
Increased Numbers of Circulating CD8 Effector Memory T
Cells before Transplantation Enhance the Risk of Acute
Rejection in Lung Transplant Recipients
David San Segundo1, María Ángeles Ballesteros2, Sara Naranjo3, Felipe Zurbano4, Eduardo Miñambres2,
Marcos López-Hoyos1*

1 Immunology Service. Marqués de Valdecilla Hospital, Santander, Spain, 2 Intensive Care Unit, Marqués de Valdecilla Hospital, Santander, Spain, 3 Thoracic
Surgery Unit, Marqués de Valdecilla Hospital, Santander, Spain, 4 Pneumology Service. Marqués de Valdecilla Hospital, Santander, Spain

Abstract

The effector and regulatory T cell subpopulations involved in the development of acute rejection episodes in lung
transplantation remain to be elucidated. Twenty-seven lung transplant candidates were prospectively monitored
before transplantation and within the first year post-transplantation. Regulatory, Th17, memory and naïve T cells
were measured in peripheral blood of lung transplant recipients by flow cytometry. No association of acute rejection
with number of peripheral regulatory T cells and Th17 cells was found. However, effector memory subsets in acute
rejection patients were increased during the first two months post-transplant. Interestingly, patients waiting for lung
transplant with levels of CD8+ effector memory T cells over 185 cells/mm3 had a significant increased risk of rejection
[OR: 5.62 (95% CI: 1.08-29.37), p=0.04]. In multivariate analysis adjusted for age and gender the odds ratio for
rejection was: OR: 5.89 (95% CI: 1.08-32.24), p=0.04. These data suggest a correlation between acute rejection and
effector memory T cells in lung transplant recipients. The measurement of peripheral blood CD8+ effector memory T
cells prior to lung transplant may define patients at high risk of acute lung rejection.
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Introduction

The potential success of lung transplantation is limited by the
relative high incidence of acute rejection (AR) within the first
year of transplantation[1]. Those transplant recipients suffering
acute rejection have poor 1 year survival and an AR episode
increases the incidence of chronic rejection in the form of
bronchiolitis obliterans syndrome [2,3], and BOS is the major
cause of mortality after lung transplantation[1,4]. However, the
underlying mechanisms for chronic graft deterioration are not
clearly understood[5].

The alloresponse against the graft could be driven by several
effector subpopulations. Thus, knowledge of effector and
regulatory mechanisms in alloresponse may help to monitor
solid organ transplant recipients.

In addition, lung transplant recipients (LTR), are at high risk
of infection, and the immune response against microorganisms
can overlap with the alloresponse. The challenge is to

differentiate between the donor specific alloresponse and the
response against respiratory pathogens. In several transplant
settings, regulatory T cells (Tregs) have been demonstrated to
play a role in controlling alloresponses in animal models[6],
although the transfer to human solid organ Tx gives
contradictory results. In liver Tx high Treg levels are associated
with tolerance[7] but in other solid organ Tx such an
association is less clear[8]. Importantly effector memory
subpopulations are able to break the tolerance induced by
Tregs[9] and memory alloresponse can be involved in chronic
rejection[10] and aggressive AR [11]. In early 90s in vitro
studies showed indirect evidence that switch from naïve to
primed/memory CD8+ T cells was important in kidney allograft
rejection[12]. In moderate AR in cardiac allograft biopsies high
levels of infiltrating memory subsets has also been shown [13].
In lung-Tx models a role for CD8+ T cells in chronic rejection
has also been demonstrated [14].
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The present study addressed the kinetics in peripheral blood
of the number of different effector and regulatory
subpopulations in LTR within the first year of transplantation.

Materials and Methods

Patients and blood sampling
A prospective single center study was designed and

approved by local Ethic Committee (Ethic Committee of Clinical
Research of Cantabria).

Twenty-seven consecutive LTRs followed at our Hospital
during 2010 were recruited for the study and 16 sex- and age-
matched healthy subjects were gathered as control group. All
patients gave their written informed consent.

The demographic, clinical and main immunological variables
are summarized in Table 1 and comparison with control group
in Table 2.

The patients were monitored and peripheral blood samples
were obtained just before Tx, and after 7, 14, 30, 60, 90, 180
and 360 days post-Tx. All recipients were treated with the
same immunosuppression regimen: tacrolimus, steroids and
mycophenolate mofetil. Transbronchial biopsy protocol at day
21 post-Tx was performed in each patient and AR episode was
defined by histopathological diagnosis according to The ISHLT
Lung Study Group criteria[15]. Within the AR group, one patient
suffered two AR events (1 and 3 months post-Tx) and median
time to AR was 30 days post-Tx. The comparison of
immunological and clinical data of LTRs included in the groups
of AR and AR-free are shown in Table 3.

Table 1. Demographic, clinical and immunological variables
of patients included in the study.

 N Mean ± SD %
Donor age (years) 14 44±19.2  
Recipient age(years) 27 56.4±10.8  
Sex (M/F, % of F) 17/10  37
Disease    
- Pulmonary Fibrosis 7   
-COPD 11   
-alpha1-antitrypsin deficiency 3   
-Cystic Fibrosis 2   
-Pulmonary sarcoidosis 1   
-Histiocytosis-X 1   
A-Mismatches 13 1.6  
B-Mismatches 13 1.8  
DR-Mismatches 13 1.4  
Post-Tx treatment (tacrolimus+Steroids+MMF) 27  100
Maintenace treatment (tacrolimus+Steroids+MMF) 27  100
Biopsy proven AR 13  48.1
Infections 16  59.3
De novo diabetes 2  7.4

doi: 10.1371/journal.pone.0080601.t001

Flow cytometry studies
At each time point mentioned above, flow cytometry was

used to quantify peripheral blood effector and regulatory
subpopulations, as described previously [16]. Briefly, whole
blood staining with monoclonal antibodies, red blood cell lysis
and further wash with Phosphate Buffer Saline for surface
staining and intracellular Foxp3 staining (eBioscience, San
Diego, CA) were performed following manufacturer’s
instructions. The list of antibodies used was: CD62L-
fluorescein isothiocyanate (FITC) clone Dreg56, CD45RO-
phycoerythrin (PE) clone UCHL1, CD8-peridinin chlorophyll
protein (PerCP)-Cy5.5 clone SK1, CD4-allophycocyanin (APC)-
Cy7 clone SK3, CD3-PE-Cy7 clone SK7, CD25-APC clone
2A3, CD27-FITC clone M-T271, CD25-PE clon 2A3 (BD

Table 2. Comparison of percentage of memory CD8+ T
cells of lung transplant recipients with sex- and age-
matched healthy controls.

 Healthy controls
Lung transplant
recipients P value

N 16 27  
Age (median and interquartile
range)

55 (47-61) 59 (55-62) NSa

Sex (M/F) (% of female) 10/6 (38) 17/10 (37) NSb

% of CD8+ TCM (median and
interquartile range)

10.7 (6.95-17.40) 10.1 (6.70-15.40) NSa

% of CD8+ TEM (median and
interquartile range)

31.4 (17.39-42.25) 25.6 (14.1-39.2) NSa

U Mann-Whitneya and Chi-squareb statistical tests were applied
doi: 10.1371/journal.pone.0080601.t002

Table 3. Comparison of demographic, clinical and
immunological variables in lung transplant recipients
suffering acute rejection episodes and rejection-free.

 Rejection-free   
Acute
Rejection   P value

Donor age (years; median and
interquartile range)

45 (23-61) 46,5 (27-68.3) NSa

Recipient age (years; median and
interquartile range)

59 (55-62) 60 (54.5-62) NSa

HLA-A mismatches (mean ± standard
deviation)

1.67±0.516 1.57±0.535 NSb

HLA-B mismatches (mean ± standard
deviation)

2.0±0 1.71±0.488 NSb

HLA-DR mismatches (mean ±
standard deviation)

1.2±0.837 1.67±0.52 NSb

Peritransplant infection (patients with
infection/total patients)

1/15 2/13 NSc

Infection whithin the first year post-
lung transplantation (patients with
infection/total patients)

8/15 8/13 NSc

U Mann-Whitneya, t Studentb and Chi-squarec statistical tests were applied
doi: 10.1371/journal.pone.0080601.t003
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Biosciences, San Jose, CA) and CD127-PE-Cy7 clone
eBioRDR5 and Foxp3-APC clone PCH101 (eBioscience).
Regulatory T cells were defined as CD4+CD25+CD127-/

lowFoxp3+CD27+, whereas four different T cell subpopulations
based on CD62L and CD45RO staining were defined [17]:
naïve (CD45RO-CD62L+), effector memory (CD45RO+CD62L-),
central memory (CD45RO+CD62L+) and terminally
differentiated effector memory (CD45RO-CD62L-) T cells in
both CD8+ and CD4+ T cells. All the samples were acquired on
a FACSCanto II (BD Biosciences) and analyzed with
FACSDiva software (BD Biosciences).

Blood culture for IL-17 detection
Whole blood cultures were performed for intracellular and

supernatant interleukin (IL)-17 measurement.
For intracellular detection, whole blood sample was

stimulated with phorbol myristate acetate (25ng/mL) and
Ionomycin (1ug/mL) (Sigma-Aldrich, St. Louis, MO), and
incubated during 4 hours at 37°C in 5% CO2 atmosphere. To
avoid cytokine release intracellular transport was stopped by
co-incubating with Brefeldin-A (10ug/mL). Surface staining with
CD8-FITC/CD69-PE/CD3-PerCP combined antibodies (BD
Bioscience), subsequent fixation and permeabilization (BD
Bioscience) steps prior to intracellular cytokine staining for
IL-17 was performed.

At the same time, 1:5 diluted whole blood was cultured with
1mg/mL of Concanavalin A (Sigma-Aldrich) for 48 hours at
37°C in 5% CO2 atmosphere and supernatant was collected
and stored at -80°C until further analysis. The IL-17 levels on
supernatants were measured by ELISA following the
manufacturer’s instructions (R & D Systems, Minneapolis, MN).

Statistical analysis
Data were non-parametrically distributed (Kolmogorov–

Smirnov fit test) and expressed as the median and the
interquartile range. Differences in the percentage and absolute
number of Treg, naïve and memory T cells and the expression
of different markers between different time points of follow-up
were analyzed by Kruskall-Wallis. To compare medians
between AR and AR-free groups the Mann-Whitney U test was
used. To define a cut off value of CD8+ TEM cells to
discriminate AR, a receiver operative characteristics (ROC)
curve was performed. Univariate logistic regression analysis
was used to select factors associated with AR for the inclusion
in subsequent multivariate analysis (Table 4). Confounding and
collinearity between the selected variables were assessed and
finally the model was corrected for age and gender. The p-
values <0.05 were considered significant. The data were
analyzed using SPSS version 15.0 (SPSS Inc; Chicago, IL,
USA).

Results

Prospective follow-up in lung transplant recipients:
Tregs

The absolute number of Tregs in LTRs increased early post-
Tx by second month, but significantly decreased in subsequent

time points after 6 and 12 months post-Tx (Figure 1A). The
patients suffering from an AR event showed increased number
of Tregs in all timepoints, but they were only significantly
increased at 12 months post-Tx (Figure 1B).

During infections LTRs had similar levels of Tregs compared
with infection-free LTRs (data not shown).

Th17 cells follow-up in lung transplant recipients
No differences in circulating Th17 cell number were

observed between AR and AR-free patients.A significant
decrease of IL-17 in vitro production was observed at all times
point post transplantation compared to pre-Tx levels (Figure 2).
However, no difference in IL-17 supernatant levels was
observed between the patients with AR and AR-free.

Memory T cell subsets in lung transplant recipients
A significant decrease in the percentage of CD4+ effector

memory (TEM) and terminally differentiated effector memory
(TEMRA) T cells, early post-Tx was observed. Such a
decrease was maintained during the first month post-Tx and
was correlated with an increase in the percentage of CD4+

central memory T cells (TCM) (Figure 3A).
The percentage of CD8+ naïve T cells increased during the

first 3 months of transplantation and recovered to basal levels
at 12 months post-Tx. However, CD8+ TEM decreased
reaching a nadir at 3 months post-Tx with partial recovery at 12
months (Figure 3B). The pattern described above for CD4+

TCM was also observed on CD8+ TCM. The CD8+ TEMRA
subset decreased slightly after Tx with gradual recovery from
the second month post-Tx.

During the follow-up of the study, a significant increase in
both CD4+ and CD8+ naïve T cells at 2 month post-transplant
was observed compared to pre-Tx levels. The CD8+ TEMRA
cells prior lung Tx were significantly increased compared with
the first and second week post-Tx. No differences in absolute
numbers of other memory peripheral blood subpopulations at
any time point were observed (data not shown).

Table 4. Odds ratio for Acute Rejection using a logistic
regression.

Parameter Univariate Analysis P
Multivariate
Analysisa P

 OR (95% CI)  OR (95% CI)  

Recipient Age at Tx 1.56 (0.34 to 7.11) 0.568   

Gender (male vs
female)

0.47 (0.10 to 2.29) 0.345   

Pulmonary disease
(fibrosis vs others)

3.14 (0.59 to 16.84) 0.173   

Infection 2.36 (0.19 to 29.71) 0.496   

CD8+ TEM 5.62 (1.08 to 29.37) 0.041
5.89 (1.08 to
32.24)

0.041

Tx: TransplantationTEM: Effector memory T cells
a. Adjusted for age/gender
doi: 10.1371/journal.pone.0080601.t004
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Figure 1.  Follow-up of regulatory T cells in lung transplant recipients (LTR).  Absolute number of regulatory T cells
(CD4+CD127low/-Foxp3+CD27+) was measured before the transplant (Pre) and first, second week (wk), first, second, third, sixth,
twelfth month (m) post-transplant in peripheral blood of lung transplant recipients (A), median and interquartile range are depicted.
(Comparison of absolute number of Tregs in LTR (B)), the box plot shows the median and interquartile ranges of regulatory T (Treg)
cells in peripheral blood of lung transplant recipients with acute rejection (AR) episode (grey boxes) and lung transplant recipients
without rejection (F, white boxes). The whiskers show 5 and 95 percentile. Kruskall-Wallis and U-Mann-Whitney test were assessed
to compare medians of Treg levels at different timepoints in AR and F groups, (*, p<0.05 and **, p<0.01).
doi: 10.1371/journal.pone.0080601.g001

Figure 2.  IL-7 measurement in supernatant after 48hour-culture in Lung transplant recipients.  Medians and interquartile
ranges are depicted and Kruskall-Wallis test was used to compare medians.***p<0.001,** p<0.01, *p<0.05.
doi: 10.1371/journal.pone.0080601.g002
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Memory T cell subsets and lung graft acute rejection
In the CD4+ subsets no differences in the percentage of

TCM, TEM, TEMRA and naive subsets were observed in LTR
suffering AR as compared with the AR-free group. A significant
increase of CD8+ TEM was observed during all the follow-up in
the AR group and there was a simultaneous fall in the CD8+

naïve subpopulation (Figure 4 and Figure 5).
In terms of absolute numbers an increase of CD4+ and CD8+

TEM before transplantation in the AR group was observed
(Figure 6).

Using ROC curves to calculate a cut-off value for the number
of CD8+ TEM to discriminate between AR and rejection-free
recipients, 185 CD8+ TEM cells/mm3 was established as cut-off
value. Such a cut-off reached a sensitivity of 69.2% and
specificity of 90.9% for predicting a subsequent rejection
episode.

The relative risk for AR in patients on the waiting list for lung
Tx with CD8+ TEM higher than 185 cells/mm3 before
transplantation was 5.62 CI (1.08-29.37) (p=0.041). We
assessed clinical and immunological variables potentially
involved in acute rejection in a logistic regression model and
corrected them for age and gender (Table 4). The CD8+ TEM
cells before lung Tx achieved an odds ratio of 5.89 CI
(1.08-32.24) (p=0.041).

Discussion

The effector mechanisms involved in allo-responses are
complex and only partially understood. Tregs have gained
importance in transplantation due to the findings of their ability
to efficiently control alloimmune responses. The findings in LTR

however are contradictory. Several studies have correlated low
Treg levels in bronchoalveolar lavage [8] with development of
AR and BOS[18,19]. Another study found no correlation
between frequency of Tregs and BOS outcome, although a role
of CCR7+CD45RA- Tregs in protection against development of
BOS was observed[20].

In the current study lung transplant recipients showed little
change in Tregs in peripheral blood over the first year of
transplantation and there was no change in those with AR . Our
results confirm the lack of association of peripheral blood Treg
levels with AR and lung pathology shown by others[21,22].
Although an association between immunosuppressant regimen
and Tregs has been demonstrated in other solid organ
transplants[23,24], in our cohort no correlation with TAC levels
and Tregs was observed at any time point (data not shown).

Despite TCM cells seem to be more resistant to depletion
after induction therapy with Campath-1H [25], the impact of
several immunosuppressants in memory T cells remain to be
fully elucidated. In a different retrospective study of living donor
renal recipients after alemtuzumab induction AR inferred an
increased proportion of CD4+ TEM and CD8+ TEMRA 3 years
post-Tx[26]. No prospective data on lung transplant patients
and memory subsets have been performed. In the present
study all the LTR were under the same immunosuppressive
regimen without induction therapy, thus the potential impact of
induction immunosuppression on memory T cells is avoided.

Within effector subsets, Th17 cells may be involved in
allograft rejection in animal models[27] and IL-17 has been
associated to the development of BOS in LTR[28]. In our
cohort no correlation of Th17 cells, measured by either
intracellular or supernatant secretion of IL-17, with AR was

Figure 3.  Follow-up of the percentage of T cell subsets.  Follow-up of the percentage of CD4+ subsets in lung transplant
recipients within first year (A). The median of central memory (TCM) on black line and open squares, naïve on dotted line and open
triangle, effector memory (TEM) on truncated line and open triangle and terminally differentiated effector memory (TEMRA) cells on
thin dotted line and open diamond are depicted. Follow-up of the percentage of CD8+ subsets in lung transplant recipients within
first year (B). The median of central memory (TCM) on black line and open squares, naïve on black line and open triangle, effector
memory (TEM) on truncated line and open triangle and terminally differentiated effector memory (TEMRA) cells on thin dotted line
and open diamond are depicted. Ranges are not depicted because of simplicity. Median percentage of T cell subset differences
were tested by U-Mann Whitney test (* and §, p<0.05 and p<0.1 respectively).
doi: 10.1371/journal.pone.0080601.g003

Memory T Cells & Rejection in Lung Transplantation

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e80601



Figure 4.  Percenteage of naïve and effector memory CD8+ T cells in lung transplant recipients.  Comparison of the
percentages of naïve (A) and effector memory (TEM) CD8+ T cells (B) between the groups of rejection-free (F, white box-plot) lung
transplant recipients and with an episode of acute rejection (AR, grey box-plot) during several time points post-Tx: pre-Tx (basal), 1
week (wk), 2 weeks, and 1, 2, 3, 6, and 12 months (m) post-Tx. The medians and interquartile range are depicted and compared
using Mann-Whitney U test.* p value <0.05.
doi: 10.1371/journal.pone.0080601.g004
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observed. Furthermore, different ratios of effector subsets
(TEM, TCM, Th17) versus Tregs or naïve T cells in blood were
assessed but none of them achieved statistical significance
(data not shown).

Our data point to an increased number of CD8+ TEM before
Tx in patients who later developed an AR episode. The
differences were still significant after 2 months post-Tx. This
observation was not accompanied with increased production of
interferon-gamma or IL-17 after polyclonal stimulation in LTR
with AR. More importantly, the patients with end-stage lung
disease with CD8+ TEM cells higher than 185 cells/mm3

presented a substantial increased risk of suffering AR episode.
The present study is the first showing a direct association of
high levels of pre-Tx TEM cells and AR risk in LTR (Figure 6).
There are few attempts in solid organ transplantation to point

out memory T subsets as inducers of AR[29,30]. The main
limitation of the study is the sample size and the results should
be interpreted carefully, and larger multicenter studies should
be designed to confirm our data. From our results, the
measurement of peripheral blood CD8+ TEM cells could be of
interest to detect patients before Tx with a potential increased
risk of suffering an episode of AR and potentially alter induction
regimens for such patients.
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