO impairs
meiotic maturation, particularly at high concentrations.

Cellular localization of the HO-1 isoform in oocytes predominated in the
perichromosomal region, both in oocytes at the GV stage and in oocytes at the MI or MII

a a a b a a

I I I II I
I1 1 1 1 1 1* * * * * *

0

20

40

60

80

100

0 µM 1  µM 2.5  µM 5  µM 10  µM 25  µM

%

MII
MI
GV
Deg

Figure 3 Effect of HO inhibitor ZnPP-IX on the meiotic maturation of porcine oocytes. The control
group was cultured in a culture medium containing DMSO. Experimental groups were cultured in a
culture medium containing ZnPP-IX at concentrations of 1, 2.5, 5, 10, or 25 mM. The date is expressed as
mean ± SEM. Stages of nuclear maturation were evaluated as degenerate (Deg), germinal vesicle (GV),
metaphase I (MI), and metaphase II (MII). Lowercase letters a and b show a statistically significant
difference in the proportion of oocytes at the MII stage (P < 0.05). The numerals I and II show a sta-
tistically significant difference in the proportion of oocytes at the MI stage (P < 0.05). The number 1
shows a statistically significant difference in the proportion of oocytes at the GV stage (P < 0.05).
The asterisk (�) shows a statistically significant difference in the proportion of Deg oocytes (P < 0.05).

Full-size DOI: 10.7717/peerj.10636/fig-3
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stage. Localization of HO-1 was prevalent in the perichromosomal area also in aged
porcine oocytes (Němeček et al., 2017) and in the nucleus of bovine granulosa cells (Wang
et al., 2018). In somatic cells, HO-1 was mainly localized in the endoplasmic reticulum
(Dennery, 2014), and translocation of HO-1 to the nuclear region may occur in response to
stress factors (Lin et al., 2007). In the nuclear area, HO-1 regulates the activity of
transcription factors such as AP-1 and NrF2, which increase the resistance of cells to
oxidative stress (Li Volti et al., 2004; Lin et al., 2007; Biswas et al., 2014; Tibullo et al., 2016).
It is shown, for example, that nuclear HO-1 regulates the expression of antioxidative
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Figure 4 Effect of CORM-2 (A) and CORM-A1 (B) on meiotic maturation of porcine oocytes. The
control group was cultured in a culture medium containing an inactive form of CORM (iCORM-2 or
iCORM-A1). Experimental groups were cultured in a culture medium containing CORM-2 or CORM-
A1 at concentrations of 5, 25, 50, and 100 mM. The date is expressed as mean ± SEM. Stages of nuclear
maturation were evaluated as degenerate (Deg), germinal vesicle (GV), metaphase I (MI), and metaphase
II (MII). Lowercase letters a, b and c show a statistically significant difference in the proportion of oocytes
at the MII stage (P < 0.05). The numerals I, II and III shows a statistically significant difference in the
proportion of oocytes at the MI stage (P < 0.05). The numbers 1 and 2 show a statistically significant
difference in the proportion of oocytes at the GV stage (P < 0.05). The asterisk (�) shows a statistically
significant difference in the proportion of Deg oocytes (P < 0.05).

Full-size DOI: 10.7717/peerj.10636/fig-4
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enzymes γ-glutamylcysteine synthetase, glutathione peroxidase, catalase, and methionine
sulfoxide reductase. These enzymes are essential for resistance against oxidative stress
(Collinson et al., 2010), and they are involved in the regulation of oxidative stress also
in oocytes (Cetica et al., 2001). In addition to oxidative stress regulation in somatic cells,
the HO/CO system also influences the cell cycle. Nuclear HO-1 may regulate the initiation
of meiotic maturation through activation of the transcription factor Nrf2. It is already
known that nuclear HO-1 regulates the activity of transcription factors (Nrf2 and AP-1) in
somatic cells (Li Volti et al., 2004; Lin et al., 2007; Biswas et al., 2014; Tibullo et al., 2016).
Qiu & Yao (2017) suggest that Nrf2 is involved in the initiation of meiosis since the
inhibition of Nrf2 results in altered expression of the cell cycle-related genes and delayed
progression in leptotene. For these reasons, nuclear HO-1 may regulate the activity of
transcription factors and, thereby, meiotic maturation. In contrast to HO-1, the HO-2
isoform predominated in the cytoplasmic region. In somatic cells, HO-2 occurs mainly in
the cytoplasm as a membrane protein of the endoplasmic reticulum (Ma et al., 2004;
Linnenbaum et al., 2012). The HO-2 isoform is a constitutively active enzyme that does not
respond to activation by stress factors. Also, in the porcine oocytes, we did not observe
significant changes in HO-2 expression. It is believed that the HO-2 is responsible for the
stable production of CO and thus can form a barrier against cellular damage, for example,
by protecting against the negative effect of radicals derived from cellular metabolism
(Muñoz-Sánchez & Chánez-Cárdenas, 2014). For these reasons, HO-2 could have a
protective function also in oocytes. However, we have shown that inhibition of both HO
isoforms does not significantly affect meiotic maturation. Though in the case of HO-1, it is
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Figure 5 Effect of CORM-2 on prolonged cultivation of porcine oocytes. The control group was
cultured in a culture medium containing an inactive form of CORM (iCORM-2). Experimental groups
were cultured in a culture medium containing CORM-2 at concentrations of 5, 25, 50, and 100 mM.
The date is expressed as mean ± SEM. Stages of nuclear maturation were evaluated as degenerate (Deg),
germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). Lowercase letters a, b and c shows a
statistically significant difference in the proportion of oocytes at the MII stage (P < 0.05). Numerals I, II
and III show a statistically significant difference in the proportion of oocytes at the MI stage (P < 0.05).
The number 1 shows a statistically significant difference in the proportion of oocytes at the GV stage
(P < 0.05). The asterisk (�) shows a statistically significant difference in the proportion of Deg oocytes
(P < 0.05). Full-size DOI: 10.7717/peerj.10636/fig-5
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proven that both enzymatically active HO-1 protein and HO-1 protein with reduced
enzymatic activity have antioxidative properties. This effect is probably due to the binding
of inactive HO-1 to other proteins, such as transcription factors. Thus, HO-1 affects
the transcription factors AP-1 and Nrf2 (Lin et al., 2007; Dennery, 2014) due to the
localization of HO-1 in the perichromosomal region of porcine oocytes. For these reasons,
HO-1 could affect the protein’s activity despite the presence of an inhibitor. To assess
the significance of HO during meiotic maturation, it would be useful, for example, to
study the effect in animals that are deficient in HO enzymes. Zenclussen et al. (2012)
examined the effect of HO-1 gene deficiency on oocyte ovulation, fertilization, and corpus
luteummaintenance in mice. It is not known whether the HO-1 deficiency directly affected
meiotic maturation, but the fertilization rate of oocytes from HO-1 deficient animals was
decreased.

The gasotransmitter CO is already well known for its cytoprotective properties and also
for the beneficial effect the exogenous delivery of CO can have on cells (Wegiel, Chin &
Otterbein, 2008). Our results showed that cultivation in a culture medium containing
CO donors led to a reduction in the level of ROS in porcine oocytes. At the same time,

100 µM50 µM25 µM

5 µM0 µMControl

Figure 6 Assessment of reactive oxygen species (ROS) production in the porcine oocyte during
meiotic maturation. The control group demonstrates the level of non-specific signal intensity in
oocytes without treatment with 2,7-dichlorodihydrofluorescein diacetate method. The group 0 µM were
cultivated in culture medium supplemented with iCORM-2. The experimental groups were a cultivated
in culture medium containing CORM-2 at various concentrations. The level of ROS production was
detected using the 2,7-dichlorodihydrofluorescein diacetate (green). Magnified 200×.

Full-size DOI: 10.7717/peerj.10636/fig-6
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however, CO arrested meiotic maturation, particularly at the MI stage. This effect was
dose-dependent. It was shown in somatic cells that CO has an antioxidative effect and
reduces the amount of ROS (Pileggi et al., 2001; Brouard et al., 2002; Motterlini &
Otterbein, 2010; Li et al., 2016). CO is also involved in cell cycle regulation (Wegiel, Chin &
Otterbein, 2008). In oocytes, ROS negatively affects meiotic maturation, fertilization, and
developmental competence. Protection against oxidative stress is important, and
cultivation in a culture media containing antioxidants improves meiotic maturation
(Combelles, Gupta & Agarwal, 2009; Prasad et al., 2016). For these reasons, we consider the
ability of CO to reduce the amount of ROS during meiotic maturation to be beneficial.
The different concentrations did not have significantly different effects, and even the low
concentration of CO led to a significant reduction in ROS levels. In aging oocytes, CO
reduces caspase-3 activity and the occurrence of negative effects of postovulatory aging
(Němeček et al., 2017). ROS are mainly responsible for the adverse effects of postovulatory
oocyte aging; therefore, reducing the level of ROS may lead to improved oocyte quality
and developmental potential (Lord & John Aitken, 2013; Prasad et al., 2016). The effect of
CO on ROS levels has not yet been studied in aged oocytes, but because we proved the
antioxidant effect of CO in oocytes, we assume that CO reduced the negative effects of
aging by reducing the level of ROS. Thus, CO could have a beneficial effect during meiotic
maturation and postovulatory aging of oocytes. However, ROS does not only have a
negative effect on cells. It is also demonstrated that ROS is involved in the regulation of
meiotic maturation and that a low level of ROS is essential for proper meiotic maturation
(Soto-Herasa & Paramio, 2020). Oocyte cultivation in a medium containing high
concentrations of ROS scavengers can lead to the inhibition of meiotic maturation (Tiwari
et al., 2016). For example, supplementation of the culture medium with the non-enzymatic
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Figure 7 Effect of CORM-2 on ROS level in porcine oocytes during meiotic maturation. The control
group was cultured in a culture medium containing an inactive form of CORM (iCORM-2). Experi-
mental groups were cultured in a culture medium containing CORM-2 at concentrations of 5, 25, 50, and
100 mM. The level of ROS in porcine oocytes is expressed as the mean signal intensity of 2.7-dichlor-
odihydrofluorescindiacetate and is relative to the signal intensity in oocytes at the GV stage. The bars
show the mean ± SEM. Lowercase letters a, b and c show a statistically significant difference in the level of
ROS compared to the control group (P < 0.05). Full-size DOI: 10.7717/peerj.10636/fig-7
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antioxidants ascorbic acid and 3-tert-butyl-4-hydroxyanisole leads to the inhibition of
meiotic maturation (Khazaei & Aghaz, 2017). In porcine oocytes, a high CO concentration
could lead to a significant reduction of ROS level and alteration of the oxidative balance.
Furthermore, a high concentration of CO can have a detrimental effect on meiotic
maturation: meiotic maturation arrest. Therefore, we suggest that CO may be beneficial in
low concentrations in in vitro oocyte culture.

The oocyte is not isolated in the cumulus-oocyte complex, but granulosa cells are
important for its successful development. Granulosa cells supply nutrients and metabolites
through gap junctions to oocytes and secrete paracrine signals to regulate oocytes. Oocyte
also lacks several defense mechanisms that are provided by the granulosa cells. On the
other hand, oocytes regulate granulosa cell proliferation and differentiation (Alam &
Miyano, 2020; Von Mengden, Klamt & Smitz, 2020). Both HO isoforms are detected in
granulosa cell (Alexandreanu & Lawson, 2003; Bergandi et al., 2014; Wang et al., 2018,
2019). Particularly inducible HO-1 is involved in protecting granulosa cells against
stressors. They are protected against oxidative stress via the Nrf2/HO-1 pathway (Wang
et al., 2018). Increased stress leads to the induction of HO-1 expression and thus an
increase in CO production in granulosa cells (Wang et al., 2018, 2019). The level of stress
may be too high, and the abilities of endogenous HO-1 may be overwhelmed. This then
leads to cell damage. Significantly increased levels of HO-1 expression in granulosa
cells may be associated with impaired oocyte competence (Bergandi et al., 2014),
suggesting that an excessive ROS production can trigger oocyte damage (Canosa et al.,
2020). The addition of protective agents, such as antioxidants, can then prevent cell
damage. Antioxidant melatonin has been shown to enhance oocyte and embryo quality
(Rizzo, Raffone & Benedetto, 2010). In granulosa cells, melatonin increases the expression
of HO-1 and protects them from oxidative stress (Yu et al., 2019). Also, the induction of
HO-1 activity by hemin increases antioxidant defenses and attenuates ROS generation
and apoptosis in stressed granulosa cells (Wang et al., 2019). CO is mainly responsible for
this protective effect. The addition of CO through the CORM-2 demonstrates that CO
regulates the apoptosis of granulosa cells through the ERK1/2 pathway (Wang et al., 2019).
We assume that CO may affect meiotic maturation also by affecting signaling pathways in
granulosa cells. For example, the ERK1/2 pathway is important for the resumption of
meiotic maturation (Shimada, 2012). On the other hand, CO is an activator of guanylyl
cyclase. In the follicle cGMP is synthesized by guanylyl cyclase in granulosa cells and
diffuses to the oocyte to inhibit the hydrolysis activity of PDE3A on cAMP, ultimately
maintains the oocyte meiotic arrest (Shuhaibar et al., 2015; Jaffe & Egbert, 2017). The CO
effect is probably complex and affects granulosa cells, oocytes, and their communication
during meiotic maturation.

Meiotic maturation in in vitro conditions may result in oocytes with asynchronous
nuclear and cytoplasmic maturation. This is important because adequate oocyte
developmental competence requires synchronization between nuclear and cytoplasmic
maturation. This condition decreases oocyte fertilizability and impairs early embryonic
development (Ali, Benkhalifa & Miron, 2006; Rybska et al., 2018; Leal et al., 2018).
Synchronization techniques based on the use of reversible meiotic inhibitors can prevent
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this asynchrony. The purpose of this inhibition is to temporarily block meiotic progression
during maturation. The block is then removed to allow the oocytes to mature under in
vitro conditions (Vanhoutte et al., 2009; Gil et al., 2017; Leal et al., 2018). For example,
temporarily arresting meiotic maturation by phosphodiesterase 3-inhibitor leads to an
increase in oocyte quality and developmental potential (Vanhoutte et al., 2009; Gil et al.,
2017; Leal et al., 2018). It would be an interesting question whether the application of CO
to the culture system could lead to the synchronization of nuclear and cytoplasmic
maturation. This could improve the quality of in vitro cultured oocytes.

Other signaling pathways may be responsible for the inhibition of meiotic maturation
caused by CO, such as the JNK kinase-signaling pathway. In oocytes, the inhibition of JNK
arrests meiotic maturation (Huang et al., 2011) also, it is shown that CO inhibits JNK
activity in somatic cells (Kim, Ryter & Choi, 2006). CO can also regulate meiotic
maturation through interaction with other gasotransmitters. It has already been shown
that nitric oxide (NO) and hydrogen sulfide (H2S) regulate meiotic maturation (Bu et al.,
2003; Nevoral et al., 2014). In the case of H2S, it has been shown to accelerate the meiotic
maturation of oocytes (Nevoral et al., 2014, 2015). CO inhibits the activity of H2S
producing enzymes and thereby decreases H2S production (Giuffrè & Vicente, 2018).
Inhibition of H2S producing enzymes by inhibitors leads to impaired meiotic maturation
of porcine oocytes (Nevoral et al., 2015). In somatic cells, it has been shown that CO
can reduce the level of cyclin proteins (Bauer et al., 2016); for example, MPF is an
enzymatic complex composed of cyclin-dependent kinase 1 and cyclin B (Kishimoto,
2018). Furthermore, MPF activity is crucial for meiotic maturation, catalyzing entry into
the M-phase of meiosis I and meiosis II (Schmitt & Nebreda, 2002). If CO affects cyclin B
levels, then it could regulate MPF activity in this way.

CONCLUSIONS
In summary, our work has shown that CO inhibits meiotic maturation and reduces ROS
production in porcine oocytes. We assume that in oocytes, HO/CO may regulate the
oxidative state and contributes to the protection against oxidative stress. Furthermore, we
assume that CO probably affects some of the signaling pathways that regulate meiotic
maturation. This leads to inhibition of meiotic maturation. To further assess the effect of
CO during meiotic maturation, it is necessary to focus on the mechanism by which CO
regulates meiotic maturation. We conclude that the HO/CO signaling pathway is an
unexplored part that regulates meiotic maturation and that also regulates oxidative stress
in oocytes.
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